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Abstract

A direct proof shows Goldbach’s conjecture is correct. It is as

simple as can be imagined.

Introduction

Hardy and Apostol spend some time on Goldbach’s conjecture [1, 2]. The
conjecture has it that every even number can be expressed as the sum of two
primes. And indeed it is fascinating to try it on some even numbers and
quickly find some instances.

Various angles for finding examples are possible. One can just add any
two odd primes and the result will be even. So 3 + 5 = 8, 5 + 7 = 10, and so
on. This will give lots of even sums fast. If one allows, which the conjecture
does, non distinct primes then we can add 3+3 = 6 and 5+5 = 10 and start
to sense that, indeed, you might just get all evens.

Thence to the central rub with this conjecture. You get lots and lots of
pairs that sum to ever larger evens. A plethora of evidence starts accumu-
lating and one can quickly lose sight of the goal of proving it is generally
true. Things inevitably get complicated and the schemes get more and more
elaborate; and annoyingly, every now and again extremely simple. At least
that was my experience.

Here is a scheme for the latter leading to the former. An even can be
expressed in the form 2n − 2 + 2. So take 44 = 44 − 2 + 2 = 42 + 2 and
start subtracting from 42 and adding to 2; immediately 42 − 1 = 41 and
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2+1 = 3 and both 41 and 3 are primes. Keep going and you will have to get
all composite and prime combinations. But how to you know you will ever
get two primes at the same time?

Thence to ever more elaborate considerations of say expressing each num-
ber using all primes less than a given even via a division algorithm. So
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and for any even eventually one will get exponents, the multiples of one and
prime pairs seem to emerge. But we need a guarantee.

Thence to the frustration of seeing such hopeful evidence without getting
closer to a proof. One can find later solutions in earlier prime factors in (1),
so maybe they are pairing up somehow.

Pulled both ways between easy ways to get them all and difficult ways that
seem to give lots of granularity, like (1), both seeming to suggest something
complicated might work or something easy – well frustration and obsession
seem to wax. You scratch your head a lot.

All of this is to say how one can forget the general intuition: it must be
something very simple. Hint: expand your ideas out from just the primes
and just the odds and odd primes and consider all numbers. Use a sieve.
Here goes.

A sieve does it?!

Given an even 2n, we know 2 . . . n has lots of early primes and n + 1 . . . 2n
has at least one prime per Bertrand’s postulate [2]. Use two rows to count
up to 2n with the lower row consisting of 0 . . . n and the top row consisting
of n . . . 2n. Scratch off all but the first prime multiples of the first and second
rows, as well as the first column. What’s left are primes on the first row and
any surviving primes on the second row line up with lower row survivors.
These pairs are odd primes that sum to 2n.
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Here’s is an example: Table 1.

��20 19 ��18 17 ��16 ��15 ��14 13 ��12 ��11 10

�0 �1 2 3 �4 5 �6 7 �8 �9 ��10

Table 1: The survivors of the lower row index the survivors of the top row.
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