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Abstract

The purpose is to review and lay out a plan for future inquiry pertaining to the modified
cosmological model (MCM) and its overarching research program. The material is modularized
as a catalog of open questions that seem likely to support productive research work. The main
focus is quantum theory, but the material spans a breadth of physics and mathematics. Cosmol-
ogy is heavily weighted, and some Millennium Prize problems are included. A comprehensive
introduction contains a survey of falsifiable MCM predictions and associated experimental re-
sults. Listed problems include original ideas deserving further study as well as investigations of
others’ work when it may be germane. A longstanding and important conceptual hurdle in the
approach to MCM quantum gravity is resolved with a framework for quantum cosmology time
arrow eigenstates. A new elliptic curve application is presented. With several exceptions, the
presentation is high-level and qualitative. Formal analyses are mostly relegated to the future
work which is the topic of this book. Sufficient technical context is given that third parties
might independently undertake the suggested work units.
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0 Introduction

This book contains a long list of thesis problems in physics and mathematics. A

previous review [1] was written to broaden the horizons of the modified cosmological

model (MCM), and the present purpose is to pinpoint within those horizons ideas

that should be brought forward to completion.

0.1 Review and Main Results

During the MCM’s main development phase, this writer had already exited the aca-

demic environment which is most conducive to initial surveys of topics concluding

in original contributions at the level of a PhD thesis. The fixation of this research

program on the bare fundamentals has come at the expense of such “PhD-level” work,

and this condition provides fodder for detractors. Thus, remediation is in order.

While the fractional distance program in real analysis [2] must exceed the require-

ments for a PhD in mathematics, this writer has rarely taken research in physics to a

conclusive calculation, and never at the level of a PhD thesis. In the way that math-

ematicians are sometimes said to be concerned with the existence of solutions more

so than with finding them, it follows that this writer’s thesis equivalent [2] is in real

mathematical analysis. The presumed existence of solutions has sufficed throughout

the MCM’s development, contrary to what is most common in physics. First and

foremost, however, this writer is a physicist. Physics ultimately requires real solu-

tions for experimental applications. It was hoped for many years that others would

jump at the chance to write the papers in which such solutions are given, but history

has taken a different tack. In light of events, the present work describes many open

and untreated questions that have arisen in the development of the MCM.

An early computation in the MCM found a characteristic length scale for new

physics at 10−4m [3]. As it is the aim of this research program to tie up physics’ loose

ends with a new model of cosmology (and ontology with quantum applications), the

characteristic scale was obtained when the structure of the MCM was applied in an

intuitive way to the foremost unsolved problem in classical mechanics: the precession

of spinning discs. If any theory will be a theory of everything, it will lay to rest

the open questions in classical mechanics. Thus, an MCM mechanism for anomalous

mechanical precession was supposed. The calculation yielding 10−4m was very simple,
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but, on the other hand, precession is not a manifestly complicated problem. The result

was remarkable because 10−4m is neither the nano-scale of quantum mechanics nor the

macro-scale of classical mechanics. Instead, an intermediate meso-scale was obtained

in the regime where catch-all losses due to friction are usually called on to scoop up

everything not classically deterministic or quantum mechanical. Furthermore, Arkani-

Hamed and others have already written about the open question of new physics at the

sub-millimeter scale [4,5]. Is it only a coincidence that 10−4m lies in the narrow strip

where new physics is not forbidden? This question deserves further study because

the result cannot be ruled out immediately.

The mechanism surrounding the scale calculation in [3] was well defined but pos-

sibly not as well motivated as is expected in professional publications. One reason

for this is that this writer is not a professional. As an unpaid contributor, he is not

constrained by the professional community standards which sometimes make it diffi-

cult to put highly speculative ideas to paper. Still, the 10−4m result is remarkable. If

10−30, 10−10, 100, or 1010m was determined as the scale for the mechanism proposed

in [3], then we could know without any further thinking that the mechanism is un-

physical. To the contrary, the computation shows that experiment allows the idea,

in part, at least. If the work of physicists is to rule out theories, which are only ideas

or formalized ideas, then this calculation shows that the MCM passes at least one

hurdle of its falsifiable predictions not being ruled out. The hurdle was not high, but

first hurdles rarely are.

The best prediction to come from the MCM is that there should not exist any spin-

0 fundamental particles such as the Higgs boson. This prediction is directly falsifiable

in a way that exceeds the possibility for new effects on a certain scale. The prediction

is perfectly well motivated [6]. It is as clean and concise as any prediction in the

history of physics, and it arose in the following line of inquiry. After a brief review of

Kaluza–Klein theory (KKT), the MCM unit cell (Section 0.2) was constructed in [7].

The purpose of the construction was to build on previous work in the MCM so as to

address some of the failures of KKT detailed by Overduin and Wesson [8]. Namely,

the so-called cylinder condition requires that 4D Kaluza–Klein physics in spacetime

must not depend on the fifth coordinate. This condition is generated or satisfied in

the MCM when the realm of physics is taken as a 4D Poincaré section (slice) of a 5D

space for some constant value of the fifth coordinate. This is the main condition set by

the MCM unit cell. Another problem is that KKT only allows solutions in which the

electromagnetic (EM) field strength tensor Fµν vanishes. While one 5D Kaluza–Klein

(KK) metric tensor contains an EM potential 4-vector and a dual 4-vector, the MCM
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uses two such metrics containing twice as many degrees of freedom. This doubling of

the degrees of freedom should be sufficient for Fµν ̸=0 solutions.

While much work remains to formalize the MCM at the level of Kaluza’s and

Klein’s original papers [9, 10], the MCM unit cell was assembled in [7] to address

KKT’s main problems. Soon after, it was demonstrated that the unit cell offers a good

answer to the fundamental question of quantum field theory (QFT) [6]. That question

asks why we have the particles we have and not some other particles. The standard

model of particle physics is pretty good for determining what our particles do, but it

does nothing to address the fundamental question about why we have the standard

model particles to begin with. In the MCM, the spectrum of lattice vibrations in

the unit cell is identical to the known spectrum of elementary particles (Section 0.3).

Thus, the spectrum of fundamental particles results from a fundamental geometric

structure underlying reality. Even such nuance as the eight varieties of gluons arises

in the MCM lattice from simple classical mechanics. Each particle is given as a

different kind of spring or mass in a 5D lattice of masses connected by springs. The

ultimate goal of QFT is to generate the true spectrum of fundamental particles from

theory itself without having to force agreement with experiment by the imposition of

an empirical model, i.e.: the standard model, and the MCM fits the bill. The main

disagreement with the standard model is in the scheme for fundamental bosons. The

standard model supposes that there exists a spin-0 fundamental particle: the famous

scalar boson following from the work of famous people such as Englert, Brout, Higgs,

Guralnik, Hagen, and Kibble [11–17]. In its current incarnation, the MCM scheme

does not permit the existence of any spin-0 fundamental particles. So, the MCM

answer to the fundamental question of QFT is plainly falsifiable.

Posed in early 2013, the prediction that all fundamental bosons should have spin-1

followed on the heels of the discovery of a new particle at CERN in 2012 [18,19]: the

Higgslike particle. If that particle is found to have spin-0, then the MCM is wrong,

and it needs to be revised or scrapped. If that particle is the Higgs boson, or if it is

any possible variety of Higgs boson, it will have spin-0. The objective existence of a

spin-0 fundamental particle would send an important MCM result back to the drawing

board. More than causing the rescission of a prediction, the entire structure of the

model would be cast into doubt. As it stands, the MCM is supposed to generate the

fundamental particles as lattice vibrations in an almost (but not quite) trivial model

of lattice cosmology. The truthfulness of this prediction requires that the Higgslike

particle has spin-1.

Though many detractors of the MCM cite an alleged mountainous body of evi-
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dence proving that the Higgslike particle does not, and cannot, have spin-1, Ralston

has shown that spin-1 was not ruled out by the initial observations at CERN [20].

Arkani-Hamed has also stated in a talk [21] that spin-1 is not ruled out for the Higgs-

like particle. Ralston, in his analysis of the decay channels reported by CERN, cites

“model-independent Lorentz invariance” as allowing spin-1, but, in the ten years since

the particle was discovered, this writer has not seen a treatment of these model in-

dependent amplitudes. Instead, the ATLAS collaboration rules out “some specific

models” of spin-1 [22], “several alternative spin scenarios” [23], and “alternative hy-

potheses for spin” [24]. The CMS collaboration reports that, “all tested spin-one

boson hypotheses are excluded,” [25] and, “any mixed-parity spin-one state is ex-

cluded” [26]. Neither collaboration reports that they have ruled out spin-1 in the

model-independent case of Lorentz invariance, or even that they have studied it.

In further contradiction to the claims of certain detractors of the MCM, Particle

Data Group (PDG)—the de facto bottom-line authority on the state of the art in

particle physics—reports that the spin of the Higgslike particle was not yet determined

as of 2020. PDG writes the following [27].

“Whereas the observed signal is labeled as a spin-0 particle and is called

a Higgs Boson, the detailed properties of H0 and its role in the context

of electroweak symmetry breaking need to be further clarified. [...] The

observation of the signal in the γγ final state rules out the possibility that

the discovered particle has spin 1, as a consequence of the Landau–Yang

theorem. This argument relies on the assumptions that the decaying particle

is an on-shell resonance and that the decay products are indeed two photons

rather than two pairs of boosted photons, which each could in principle be

misidentified as a single photon.”

Regarding the Landau–Yang theorem, experiment trumps theory. Indeed, exper-

iments are carried out mainly with the intention to falsify theories. Landau–Yang

would go out the window if an experimental result was found to disagree with it.

While this theorem is well trusted, theory can never rule out reality. Ralston writes

the following regarding the dominion of experiment over theory [20].

“The Landau–Yang theorems are inadequate to eliminate spin-1. The-

oretical prejudice to close the gaps is unreliable, and a fair consideration

based on experiment is needed. A spin-1 field can produce the resonance

structure observed in invariant mass distributions, and also produce the

same angular distribution of photons and ZZ decays as spin-0. However
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spin-0 cannot produce the variety of distributions made by spin-1. The

Higgs-like pattern of decay also cannot rule out spin-1 without more analy-

sis. Upcoming data will add information, which should be analyzed giving

spin-1 full and unbiased consideration that has not appeared before.”

It is unusual that ten years have gone by since the particle was discovered and the

“unbiased consideration” has not yet appeared in the literature (to the knowledge

of this writer.) Considerations published by ATLAS [22–24] and CMS [25, 26] are

biased under the suppositions of one model or another. While it seems impossible,

the literature appears to suggest that the model-independent case has not yet been

considered. What does seem possible is that the model-independent case has been

considered, and the result has been withheld due to politics. Indeed, we suggest that

the particle is “labeled” as a spin-0 particle and “called” a Higgs boson [27] mainly

to further a false impression that the MCM prediction for spin-1 has been ruled out.

Usually, physicists are zealously and notoriously reluctant to jump to conclusions,

but not in this case.

Just months after the MCM prediction for spin-1 [6], Ellis and You wrote the

following [28].

“There are many indirect and direct experimental indications that the new

particle H discovered by the ATLAS and CMS Collaborations has spin zero

and (mostly) positive parity, and that its couplings to other particles are

correlated with their masses. Beyond any reasonable doubt, it is a Higgs

boson[.]”

This excerpt may contain the only reference in the entirety of the physics literature

to the formal standard of proof in USA jurisprudence: reasonable doubt. A more

common standard in physics is given by the motto of the Royal Society: Nullius in

verba. It means “take nobody’s word for it.” Ellis and You make their bold and

patently unscientific claim in the abstract of their paper, but they back off from the

outrageous overstatement in the paper’s first sentence [28].

“It has now been established with a high degree of confidence that the

new particle H with mass ∼ 126 GeV discovered by the ATLAS and CMS

[collaborations ] has spin zero.”

This paper of Ellis and You is remarkable not only for its reference to some ill-

defined and unquantifiable standard of “reasonable doubt” in place of physics’ usual

5σ criterion, but also because it was the first citation of the Royal Swedish Academy
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of Sciences in their technical write-up regarding the 2013 Nobel Prize in Physics [29].

The prominent citation by the Royal Swedish Academy of Sciences can be construed as

an endorsement of the false claim that the Higgslike particle is the Higgs boson beyond

a reasonable doubt. Aside from the reasonable doubt cast by the MCM prediction for

spin-1, Ralston has reported that an entirely indeterminate amount of doubt remains

[20]. PDG cites an uncertain number of photons and a questionable assumption about

the on-shell condition as reasonable sources of doubt. Most importantly, PDG only

cites known unknowns as sources of doubt when unknown unknowns may give reason

to doubt as well.

Almost two years after Ellis and You published, CMS reported with atypical blunt-

ness that it was still important to study the spin-1 case experimentally because the

observed state may be that one [26].

“Despite the fact that the experimental observation of the H→ γγ decay

channel prevents the observed boson from being a spin-one particle, it is

still important to experimentally study the spin-one models in the decay to

massive vector bosons in case that the observed state is a different one.”

It is not clear whether CMS suggests (i) the existence of a second, different particle

at ∼125GeV, (ii) that the observed one is different than the one ruled out by the

Landau–Yang theorem, or (iii) that the final state is different than γγ. CMS’ obtuse

language about “a different one” is consistent with a theme of sidestepping the spin-1

issue in the literature. Even while CMS emphasizes the importance of experimental

study, they still call the H→ γγ decay a fact while PDG reports that this channel

is not yet established as a fact [27]. Assuming that it is a fact, as it may be, CMS

does not state their reliance on the assumed perfection of the Landau–Yang theorem

to find that such a decay prevents spin-1.

If reasonable doubt were to have some meaning in physics, then it could only be

the usual standard of 5σ. However, there does not exist any literature claiming to

have ruled out spin-1 at that level. Certain models of spin-1 have been ruled out

to certain levels, but the model-independent, objective property of spin-1 has never

been ruled out for the Higgslike particle at any high significance, and never at 5σ.

Most likely, the reference to the reasonable doubt standard of USA jurisprudence

was used to establish in a court of USA law, for some (nefarious) reason, that this

writer’s prediction was wrong. In fact, spin-1 has not been ruled out. Any publication

claiming that spin-1 has been ruled out will be found to have ruled out only certain

models of spin-1 divorced from the case of model-independent Lorentz invariance [20].

Ten years later, one would think that the particle’s discoverers would have determined
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its spin. To this writer’s knowledge, no other particle’s spin was so elusive that it

could not be determined even ten years after the initial discovery. In the opinion of

this writer, the Higgslike particle has been determined to have spin-1, and CERN

withholds the result because it supports the MCM over work which is better loved in

the academic mainstream.

Moving along, another falsifiable MCM prediction was posed in [30]. It was sug-

gested that one might observe variations in the value of the fine structure constant

correlated with the delay between an event and its detection in some apparatus. The

unstated but implicit reasoning was that the quantum state space of things which ex-

isted in the past is not the same as the state space of things which exist in the present.

Therefore, observables might depend on how far into the past an event occurred prior

to its detection. Such was already the case for an earlier MCM result regarding dark

energy [31]. Namely, distant cosmological objects appear to accelerate due to their

displacement far back on the light cone (Section 7). Though the unit cell was not

constructed until about a year after the quantum delay prediction appeared in [30],

the unit cell elucidates the motivation for delay correlations and complements it with

further motivation. Signals from events in the past are usually thought to propagate

into detectors along paths in topological Minkowski space. In the MCM, in addition

to an altered state space in the past [30], the past is not totally Minkowski in the

unit cell. Due to the MCM’s fifth dimension, one may speak of earlier chronological

times, which are Minkowski, as well as earlier chirological times in which the past is

topologically anti-de Sitter. (Chronological time is the timelike coordinate x0 in 4D

spacetime, and chirological time is a new fifth coordinate χ4
±.) Propagation through

some non-Minkowski geometry will cause deviations from the predictions for pure

Minkowski propagation, and these deviations should be correlated with the amount

of time spent in the non-Minkowski geometry. This prediction is not so precise as the

prediction that the Higgslike particle should have spin-1, but it is a strong prediction.

If such delay correlations are not observed, then the fundamental ideation behind the

prediction would be falsified. The predicted correlations were observed, by the BaBar

collaboration [32], however!

The main gist communicated here to the reader is that all of the verifiable ideation

in the MCM has survived: the specific things and the less specific things. More than

99% of new theories can be rejected immediately due to some obvious physical prob-

lem, so it is a great accomplishment of the MCM not to be one of them. Often

laypersons hear that new theories are a dime a dozen, which is true, but this glosses

over a further notion that is more relevant in the present case: a new theory that can
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survive even a cursory check is a diamond in the rough. Almost none of them make it

past a single hurdle. Ones that do are often absurdly convoluted. Quintessence and

the chameleon field are examples of convoluted theories being not so convoluted that

they are immediately discarded. Even the modern theory of cosmological inflation,

which is not easy to rule out, is rather convoluted [33]. To the contrary, the MCM

is elegant, intuitive, and simple, though not yet mathematically formalized with new

equations of motion. Still, there is no trivial way to rule out the MCM, as is the case

for almost all new theories. This testifies to the good quality of the work. Beyond the

lack of an easy rejection, the MCM’s predictions have multiple experimental confir-

mations, such as the prediction for delay correlations. These confirmations obliterate

detractors’ persistent claims of wrongness and not-even-wrongness.

The BaBar experiment concluded in 2008. The primary analysis of the data gener-

ated by the experiment had also concluded by the time of the MCM delay prediction.

However, the search for these correlations in the BaBar data was undertaken immedi-

ately following the publication of the MCM prediction. Not astonishingly, the MCM

prediction was borne out when BaBar published their observation of time reversal

symmetry violation in the B0 meson system [32]. While the BaBar analysis did not

exactly search for the delay correlations in the value of the fine structure constant α

which had been suggested, the result follows. Since physics is Hamiltonian, meaning

that everything is calculable once any two things are determined, the value of α that

can be extracted from the delay correlations published in [32] will depend on the

delay. The observation of time reversal symmetry violation is easily the 21st cen-

tury’s second biggest discovery in particle physics after the Higgslike particle. This

discovery is a direct experimental verification of the structure of the MCM.

During the primary data analysis stage following BaBar’s data collection stage,

no one had the idea to check for correlations with delay. After it was suggested

that the MCM would be such that delay correlations should exist, someone at BaBar

checked and found a signal that had escaped detection. No one had any reason to

expect such correlations, but then time reversal symmetry violation was discovered,

and the history of physics was changed forever. If the Higgslike particle is eventually

reported to have spin-1, then the 21st century’s biggest and second biggest particle

physics discoveries will be among the MCM’s small handful of falsifiable predictions.

Not only that, the MCM also predicts (among even more things) the dark energy

effect whose discoverers were awarded the 2011 Nobel Prize in Physics: Perlmutter,

Schmidt, and Riess [34–36]. So, there is a decent volume of ordinary physics output

recorded in the publications constituting the MCM. The lack of an easy falsification
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among these predictions makes the MCM better than 99% of similar attempts to

bushwhack a new path. The confirmation by BaBar makes the MCM the best new

theory on the market today, bar none. Unfortunately, BaBar does not credit the

ideation for delay correlations to this writer, and the ordinary scientific proceedings

are retarded.

The predictions above, and others mentioned below, are intermingled with other

content in MCM publications. Some of that content is non-standard. Why the weird

tone? After this writer became convinced that his work was blacklisted against ap-

pearing even on the unreviewed arXiv, a tone was adopted which could never pass

peer review, even in the absence of blacklisting. Despite the presence of outstanding

original work, the tone in many MCM publications is such that they could never ap-

pear in physics’ usual venue for the dissemination of scientific information. Although

the MCM’s many grand successes form an independent rebuke, the non-standard con-

tent and tone was added as a second rebuke so that this writer could be seen doubly

rebuking the establishment which prefers the political mechanisms of the USA to

the actual practice of science. Following these earlier MCM publications, the present

work lays out a series of problems whose write-ups should be sufficiently technical

so that the tone of the papers cannot be confused or conflated with the results. As

mentioned above, the technical treatment of the problems should rise in many cases

to the level of a PhD thesis. To date, it has been easier for detractors to conflate the

author’s prose with his main results due to an absence of such clearly demonstrated,

PhD-level technical mastery or a commensurately voluminous set of calculations.

This writer has not been able to publish even on arXiv: the unreviewed (yet

censored) preprint repository in which low quality work is published every day (along

with many fair or outstanding research papers in physics and mathematics.) Before

the non-standard tone was adopted, [31] was submitted to arXiv in September of

2009. The typesetting and graphics were substandard, the tone was ordinary, and

the content was top-tier. For some reason most likely related to a payment routed

through Cyprus to Paul Manafort in October of 2009 [37], the paper was rejected for

publication on arXiv.1 Details relating to the publication status of [31] may be found

in Appendix C.

The overall lack of peer review for the MCM, which is a subset of the censor-

ship problem at arXiv and elsewhere, provides more fodder for detractors. Even the

most outlandish and easily disproven models of alternative physics have extensive

online documentations including Wikipedia articles and various forum discussions,

1For placement of [31] on the spectrum of what is acceptable in the physics preprint literature, compare to [38,39],
particularly Figure 12 in the latter.
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e.g.: timecube, but the relative invisibility of the MCM on the internet suggests that

the publication blacklist exceeds blacklisting in the traditional publication venues.

As a scientist, a physicist’s trade is to ply the scientific method whose final step is

communicate results, but the blacklisting seems to go so far as the total prohibition of

this writer’s intention to communicate. The fake internet bubble in which this writer

appears to transmit results while ultimately failing to do so, for the most part, has

had a stronger negative impact on this writer’s career than any number of stylistic

writing choices ever could. Still, this writer’s research does get communicated, some-

how. Reference [31] is now called SCP-001 in certain corners of the internet where

the MCM is known to exist.

The supposition, or allegation, that the MCM has not passed peer review is false.

Before moving on to a review of the MCM unit cell and its labeling conventions

(Section 0.2), followed by a review of the MCM scheme for fundamental particles

(Section 0.3), we will summarize the extensive peer review of the MCM and its glowing

yet uncredited receptions. The MCM began as a work in phenomenology. Given

certain results, a model of cosmology was constructed to accommodate them [31].

The optical effect described as dark energy was explained without an anomalous

(and borderline unphysical) acceleration of the expansion of the 3D spatial universe.

Instead, accelerating expansion in the time sector of 4D spacetime was identified as the

cause of the observed optical effect. This was the kernel of the idea that things in the

past should not be exactly as they are in the present. In [40], inquiry into the structure

of the past was taken all the way back to the cosmological beginning. Since a famous

theorem of Arnowitt, Deser, and Misner [41, 42] proves that the 0-component of the

universe’s 4-momentum must be non-zero, the usual model of big bang cosmology

cannot conserve 4-momentum. Given a presumed pµ=(0, 0, 0, 0) before the big bang,

pµ(t)=(p0, p1, p2, p3) at t>0 cannot conserve momentum if p0 ̸=0. However, physics

requires that momentum is conserved. In the way that Pauli was able to deduce the

existence of the neutrino from a quantity of missing momentum in nuclear β decay, it

was deduced that a big bang would have to spawn two universes moving oppositely

through time if it was a momentum-conserving process. If the energy of one universe

is positive-definite, then the other universe (whose time has a minus sign on it) would

be negative-definite. This is required to conserve 4-momentum, as is usual in physics.

After the proposition for negative time was published in November 2011 [40] (as

a restatement of the same idea published in 2009 [31]), Rubino and McLenaghan

et al. reported an experiment regarding negative frequency in quantum optics [43].

Since frequency is inverse time, and since the experiment was reported only months
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after negative time was found to resolve the momentum problem in big bang cosmol-

ogy, we suggest that the ideation for the experiment of Rubino and McLenaghan et

al. followed after a review of early work in the MCM [31, 40]. Short of experimen-

tal verification, it is the highest and most valid form of peer review that one man’s

research should influence another man’s research direction. Many papers passing or-

dinary, administrative peer review go on to accumulate zero citations, but papers

well received by the community of experts in that area go on to acquire citations. If

not for the apparent USA-sponsored blacklisting of this writer, it is suggested that

Rubino and McLenaghan et al. might have cited [31, 40] as motivating their search

for physical negative frequency modes. What peer review can be higher than to have

one’s work received and built upon? The answer cannot be a layer of dust atop an

unknown, but peer reviewed, CV item.

Spawning new scientific inquiry among one’s peer community is nearly the highest

form of peer review. It far surpasses the administrative peer review which is widely

hated by academics [44] and yet revered as holy by those who are only indirectly

aware of the mechanism. Surpassing even positive reception in one’s community, the

highest mark in peer review is experimental confirmation. Rubino and McLenaghan et

al. write the following about their discovery of negative frequency resonant radiation

(NRR) [43].

“[F ]requency conversion processes may be understood in terms of energy

transfer between specific modes [...]. However, to date only the positive fre-

quency branch of the dispersion has been considered when this actually also

has a branch at negative frequencies. This branch is usually neglected or

even considered meaningless when, in reality, it may host mode conversion

to a new frequency. The fact that a mode on the negative branch of the dis-

persion relation may be excited has a number of important implications, be-

yond the simple curiosity of the effect in itself. Indeed, light always oscillates

with both positive and negative frequencies, but the negative-frequency part

is directly related to its positive counterpart and seems redundant. On the

other hand, light particles, photons, have positive energies and are asso-

ciated with positive frequencies only. A process such as that highlighted

here, that mixes positive and negative frequencies will therefore change the

number of photons, leading to amplification or even particle creation from

the quantum vacuum.

“In this work we show how alongside the usual resonant radiation spec-

tral peak observed in many experiments, a second, further blue-shifted peak
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is also predicted. This new peak may be explained as the result of the excita-

tion of radiation that lies on the negative frequency branch of the dispersion

relation. We first explain why this radiation should be observed and then

provide experimental evidence of what we call ‘negative frequency resonant

radiation’ in both bulk media and photonic crystal fibres.”

NRR is a direct confirmation of the theory of negative time at the heart of the

MCM. Although the existence of these negative frequency modes had been known

for a long time, no one thought to look for them until the theory of negative time

was published [31, 40]. Perhaps history will show that this was only a coincidence.

In any case, we suggest that the negative frequency experiment was motivated by a

review of the MCM, and that the experiment confirmed the negative time hypothesis

through the observation of negative frequency optical modes.

To the extent that Rubino and McLenaghan et al. cite the possibility for “ampli-

fication,” consider the following from a follow-on publication of Rubino et al. in late

2012 [45].

“[W ]e may derive a photon number balance equation by generalizing [...]

to the case of a moving scatterer. We find that:

|RR|2 − |NRR|2 = 1,

where |RR|2 and |NRR|2 are the photon numbers of the [resonant radiation]

and [negative resonant radiation] modes normalized to the input photon

number [...]. The negative sign in front of the |NRR|2 photon number is a

direct consequence of the fact that the NRR-mode has negative frequency in

the comoving reference frame [...]. So the difference between the normalized

number of photons has to be equal to the photon number in the input mode.

As a consequence, the total output photon number, |RR|2 + |NRR|2 > 1,

i.e. we have amplification [emphasis added ]. The scattering process

mediated by the traveling [relativistic inhomogeneity ] will amplify photons

as a result of the coupling between the positive and negative frequency

modes.”

As we have previously commented on the eccentric citation of Ellis and You to

the legal standard of doubt in USA jurisprudence, the note at the top of [45] (not

excerpted) is also eccentric. It is the only instance of such a note that this writer

has come across.1 The note directs that correspondence and requests for materials
1This writer does not regularly browse the experimental quantum optics literature.
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should be addressed to coauthor Faccio. The eccentric note in anticipation of cor-

respondence is given because [45] reports that the authors discovered free energy.

The negative frequency optical mode which follows from the negative time mode in

the MCM—following logically and chronologically—revealed the holy grail of physics:

a feasible mechanism for the construction of a device whose coefficient of efficiency

exceeds unity. While the MCM did not predict the application in quantum optics,

it follows because negative frequency is inverse negative time. It is suggested that

this writer’s peers saw that it follows, did the experiment, and confirmed the physics.

Thus, the MCM has yet again passed the true bar of review by peers without passing

the false bar of administrative peer review under the docents of a politicized bureau-

cracy. The MCM has been experimentally confirmed at least twice. If the Higgslike

particle has spin-1, it will be at least three times. Next to experimental confirmation,

administrative peer review is meaningless. If it was suggested that objects on Earth

tend to fall in the downward direction, no one would ask if the claim has passed peer

review. For the MCM, however, the fact that it has not passed peer review in the

most artificial and useless sense is cited as problematic to the extent that it overrides

the experimental verification.

Following the work of Rubino et al. on NRR [43,45], Lockheed abruptly announced

in 2014 near-term plans for truck-sized nuclear fusion reactors [46]. Fundamentally,

Lockheed was front-running their expectation for the mass production of NRR power

generators which would be truck-sized because they are only optical tables in a box

(in the opinion of this writer.) After Lockheed’s initial press releases, the West Texas

oil contract cratered in 2014, and it had not recovered as of 2021.1 The blacklist on

the MCM was extended by the powers that be to cover up the only hope by which

humanity might escape its shackles of toil: a new energy source. These results re-

garding free energy are now known in certain corners of the internet as “golf rumors.”

The quoted name follows from men at their country clubs talking about the NRR

result before the full violence of the USA political machine squashed such talk.

The discovery of negative frequency resonant radiation by Rubino et al. [43, 45]

suggests that the MCM has passed peer review with flying colors. The result about

time reversal symmetry violation published by BaBar does the same [32]. Both of

these results connect to the MCM’s requirement for negative time, through negative

frequency and time reversal respectively. Both results are experimental confirmation

of the MCM in excess of an affirmative peer review by positive reception leading to

follow-on work. Additionally, there are no results which rule out the MCM predictions

1During the preparation of this manuscript, the WTI oil contract reached highs not seen since 2014.
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for new effects at 10−4m, the prediction that the Higgslike particle should have spin-1,

or any other features of the model. The many MCM mechanisms described in [31] are

each likely to be parlayed into further experimental confirmations. Additionally, there

are many mathematical confirmations. For example, the MCM search for quantum

gravity shows that Einstein’s equation for general relativity may be derived in a

certain quantum formalism (Section 1.10). A number alike to the fine structure

constant to within 0.4% is characteristic of this formalism as well (Section 1.9), and

the Riemann hypothesis was falsified as a corollary of mathematical results developed

for describing physics in the unit cell [2,47–49]. Other examples of affirmative review

by peers include the following.

� Ashtekar’s response papers [50,51] which are detailed at length in Appendix C.

� Wilczek’s 2012 quantum time crystals [52,53] follow from the 2011 M̂3 operator

developed in [30].1 The MCM unit cell is the unit cell of a time crystal in the

most intuitive way (Section 57).

� Almost all of Finkelstein’s arXiv publications are MCM response papers (Section

33).

� Mochizuki’s “Hodge theater” is the MCM unit cell dressed in a thick coat of

jargon (Section 31).

� Hairer’s $3M Breakthrough Prize-winning “regularity structure” [54] is the unit

cell dressed in another coat of jargon (Section 32). When Hairer’s colleague

reported that Hairer’s Fields Medal-winning work must have been done by aliens

[55], it was a jibe regarding how obviously Hairer had used the MCM and its

M̂3 operator without citation. Apparently, those on the far side of the MCM

blacklist see something akin to aliens between them and this writer.

� The RBM model in the autodidactic universe of Alexander et al. [56] is plainly

the process given by M̂3.

The list of such glowing yet uncited peer reviews goes on and on. It must exceed

those few papers which have come to this writer’s attention.

0.2 The MCM Unit Cell

This section contains a glossary of symbols pertaining to the MCM unit cell: Figure 1.

Remarks on its most prominent features are given in context. We will begin with the
1This writer became aware of viXra in the summer of 2012. The viXra submission dates of References [30,31,40]

do not reflect the initial publication dates.
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Figure 1: The MCM unit cell is the fundamental element of a cosmological lattice.
H is a Minkowski space representing the observable universe. Σ± do not
include their shared boundary at H. It is expected that the χA− coordinates
are left-handed if the χA+ coordinates are right-handed. The second figure
with Σ± joined on H is most properly the unit cell in the sense of crystal-
lography, but often unit cell will refer to the representation centered on ∅.
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unit cell’s metric and coordinate conventions, and then further remarks will follow.

Notation is such that Greek tensor indices run from 0 to 3. Upper case Latin indices

run from 0 to 4. Lower case Latin indices run from 1 to 3.

� Aµ is the electromagnetic potential 4-vector. This object has its usual meaning.

We will usually assume Aµ = 0 to facilitate consideration of the simplest cases

which can be extended to Aµ ̸=0 later.

� Aµ± are electromagnetic potential 4-vectors in Σ±. Usually, descriptions of the

MCM assume an Aµ±=0 ground state.

� Σ± are 5-spaces bounded in the fifth direction. The fifth coordinate is positive-

definite in Σ+ and negative-definite in Σ−. The metric signature of Σ± is {−+

++±}.

� χA± are the 5D coordinates in Σ±. Coordinates written with χ are called ab-

stract coordinates to distinguish them from physical coordinates written

with x. Different coordinate charts’ distances are measured with different met-

rics. Although χ4
± = 0 will be undefined, the origins of χ4

± are located in H in

the sense that χ4
± measure distance relative to H. χ4

± is respectively positive- or

negative-definite in Σ±.

� χα± are the abstract coordinates of Σ± at some constant value of χ4
±.

� χA∅ or χα∅ are the hypothetical coordinates to the right of Ω and to the left of

A, as in the lower representation of Figure 1. In previous usage, χ4
∅ has referred

to a single point added to splice χ4
+ with χ4

− between Ω1 and A2. Similarly,

a hypothetical χ4
± = 0 would splice χ4

± at H. However, χ4
± = 0 is not defined

due to the positive- and negative-definiteness of χ4
±∈Σ±. The exact details for

connecting Ω1 to A2 form one of the major outstanding problems in the MCM.

Since the level of aleph (Section 1.6) changes at ∅, meaning that ∅ marks the

progression from one neighborhood of fractional distance to the next (Section

1.6), the pointlike property of χ4
∅ on one level of aleph may be resolved in greater

detail as an interval on another level of aleph. For this reason, it is supposed

that ∅ might span a 5-space requiring χA∅ coordinates rather than χµ∅. The exact

details of ∅ are not yet fully determined.

� xµ are the physical, relativistic coordinates of the geometric manifold H, a

Minkowski space. Distance between the points specified with xµ is given by

the metric gµν . These coordinates have their usual meaning.
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� xµ± are the physical coordinates of gravitational manifolds located in Σ± at con-

stant values of χ4
±. x

µ
+ charts Ω at χ4

+ =Φ and xµ− charts A at χ4
− =−φ. Φ is

the golden ratio, and φ is its inverse. The Ω and A manifolds are also charted

in the abstract χµ± coordinates, so it is required to carefully distinguish between

the physical coordinates xµ± and the abstract coordinates χµ±. Occasionally, we

may speak of xµ± as the physical coordinates at arbitrary constant values of χ4
±.

� gµν is the metric of 4D Minkowski spaceM4. If gµν=ηµν + hµν with ηµν the flat

Lorentzian metric and hµν a small perturbation, we will almost always assume

hµν = 0. In the general case, this metric is to be determined from a matching

condition on the metrics in Σ± where a mismatch will result in hµν ̸=0.

� g±AB is the 5D metric of the abstract χA± coordinates in Σ±. It is based on the

Kaluza–Klein metric

gKK
AB =

(
gαβ + κ2ϕ2AαAβ κϕ2Aα

κϕ2Aβ ϕ2

)
,

where ϕ is a scalar field, κ is a constant, and Aµ is an EM potential 4-vector.

The g±AB metrics are obtained by identifying ϕ2
± in Σ± with a function of the

fifth abstract coordinate χ4
±. Setting κ=1, we have

g±AB =

(
g±αβ + f±(χ

4
±)A

±
αA

±
β f±(χ

4
±)A

±
α

f±(χ
4
±)A

±
β f±(χ

4
±)

)
.

In general, we will assume that f is the identity function setting ϕ2
±=χ

4
±. Taking

the simplest case of Aµ±=0, we have

g±AB =

(
g±αβ 0

0 χ4
±

)
.

In Section 7, we will show that this metric supports an MCM solution to dark

energy. Since χ4
± is positive or negative in Σ± respectively, g±AB has Lorentzian

signature {∓±±±±} in Σ+ and pseudo-Lorentzian signature {∓±±±∓} in
Σ−. This signature is also supported by ϕ2

±=(χ4
±)

2 if χ4
− is imaginary relative to

χ4
+. Since the exact role for the MCM scalar field has not been fully developed,

it will suffice to let g±44 be oppositely signed as χ4
± with an understanding that

we may later choose ϕ2
±=±|χ4

±|2.
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� g±µν(χ
4
±) is the physical metric on a submanifold of Σ± defined by some constant

value of χ4
±. This metric describes distances in the physical xµ± coordinates.

When Aµ± = 0, g+µν(χ
4
+) is the dS4 de Sitter metric in Σ+ and g−µν(χ

4
−) is the

AdS4 anti-de Sitter metric in Σ−. The dS or AdS space at a given value of

χ4
± is the one whose constant Ricci scalar R is equal to that value of χ4

±. In

other words, the KK scalar field is such that ϕ2 becomes the Ricci scalar of the

maximally symmetric physical metrics.1 g±µν will implicitly refer to the g+µν(Φ)

physical metric on Ω and the g−µν(−φ) physical metric on A.

To explain how the metric gµν in H should be obtained from the g±AB metrics, we

will make reference to a scale factor which has not been introduced yet. It will be

covered in Section 1. We want gµν to be a superposition of contributions from g±AB,

as in [7]. It should be the superposition of the limits of the 5D metrics as χ4
±→ 0.

Letting Aµ±=0 and assigning scale factors Φ and φ to g±AB, the scaled sum of g±AB is

Φg+AB + φg−AB =

(
Φg+αβ + φg−αβ 0

0 Φχ4
+ + φχ4

−

)
.

In the χ4
± → 0 limit, the fifth diagonal position vanishes. The fifth position is as-

sociated with the Ricci scalar and R = 0 defines Minkowski space. While the fifth

diagonal position may have additional physics associated with its context as a scalar

field, the metric in H is presently defined as the 4D part of the metric superposition:

gµν = Φg+αβ + φg−αβ =


−Φc2 0 0 0

0 Φ 0 0

0 0 Φ 0

0 0 0 Φ

+


−φc2 0 0 0

0 φ 0 0

0 0 φ 0

0 0 0 φ

 .2

To obtain a natural scale for the metric in H, we might rephrase the expression as a

difference, but instead we will appeal to the sign freedom in the {∓ ± ±±} metric

signature. We give the opposite sign convention to g−AB to obtain

gµν = Φg+αβ + φg−αβ =


−Φc2 + φc2 0 0 0

0 Φ− φ 0 0

0 0 Φ− φ 0

0 0 0 Φ− φ

 = ηµν ,

1dS and AdS are called maximally symmetric because the Ricci scalar is constant in the manifold, and the
geometry is completely determined by its value.

2Part of the reason for leaving χ4
±=0 undefined is to avoid a picture of gµν as the 4D part of a metric whose fifth

diagonal position vanishes.
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where ηµν is the perturbation free case of gµν in signature {− + ++}. Due to the

opposite sign conventions for the metrics in Σ±, the metric inH is both a superposition

and a solitonic difference like a shadow cast by g±AB. This metric structure is expected

to become rich when one adds non-zero Aµ+ ̸=Aµ− to g±AB. The absence of the scale

factor when this structure was proposed in [7] set the scale of H as larger than the

scale in either of Σ±, so the present convention is more natural. A full metrical

analysis remains to be carried out.

The method for obtaining the induced g±µν(χ
4
±) metrics on A and Ω differs from

the above method for obtaining gµν as a superposition. Part of the future work

described in this paper will be to determine the transformations between the abstract

and physical coordinates at constant χ4
±. (Such a transformation cannot exist at

undefined χ4
± = 0.) Cases for Aµ± ̸= 0 should be developed to determine how the

condition of maximal symmetry in dS and AdS is perturbed by non-vanishing EM.

It is known that static dS or AdS geometry must be supported by a cosmological

constant or a constant scalar field, so the energy associated with Aµ± ̸= 0 should be

a main driver of new MCM physics. However, the assumption Aµ± = 0 is useful for

describing the model because it equips each slice of constant χ4
± with a maximally

symmetric dS4 or AdS4 metric. Allowing non-zero Aµ± will disturb this simplifying

condition of maximal symmetry.

In [7], the original statement of the convention for embedding physical metrics

on branes located at constant χ4
± confused the hyperboloid parameter ℓ2 with the

inversely proportional Ricci scalar R so that ℓ2 =0 was associated with H. In fact,

ℓ2→∞ and R=0 are associated with flatness. This erratum now stands corrected.

However, the convention in which χ4
± is a hyperboloid parameter rather a Ricci scalar

suggests an alternative picture of χ4
± having their origins in ∅ rather than H so that

χ4
± = 0 would define a topological singularity of infinite curvature due to ℓ2 = 0. In

later sections, we will show that it is useful to think of ∅ as a black hole.

Now we will describe the labeled worldsheets of the unit cell. Anticipating an

application in which these sheets function as string theoretical D-branes (Section 65),

and referring to the picture of worldsheets as membranes arranged in a bulk, we will

call these objects branes.

� H is 4D Minkowski spaceM4 charted in xµ. Up to a topological issue of global

closure or openness, Minkowski space is the low curvature limit of de Sitter space

and/or anti-de Sitter space. H, also called “the H-brane,” stitches together Σ±

at limχ4
±→0±. Up to a scale factor, H can be smoothly joined to either of Σ±.

When Aµ±=0 implies maximally symmetric spacetime in the physical metric at
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each χ4
±, it is easy to envision a smooth continuum of increasing curvature where

H joins the low curvature limits of dS4 and AdS4 at a scale discontinuity. Since

χ4
±=0 is not defined, which follows from χ4

± being positive- and negative-definite

in Σ± respectively, H is a topological obstruction between Σ±. In terms of the

open sets of a mathematically formal topological space, no open set can include

χ4
± = 0 because it is not defined in the current iteration of the theory. Such a

topological obstruction is required to separate the pair of Kaluza–Klein theories

that double the EM degrees of freedom inherent to a single KKT.

� Ω is a specific worldsheet (the Ω-brane) in Σ+ located at χ4
+ = Φ where Φ is

the golden ratio. In the physical coordinates (with Aµ+=0), Ω is dS4 with open

topology and uniform positive curvature. In Figure 1, Ω spans some width of

the horizontal coordinate, but that is only meant to demonstrate the spherical

geometry of the physical coordinates xµ+. Formally, Ω is a single sheet at one

value of χ4
+, as would be H if χ4

±=0 was defined.

� A is a specific worldsheet (the A-brane) in Σ− located at χ4
− = −φ with φ =

Φ−1. In the physical xµ− coordinates (with Aµ− = 0), A is AdS4 with closed

topology and uniform negative curvature. In Figure 1, A spans some width

of the horizontal coordinate, but that is only a representation emphasizing the

hyperbolic geometry of the xµ− coordinates. Previous work in the MCM has been

such that the distance from H to Ω should be either Φ or Φ2 times that between

A and H. Setting Ω at χ4
+=Φ, these conventions place A at either χ4

−=−1 or

χ4
− =−φ. Therefore, the abstract distances between A and H, and between Ω

and H, may be revised pending the adoption of another convention.

� ∅ is an unknown connective element joining Ω and A. It may be a 4D surface

or a 5D volume. In general, there is no smooth connection from the Lorentzian

{− + + + +} metric in Σ+ to the pseudo-Lorentzian {− + + + −} metric in

Σ−. If we take ∅ to be the worldsheet of a black hole, placement of a singularity

at the interface between Σ± might help wash out the discrepancy between their

topologies. Increasing the curvature of the slices of Σ± to the positive and neg-

ative infinite limits at ∅ may make it easier to join non-vanishing positive and

negative curvature on a singularity than it would be to join them on discontin-

uous but finite positive and negative curvatures. In other words, R=±∞ Ricci

scalars should be less discontinuous than finite RA < 0 < RΩ. Placing a black

hole at ∅ should minimize geometric and topological discontinuities between Ω

and A.
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The standard cosmological model (SCM) describes a 4D spacetime: the universe.

The SCM is cited as some generalized picture of the Friedmann–Lemâıtre–Robertson–

Walker cosmology, or the more modern ΛCDM model. Either model is more specific

than what is required to describe the MCM as an extension of an informally labeled

SCM. Indeed, the MCM is more quantum mechanical in nature now than cosmologi-

cal, and the exact details of an underlying standard cosmology, an equation of state

for example, are not needed to describe the basic elements.

The main jumping off point for separating the MCM from the SCM was the im-

plementation of a cyclic cosmology [31,40]. Cyclic cosmology is a variant of big bang

cosmology that assumes a big crunch at the end of things, and that the crunch serves

as the big bang for a new cycle of cosmology. Sometimes it is said that cyclic cos-

mology is unphysical due to the observed thermodynamic state of the universe, but

such issues can be sidestepped in a number of ways. The Borde–Guth–Vilenkin theo-

rem [57] which claims to rule out an infinite timelike parameter in the past, which is

required for infinite cyclic cosmology, is discussed in Section 45. Another argument

claims that it is unphysical to identify the high entropy final state of one cosmology

cycle with the low entropy initial state of an identical cycle, but the MCM is such

that two universes converge on each bounce, one in forward time and one in neg-

ative time [31]. When the thermodynamic arrow of time points oppositely in each

universe, the increment of entropy at the conclusion of one universe’s cycle is offset

by the decrement of entropy in the other universe. Furthermore, there is little rea-

son to think that cosmology is so well understood that theoretical arguments might

categorically rule out exotic behaviors on cosmological time scales. Beyond that, the

present incarnation of the MCM is not necessarily a model of big bang cosmology

in any guise, cyclic or not, because the periodicity assigned at first to x0 has been

reimplemented along χ4. This writer considers it an open question whether or not

the MCM in its current incarnation is a model of big bang cosmology at all. In other

words, it is not yet determined whether the added periodicity in χ4 has replaced the

previously supposed x0 periodicity, or if it has complemented it. In the absence of

cyclic cosmology, eternal cosmology is a viable alternative.

Motivated by a brief of survey of KKT in 2013, the MCM’s fifth dimension was

added a few years after the 2009 publication of the paper which gives the MCM its

name [31]: “Modified Spacetime Geometry Addresses Dark Energy, Penrose’s Entropy

Dilemma, Baryon Asymmetry, Inflation and Matter Anisotropy.” In the original

MCM language [31,40], the big bangs and/or big crunches of the SCM were replaced

with big bounces. Bouncing is a periodicity in the x0 direction: vertical on the page of
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Figure 1. This writer was introduced to cyclic cosmology via the big bounces of loop

quantum cosmology (LQC) [58], but the 2009 iteration of the MCM [31] contained

nothing specific to LQC which is not found in all other models of cyclic cosmology.

For the present version of the MCM unit cell, the main modification to the SCM is

the fifth embedding dimension χ4. Overduin and Wesson write the following [8].

“Kaluza’s achievement was to show that five-dimensional general relativ-

ity contains both Einstein’s four-dimensional theory of gravity and Maxwell’s

theory of electromagnetism. He however imposed a somewhat artificial re-

striction (the cylinder condition) on the coordinates, essentially barring the

fifth one a priori from making a direct appearance in the laws of physics.

Klein’s contribution was to make this restriction less artificial by suggesting

a plausible physical basis for it in compactification of the fifth dimension.

This idea was enthusiastically received by unified-field theorists, and when

the time came to include the strong and weak forces by extending Kaluza’s

mechanism to higher dimensions, it was assumed that these too would be

compact. This line of thinking has led through eleven-dimensional super-

gravity theories in the 1980s to the current favorite contenders for a possible

‘theory of everything,’ ten-dimensional superstrings.”

Klein supposed that the fifth dimension might not contribute because it is com-

pactified at an unobservably small scale. The MCM unit cell is purpose-built to

motivate the cylinder condition by requiring that observable physics takes place only

on surfaces of constant χ4. Derivatives with respect to the fifth dimension can’t con-

tribute in H due to an effective condition χ4
± = 0. The same holds for Ω and A at

constant χ4
±. All derivatives with respect to a constant vanish.

Another shortcoming of KKT highlighted by Overduin and Wesson [8]—the main

one which prevented the success of KKT in its effort to unify gravitation with clas-

sical electromagnetism—is that the only allowable solutions require a vanishing elec-

tromagnetic strength tensor Fµν=∂µAν−∂νAµ. It is hoped that doubling the number

of EM degrees of freedom from four as in

gAB =

(
gµν + ϕ2AµAν ϕ2Aµ

ϕ2Aν ϕ2

)
, with Aµ = (A0, A1, A2, A3) ,

to eight as in

g±AB =

(
g±µν + f(χ4

±)A
±
µA

±
ν f(χ4

±)A
±
µ

f(χ4
±)A

±
ν f(χ4

±)

)
, with Aµ± = (A0

±, A
1
±, A

2
±, A

3
±) ,
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will provide a workaround by which Fµν ̸=0 solutions can be extracted in H from two

disconnected Kaluza–Klein theories in Σ± (Figure 1).

The MCM unit cell reflects the ground state condition in which Aµ± = 0, but it

is expected that the non-zero Aµ± solutions can be implemented as perturbations or

more complicated exact solutions. The result for Aµ± ̸=0 will be that the H-, A-, and
Ω-branes lose their shared character of maximal symmetry. In the Aµ± = 0 ground

state, the piecewise fifth dimension χ4
± charts a continuum of increasingly curved,

maximally symmetric physical spacetimes between A and Ω disrupted only by a scale

discontinuity at H. This serves as a toy model upon which one would build more

realistic applications. To make use of the expanded degrees of EM freedom in Σ±,

one must use Aµ± to define Aµ in H. This is implemented by a mechanism well known

from classical EM: Aµ is taken as a function of the advanced and retarded potentials

Aµadv=A
µ
+ and Aµret=A

µ
− [7]:

Aµ = c+A
µ
+ + c−A

µ
− .

The idea to have the physics of the observable universe H defined by two 5D the-

ories reflects a principle called holographic duality. This idea was made famous by

Maldacena’s demonstration of a “correspondence” between the degrees of freedom in

a 4D conformal field theory and those in AdS5 [59]. The MCM flavor of “holographic

duality” between the physics of a 4D surface and two adjoining 5D bulks is simpler

than Maldacena’s famous AdS/CFT duality, but the duality is holographic nonethe-

less. The mechanism reflects exciting new thinking. Usually, holographic duality

between a surface and a bulk is considered to be such that the surface is the exterior

boundary of one simply-connected bulk, but the fresh new idea for holographic duality

in the MCM is to sandwich a holographic surface between two bulks. This idea alone

far separates the MCM from competing theories. It cannot be overstated that the

MCM has accomplished what other theories have not due in large part to this original

thinking in the red-hot area of bulk-boundary physics. Although this writer was not

yet acquainted with Randall–Sundrum models (Section 42) when constructing the

unit cell, the MCM is quite like a third class of RS model not considered by Randall

and Sundrum. The two famous RS1 and RS2 models put branes at one side of a bulk

or another—at infinity, finite distance, or zero in their given coordinates—but they

do not consider the case of a brane set between two asymmetric bulks.

Before continuing on to the MCM particle scheme (Section 0.3), the reader’s at-

tention to called to the reality that certain labeling conventions in the unit cell are

chosen intuitively from among a few possible permutations. The purpose in this pro-
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gram is to facilitate easy discussion that would be clouded by repeated clarifications

for caveats about all possible permutations. Usually, the number of possible permuta-

tions is low, and the alternatives reflect little more than a sign change. For example,

the assignment of dS or AdS geometry to the slices of constant χ4
±∈Σ± respectively

is only a sign convention. It is assumed that the trip from H1 to H2 goes through Ω,

and then A, but this is subject to reversal if needed. For instance, the cosmological

constant is negative in AdS and positive in dS, and the energy landscape might over-

ride the assumed convention for which comes first. The fifth dimension is currently

timelike in Σ− and spacelike in Σ+, but if the opposite convention were desired, one

would add a minus sign into the metric. If we were to move the origins of χ4
± from

H to ∅, then the natural sign conventions for χ4
± would be reversed, etc. In the end,

we will require that binding energy is negative in H, and that the entropy in H tends

to increase with increasing x0. Everything else should be arranged accordingly.

In addition to the geometric objects labeled in Figure 1 and detailed above, there

are some algebraic objects of fundamental importance. We introduce new algebraic

complexity by attaching different state spaces to the various labeled manifolds. For

instance, L2(R3) is the well-known Hilbert space of square integrable functions of three

real variables. L2 describes the algebraic state space, and R3 describes the domain

of the wavefunctions that are representations of the L2 states. Using H′≡L2(R3) to

denote the space of position states in H, R3 refers to the 3D spatial submanifolds of

H described by the {+ + +} part of M4’s {− + ++} metric. We will use A′ and

Ω′ to label the state spaces of particles located on the A- and Ω-branes. Although

the wavefunctions of states in A and Ω are also functions of three real variables,

those variables do not chart the 3-space in the Euclidean metric δij that is usually

inferred from the R3 symbol. Formally, R3 is any tuple of three real variables and

E3 is Euclidean 3-space. These two symbols are often intermingled in physics where

E3 may be less familiar. Therefore, increased nuance is warranted for the labeling.

With A as AdS4 and Ω as dS4, the domains of the functions in the A′ and Ω′ state

spaces are hyperbolic H3 and spherical S3 respectively.1 We might write, for example,

Ω′≡L2(S3) to indicate that the R3 coordinates in the domain of wavefunctions in Ω

are not subject to the Euclidean metric as are wavefunctions in H with H′≡L2(E3).

For reasons developed below, mainly to accommodate the eigenstates of observable

operators with continuous spectra such as x̂, we will introduce rigged Hilbert space to

employ other algebraic spaces than L2 for position states located in various sectors of

the unit cell. Readers unfamiliar with rigged Hilbert space are referred to [60–62]. In

1AdS3 and dS3 refer to Lorentzian manifolds, meaning that these are not the spatial parts of AdS4 and dS4.
Rather, AdS3 and dS3 are manifolds spanned by one timelike dimension and two spacelike dimensions.

24



Jonathan W. Tooker

the following, we omit some nuance differentiating state spaces and function spaces.1

� {H′,A′,Ω′} is a rigged Hilbert space (RHS), also called a Gelfand triple. H′

is a subspace of A′. Ω′ is a dual (or antidual) space to H′ which contains A′

as a subspace: {S1, S2, S3} such that S1 ⊂ S2 ⊂ S3. In previous work, we have

used the convention that RHS is {A′,H′,Ω′}, but the structure of RHS suggests

that S1 is most appropriate for the manifold of physical observables [62]. That

manifold is H, so we have chosen the present convention for {H′,A′,Ω′}. The

previous convention in which the order of the spaces in the triple matched the

order of the branes in the unit cell was intuitive, but it does not appear to be

the one supported by the definitions.

� A′ is Hilbert space. In this book, the relevant Hilbert space is usually taken

as the infinite dimensional Hilbert space of position states. In that case, A′ is

the L2(R3) space of square integrable functions: wavepackets rather than the δ

function position eigenstates. One might write this as L2(H3) to indicate that

the domain of these L2 wavefunctions possesses hyperbolic geometry.

� H′ is a subdomain of Hilbert space H′ ⊂A′. Under certain conditions related

to unbounded observable operators with continuous spectra such as the position

operator x̂, there exist states in A′ ≡ L2 for which certain ordinary quantum

mechanical identities fail. H′ is the subdomain of A′ in which things like the

expectation value and uncertainty formulae are guaranteed to be well behaved

for every state in the space. De la Madrid presents these details in [60–62]. Due

to the stated properties of well behavior, the S1 part of an RHS {S1, S2, S3} is
attached to the 4D physical universe of observables: H. The present convention
contrasts the previous convention in which S2 was attached to H.

� Ω′ is the dual (or antidual) space of H′ such that {H′,A′,Ω′} is an RHS. Eigen-

states of operators with continuous spectra are non-normalizable Dirac δ func-

tions, which do not exist in A′ or H′. Such eigenstates, usually position eigen-

states, belong to the state space Ω′ satisfying H′⊂A′⊂Ω′. As will be discussed

in Section 1, predictions for what will happen in the future reside in Ω. Since

the MCM seeks to restore a classical character of motion which was lost in quan-

tum mechanics, meaning that a prediction for a time-advanced quantum position

state should be a point in spacetime as was the case for classical motion, the S3

part of the RHS {S1, S2, S3} containing Dirac δ wavefunctions is assigned to Ω

and called Ω′.
1Ballentine writes [63], “It is a matter of taste whether one says that the set of functions forms a representation

of the vector space, or that the vector space consists of the functions ψ(x).”
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� ∅′ is a hypothetical state space for states in the ∅-brane.

0.3 The MCM Particle Scheme

Early work in the MCM [31] posed a solution to the mystery of the matter asymmetry.

That mystery regards why the universe is made of matter rather than anti-matter [64].

The issue is similar to a question about non-conservation of 4-momentum at the big

bang. If nature is thought to conserve baryon number and 4-momentum, then why

should the big bang not conserve both?1 It was suggested in [31] that two universes

leaving a big bang, or a big bounce, should be understood as an ordinary particle

pair in the sense of pair creation by vacuum fluctuations. It is not known why any

particular fluctuation occurs, but the particle production process is better understood

than an alleged cosmological big bang process for a single universe with an anomalous

increment of momentum and an anomalous baryon number. In the particle pair

picture, the forward and reverse time universes are a particle and an anti-particle.

One has positive baryon number and positive p0. The other has negative baryon

number and negative p0. The MCM model of particles [6] follows from this notion: a

universe, one quantum of MCM spacetime, is like a fundamental matter particle.

In the unit cell, our observable universe given positive baryon number B is the

H-brane. It is spanned by x0 and xi. The MCM particle scheme supposes that

all fundamental matter particles are quanta of spacetime spanned by a spatial unit

vector x̂i and a temporal one: x̂0 or χ̂4
±. Given these two types of time in the MCM,

chronological x0 and chirological χ4, this thinking leads to the 12 well-known members

of the three generations of matter particles.

Referring to Figure 1, space xi points into the page. Chronos points up, and

chiros points to the right.2 The spanning bases for planar spacetimes are x0xi and

χ4xi. The basis vectors in the respective directions can form left- or right-handed

coordinate systems with the third member of {x0, xi, χ4}, so there exist four distinct

varieties of MCM spacetime quanta: space crossed with either of chronos or chiros,

each in left- and right-handed varieties, as in Figure 2. The planes of xi crossed with

the well-studied x0 flavor of time are taken as the relatively well-behaved leptons.

Space crossed with the exotic new chirological time is taken as a quark. We suggest

that quantum electrodynamics (QED) is simple relative to quantum chromodynamics

(QCD) because x0 is simple relative to χ4∼={χ4
+, χ

4
∅, χ

4
−}. The three color flavors of

each quark are distinguished by the three varieties of χ4. We say quarks are never
1Positive baryon number is associated with matter, and negative baryon number is associated with anti-matter.

For historical reasons [64], the excess of matter over anti-matter is described as an excess of baryons over anti-baryons
despite there being a similar excess of leptons over anti-leptons.

2In Greek, chronos and chiros refer to “man’s time” and “gods’ time” respectively.
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Figure 2: Leptons are planes formed by xi and x0, while quarks are planes formed
from xi and χ4. Two varieties of each are formed when the unused instance
of x0 or χ4 forms a right- or left-handed orthogonal triad. An alternative
convention to handedness might distinguish each pair with the triad being
located at zero or infinity. We will associate the three color charges of QCD
with the {χ4

+, χ
4
−, χ

4
∅} varieties of chiros.

observed in isolation because the piecewise structure of χ4 is such that χ4
± are each

needed to construct an instance of the unit cell. The existence of Σ± implies the

coexistence of Σ∓.

Having established two leptons and two quarks (Figure 2), the three generations

of each are associated with the H′, A′, and Ω′ state spaces, as in Figure 3. In the

final analysis, the primary distinction among the three generations may be attributed

most directly to the three different lattice positions {A,H,Ω}, or to the three different
state spaces {H′,A′,Ω′}. The three generations of matter particles reflect the struc-

ture of the unit cell, but the full details of the MCM state spaces are not yet finalized.

Thus, it cannot be determined at this time if the three generations of particles follow

more directly from algebraic distinctions among {A′,H′,Ω′} or geometric distinctions

among {A,H,Ω}. Presently, the three generations of leptons and quarks are increas-

ingly massive, and we would like to associate this property with the H′ ⊂ A′ ⊂ Ω′

structure of RHS. Since electrons are stable in H while muons and taus are not, this

suggests the convention in Figure 3: H′ should be the state space corresponding to

the first, lightest generation of matter particles. Associating increasing mass with in-

creasing scale factor across the unit cell centered on ∅ would suggest Ω for the second

generation particles. Perhaps the three generations of matter particles observable in

H would be better associated with Ω, ∅, and A in an alternative, similar convention.

Most importantly, it is emphasized that the permutations of the unit cell match the

permutations of the particles.

Another consideration for the MCM state space structure regards lepton univer-
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Figure 3: The MCM particle model (right) compared to the standard model of parti-
cle physics (left). Each instance of x0 or χ4 refers to a spacetime spanned by
xi and either x0 or χ4. The scalar Higgs boson is an outlier in the standard
model, but there are are no such outliers in the modified model.

sality. The standard model predicts that each lepton flavor should be identical to the

others up to its mass, but modern experiments suggest that this is not the case. The

proton radius puzzle observed in the muonic hydrogen system [65] is an example of

experimentally determined non-universality among lepton flavors. By putting each of

the MCM matter particle generations into a different state space, we motivate lepton

non-universality in principle, as required for agreement with experiment.

We have relied to some degree on phenomenological considerations when construct-

ing the MCM model of particles. Still, the model suffices to claim a first principles

derivation of the particle spectrum. The unit cell has permutations of its objects

generating two pairs of particles in three varieties, and one of those pairs may be

distinguished by three further varieties of QCD color charge with {+,−,∅}. The

fundamental bosons are well accommodated too. It is known that the 12 fundamen-

tal matter particles are spin-1/2 fermions, so we assign that property to each MCM

quantum of spacetime by supposition. Spin-1/2 is well aligned with χ4
± spanning

only one of Σ+ or Σ−, but never both. Similarly, the scale of any MCM spacetime

quantum will be half the width of the unit cell. The force carrying particles of the

standard model are known to have spin-1, so the MCM bosons are assembled from

pairs of matter particles. This is done in part because 1
2
+ 1

2
=1, and in part because

forces are usually transmitted between pairs of fermionic matter particles.

Being the most ordinary and well-understood force carrying particle, the photon is

the x0x0 particle at the top of Figure 3’s stack of elementary MCM bosons. The most

complicated, least understood elementary boson is the gluon g associated with the
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χ4χ4 connection. In this arrangement, we find more support for the MCM particle

scheme. It is known from experiment that there exist eight varieties of gluon. A tri-

umph of the MCM is that we obtain eight such varieties in the unit cell. Quark flavor

is associated with the three varieties of χ4. Gluons are associated with connections

between quarks. The nine permutations of a χ4χ4 connection are ++, +∅, +−, ∅+,

∅∅, ∅−, −+, −∅, and −−. Removing ∅∅ on some qualitative grounds (which may

be inferred from the ∅ symbol itself), we are left with eight varieties of gluon.

Why should ∅∅ not be associated with a gluon? There are many possible reasons,

but it is hoped that the reason will fall out from future inquiry. Since χ4
∅ has no

length in the convention where Ω is joined to A by a single point, the ∅∅ gluon

has no moment, in some sense. The other eight connections do have non-vanishing

moments, in that sense. Another reason might be that the other eight gluons connect

to H through Σ± while ∅∅ does not. For that reason, it may not be observable, or

may not be directly observable. As we will detail in Section 1, all observations are

necessarily made in H, so the property of being observable may depend on connection

to H. Another possibility is that there are, indeed, nine gluons, and that a nine gluon

model would improve the theory of QCD. One might take the ∅∅ connection as a

sterile gluon in the manner that sterile neutrinos are sometimes thought to exist. In

general, the total picture of QCD physics is complicated and has a lot of room for

improvement.

Ignoring a hypothetical Higgs boson, the only remaining standard model particles

requiring placement in the modified model are the W and Z bosons. These are

accommodated by either of the two remaining connections: x0χ4 or χ4x0. Choosing

the former, the original assignment in [6] cast W± as x0χ4
± and Z0 as x0χ4

∅ [6].

The weak force governs interactions between leptons and particles made of quarks

so, therefore, the admixture of the x0 and χ4 elementary fermions in the x0χ4 weak

boson connection is philosophically robust and physically sound. It is emphasized that

the unit cell’s permutations’ multiple exact likenesses to experimentally determined

particle properties are evidence that the MCM is a good theory.

We have randomly chosen the x0χ4 connection forW and Z. We might have chosen

χ4x0. In either case, the MCM predicts at least one more spin-1 elementary particle,

possibly three of them, in the remaining partner to x0χ4 or χ4x0, as in Figure 3.

However, there exists another theoretical variant of the MCM particle scheme which

was not mentioned in its first iteration [6]. We have associated the W± particle/anti-

particle pair with χ4
±, while we have not placed anti-gluons in the χ4χ4 connection.

If the ± scripting does not specify the anti-particle for gluons, then neither should it
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for W . Therefore, we might (should) associate the Z and W particles with only two

of {x0χ4
+, x

0χ4
−, x

0χ4
∅}. In that case, we would suppose that the Higgslike particle is

the third member of the x0χ4 connection, that x0χ4 and χ4x0 are indistinguishable,

and that the Higgslike spin-1 particle completes the smorgasbord.

Whatever the exact details are, the modified model predicts that there should be

no spin-0 fundamental particles. Therefore, the Higgslike particle must have spin-1.

If the Higgslike particle is eventually determined to have spin-1, that will be strong

evidence that time and effort should be invested in the theses given in the remainder

of this book.

Part I: The Modified Cosmological Model

1 The M̂3 Operator and its Equation

While it is standard in physics communications to put main results at the beginning

and then explain them, this will not be possible for M̂3. Without developing the

context first, the main results could not be conveyed well. Therefore, Sections 1.2

through 1.7 will mostly lay the foundation for more interesting results in Sections 1.8

through 1.11.

1.1 Introduction

The fundamental equation of classical mechanics, F= ∂tp=m∂2t x, is postulated in

Newton’s laws. The fundamental equation of quantum mechanics, iℏ∂tψ = Ĥψ, is

usually implemented as a postulate. In both cases, the differential operators ∂t and

∂2t (or the ∂2x in Ĥ) are used in postulated equations. In the MCM, we would like to

obtain a new equation for M̂3∝∂3t such that the discrepancies between classical reality

and quantum theory are lessened or remedied. Various postulates or hypotheses for

the functioning of M̂3 have appeared in earlier MCM publications, and, indeed, the

number of variations approaches the number of papers written about them. In the

end, the postulate should be the only expression consistent with the requirements,

up to the form of the representation. At that time, putting the correct equation to

paper should be effortless. For this reason, previous work in the MCM has more

closely attended that which M̂3 needs to do than the formal statement and study

of a postulate like F =mẍ or iℏψ̇ = Ĥψ. In this long section, we will examine the

M̂3 operator which has been identified as an appropriate operator for what should be

some new equation for a theory of everything.
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1.1.1 The M̂3 Operator

M̂3 describes the actions of a physicist. Although the extant quantum theory re-

quires a physicist’s actions to implement wavefunction collapse upon measurement,

the usual approach to quantum mechanics (QM) ignores the rest of what the physicist

does. In efforts to better understand quantum theory, epistemological considerations

sometimes fixate on an artificial distinction between a quantum state and an ideal

measuring apparatus. It is asked how an ideal measurement can be made when detec-

tors are necessarily quantum mechanical themselves. Compounding such questions,

many experiments such as the double-slit and delayed-choice quantum eraser experi-

ments [66] show that measurement is supremely weird within the existing framework.

Thus, the main new idea in the MCM seeks to separate the physicist from his exper-

iment rather than to separate a hypothetical ideal detector from its quantum subject

matter. Measurement is made ideal as a psychological process divorced from anything

manifestly quantum mechanical. It is hoped that the description of a time-evolving

quantum state will be more natural in this framework.

Regarding questions of epistemology that don’t impede one’s ability to compare

experiments to predictions, physics may be differentiated between work in the eso-

teric fundamentals and work in the more glamorous applications [67]. The latter is

less concerned with philosophical problems, but the MCM is a program in the sub-

basement of the fundamentals. We ask questions such as the following. Is it a step

too far to suppose that there exists a better framework? Perhaps there is one to

which the current theory is only an approximation? Is it wrong not to shut up and

calculate? To these ends, we have identified M̂3 as a good operator for what should

be a new revolution in the arena of the fundamentals.

The psychological process for M̂3 was defined as follows [3].

“To test any theory[,] two measurements must be made. Call these

measurements A and B corresponding to events a and b. The boundary

condition set by A will be used to predict the state at b. To make this

prediction[,] the observer applies physical theory to trace a trajectory from

A to the future event b. Before the observer can verify the theory, suffi-

cient time must pass that the future event occurs. Once this happens[,] a

retarded signal from b reaches the observer in the present[,] and a second

measurement B becomes possible. [F ]rom the present[,] the observer traces

a path into the future. Once that future becomes part of the observer’s

past, a signal reaches the observer in the present[,] and the theory can be
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tested. A three-fold process.

Present 7→ Future 7→ Past 7→ Present1 .” (1.1.1)

The process of M̂3 starts at A. Some event a has already occurred. The signal from

a has reached the observer who has represented the condition of a as some abstract or

analytical expression. For instance, a detector has registered a particle at some point

in space, or in some region of spacetime,2 and then the detector told the observer

what it saw. The observer says, “Given my observation A, I predict by theoretical

construction that a subsequent event b will occur, which I will observe at B.” This

prediction is the first step of M̂3. It is an abstract prediction Present 7→Future. The

next step requires a time translation of the observer to some time later than the

time associated with the predicted event. Since we expect M̂3 to operate on states

rather than the observer, the observer’s time translation might be implemented as a

translation of a and/or b to an earlier time. This is the second step Future 7→Past.

The third step is a reconnection to the psychological level when the signal from b comes

to the observer’s attention at B: Past 7→Present. It is hoped that a new equation

which reflects this process will improve quantum theory and human understanding.

Feynman states the idea in [68].

“[T ]here is always hope that [a] new point of view will inspire an idea for

the modification of present theories, a modification necessary to encompass

present experiments.”

1.1.2 Principles and Equations

Einstein’s greatest genius was to conceive of the equivalence principle. Briefly, exper-

iments done in gravity must yield the same results when done in a spaceship under

the same acceleration. To formalize this principle mathematically, Einstein had to

collaborate for several years with mathematicians such as Grossmann, but Einstein’s

true genius was not finding Einstein’s equation. The work of profound genius was

to conceive of a new principle which must be satisfied by an equation in some form.

Finding that equation, while difficult and admirable, was ultimately a labor. Ein-

stein describes himself as working “like a horse” in his quest to find the equation

once the principle was set. Similarly, Newton was in correspondence with Leibniz

to some degree during the development of calculus, but Newton is regarded as the

1The 7→ symbol was chosen only so as to use a generalized arrow symbol for this word-level expression.
2Whether an apparatus detects the particle at a point or merely within some region is an interesting and open

question. In the end, all that is known is that the observer cannot glean more information from the apparatus than
the region of spacetime in which the particle is detected.
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supreme genius due to his conception of the laws of motion. The modern mathe-

matical statement of classical mechanics is mostly due to Cauchy, not Newton, but

Newton is regarded as the grandfather of physics because the highest achievement is

the formulation of new principles. As the laws of motion must be satisfied, and as

the equivalence principle must be satisfied, the MCM process for M̂3 must be satis-

fied. The description of the three-fold psychological process for M̂3 is as irrefutable

and self-evident as any other principle in physics. There must exist a mathematical

language for describing it.

1.1.3 Targeted Issues in Quantum Theory

After introducing notation in Section 1.2 for associating quantum states with the

elements of the unit cell, we will present cases that M̂3 should be useful for the

following.

� To implement dynamical rather than ad hoc wavefunction collapse (Section 1.8).

� To explain the origin of the fine structure constant (Section 1.9).

� To promote the metric from a disconnected background in quantum theory to a

dynamical object in it via a new theory of quantum gravity (Section 1.10).

� To find use cases in physics for new mathematical tools related to fractional

distance analysis (Section 1.6) [2], and to do a few other things.

The usual formulation of quantum theory provides no dynamical mechanism for

wavefunction collapse, also called state reduction or projection. With M̂3, the MCM

adds some extra steps to time evolution that are purposed to accommodate such a

mechanism. Presently, collapse is inserted into QM as needed to force agreement

with experiment. If dynamical collapse is achieved, quantum theory will be much

improved. Isham writes the following regarding this most glaring gap begging for

improvement [69].

“[T ]he idea of a reduction of the state vector is often invoked in more

realist approaches in which the state vector is deemed to refer to a sin-

gle system. The reduction is then assumed to occur after a single (ideal)

measurement, and has nothing to do with system selection in a series of re-

peated measurements. From this perspective, the overall time development

of a state of a single system consists of sharp jumps produced by the act of

measurement, separated by periods of deterministic evolution governed by

the Schrödinger equation[.]
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“The major problem is to understand the origin of these sudden changes

in the state. In particular, can they be obtained from the existing quantum

formalism, or does the reduction of the state vector have to be added to the

general rules of quantum theory as a fundamental postulate? This problem

is particularly acute in any approach to quantum theory that aspires to

demote ‘measurement’ from playing a fundamental part in the formulation

of the theory. In this case, there is a strong motivation to try to derive the

state reduction vector from the existing formalism; albeit, perhaps, only as

an empirically useful approximation to the actual development of the state

in time.

“The nature of the problem depends in part on the perceived referent of

the state. If the state is held to quantify our knowledge of the system, then

the reduction process is arguably analogous to the conditioning procedure

in classical probability in which the addition of extra information about

what is actually the case changes our state of knowledge. On the other

hand, if the state vector is held to refer to the system itself, then the idea of

reduction is frequently tied to the ‘uncontrollable disturbance’ thesis. This

raises the obvious question of the possibility of understanding the nature of

this effect in direct physical terms. In particular, what type of interaction

serves as an ‘ideal measurement’?

“One approach to this problem is to ask again about the significance of

the fact that actual measuring devices are made of quantum atoms. Is it

possible to understand a state reduction as the outcome of some dynamical

evolution in which object and apparatus are both regarded as quantum-

mechanical systems? Indeed, even within the minimal, pragmatic approach

to quantum theory there is good reason for asking what type of interaction

between two systems is to be regarded as a bona fide measurement of one

by the other. The concept of measurement plays a fundamental role in the

formulation of quantum theory, and therefore deserves to be understood

further.”

Measurement is of fundamental importance in the MCM. Each measurement of a

quantum system corresponds to an H-brane. Diffusion under the Schrödinger equa-

tion happens in the bulk spaces Σ±, and the sharp jump to the kth collapsed state is

associated with Hk. The act of measurement is made ideal as an interaction between

a system made of atoms and an observer’s non-quantum consciousness.

It remains hard to motivate the value for the MCM fine structure constant αMCM,

34



Jonathan W. Tooker

so we will not phrase the present problem of M̂3 in terms of the original motiva-

tion [30]. Instead, we will lay out the current best understanding of M̂3, and some

problems found to deserve further development. Appendix A describes the original

program by which the fine structure constant was found, and then the existence of

M̂3 was deduced from the analytical structure of

α−1
MCM = 2π +

(
Φπ
)3 ≈ α−1

QED . (1.1.2)

Regarding our intention to supplement the existing framework of quantum theory

with M̂3, Finkelstein writes the following [70].

“Quantum theory began with ad hoc regularization prescriptions of Planck

and Bohr to fit the weird behavior of the electromagnetic field and the

nuclear atom[,] and to handle infinities that blocked earlier theories. In

1924[,] Heisenberg discovered that one small change in algebra did both

naturally.”1

Heisenberg stated the following in his 1933 Nobel address.

“Quantum mechanics [...] arose, in its formal content, from the endeavor

to expand Bohr’s principle of correspondence to a complete mathematical

scheme by refining his assertions.”

Similarly, it remains to expand the MCM principles to a complete mathematical

scheme by refining the assertions about M̂3. To wit, we have found a value αMCM

that falls out of some (mostly) standard quantum mechanical language, but we have

neither connected that language to the full quantum theory nor explained the 0.4%

discrepancy with αQED (Section 1.9.4). There exists an idea for how state reduction

might be implemented more naturally in the MCM than it is in QM (Section 1.8) [71],

but we have not written down any Eureka-level equations of motion. While such

deficiencies remain to be remedied in the course of the work described in this book,

the new object ∞̂ called algebraic infinity (Section 1.6) is most certainly a Eureka-

level idea for handling certain infinities that block current theories.

On the problem of quantum gravity, we say it is a hard problem because there does

not exist a robust mathematical language in which the objects of the gravitational

1Heisenberg’s famous p̂q̂−q̂p̂ ̸=0 quantum algebra was a small change in notation but it reflects a giant leap in the
ability of humans to understand the natural world. After all, the idea that 3×2 under certain circumstances might not
equal 2×3 was a radical departure from thousands of years of previous mathematical thinking. Heisenberg’s change
of algebraic structure is the origin of the phrase “a quantum leap” meaning “a huge or sudden increase or advance of
something.”
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theory can be put into an equation with the objects of the quantum theory.1 General

relativity (GR) is a theory of points in spacetime, but the state of being located at a

point cannot be measured and does not exist in Hilbert space. Quantum states are

fuzzy, but GR does not admit fuzziness. Far removed from a theory of gravitons or

questions about the curvature of spacetime as a disconnected background to quan-

tum theory, the general problem of quantum gravity is that there does not exist a

good framework in which it is possible to put the equivalence relation = between two

separate statements of gravitation and quantization. For instance, the equivalence of

the inertial mass in classical mechanics and electrodynamics allows us to combine the

Lorentz force law with arbitrary mechanical forces. On the other hand, there is no

Schrödinger equation for the metric, and there is no way to put a probability ampli-

tude into a stress-energy tensor such that it is mutually dynamical with Schrödinger

evolution. The MCM mechanism for quantum gravity (Section 1.10) offers an original

and exciting mathematical language in which quantum objects might interact with

gravitational objects. However, it very much remains to establish this new language

as a complete mathematical framework.

1.2 The Ontological Basis

The process

Present 7→ Future 7→ Past 7→ Present , (1.2.1)

is associated with the operator

M̂3 : H′
1 → Ω′

1 → A′
2 → H′

2 , (1.2.2)

and/or its variant

M̂3 : H1 → Ω1 → A2 → H2 . (1.2.3)

The former describes abstract algebraic translation through rigged Hilbert space. The

latter describes geometric translation through coordinate space. M̂3 itself operates

on states, so notation is required to specify where a given state lives: which of the

1There is some machinery in QFT by which a certain tensor field φµν (called a graviton field) can couple in its
two indices to a stress-energy tensor Tµν . The QFT graviton can be used to reproduce a few experimental results,
but most of those come only under a host of simplifications, hand-waving, and cumbersome constraints. The QFT
graviton is ugly, not beautiful, and it is useful only for small perturbations on Minkowski space. In the opinion of
this writer, furthermore, there is little reason to think that the hypothetical quantum force carrier of the gravitational
force is real because there is no gravitational force. Gravitation is geometry in curved spacetime. It is a fact that
a rank-2 tensor field can couple to Tµν in QFT, but it is not well established that this confluence of tensor indices
is well suited to the general problem of quantum gravity. After all, this coupling has been known for decades, and
there is no consensus on what a working theory of quantum gravity might look like, or how one might demonstrate
gravitons’ existence through observation. Indeed, there is no consensus on the existence of gravitons due in part to
the weakness of the theoretical framework for φµν in applications to gravitation.
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branes and/or which of the state spaces along the process of M̂3. For instance, we

will introduce notation such that a state in H′ has the domain of its wavefunction

representation specified as the xi spatial part of the xµ physical coordinates charting

H. However, if

ψ ∈ H′ =⇒ ψ = ψ(xi)

ψ ∈ A′ =⇒ ψ = ψ(xi−) (1.2.4)

ψ ∈ Ω′ =⇒ ψ = ψ(xi+) , 1

then the H′ ⊂A′ ⊂Ω′ nested structure of the RHS {H′,A′,Ω′} is superficially con-

founded. The space of functions of a given variable is not intuitively a subspace of

the space of functions of another variable. Still, it is possible that states represented

by the former might span a subspace of the states represented by the latter. To avoid

any potential problems, an appeal is made to a subtle difference little considered in

physics: the difference between state spaces and function spaces. In this section, we

will clarify these details somewhat and introduce the ontological basis. It assigns

wavefunctions to the various branes in the MCM unit cell and their corresponding

state spaces.

Let ψk : R→C be a function, and let × be an inner product. Then

H′ = {ψ1, ψ2;×}

A′ = {ψ1, ψ2, ψ3;×}

Ω′ = {ψ1, ψ2, ψ3, ψ4;×}

 =⇒ H′ ⊂ A′ ⊂ Ω′ , (1.2.5)

at least approximates an RHS if it does not satisfy the definition directly. To break

the nested structure and support an arrangement of functions of different variables,

we will append labels as

H′
H = {ψ1, ψ2;×, H}

A′
A = {ψ1, ψ2, ψ3;×, Alpha}

Ω′
O = {ψ1, ψ2, ψ3, ψ4;×, Omega}

 =⇒ H′
H ̸⊂ A′

A ̸⊂ Ω′
O . (1.2.6)

Now, suppose DH, DA, and DO are three non-intersecting subsets of R such that

ψ ∈ H′
H =⇒ ψ : DH → C

1Recall that xµ± are the physical coordinates on slices of Σ± at constant χ4
±, as in Section 0.2.
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ψ ∈ A′
A =⇒ ψ : DA → C (1.2.7)

ψ ∈ Ω′
O =⇒ ψ : DO → C .

A function is usually defined as a binary relation between two sets, so it follows, for

instance, that ψ(x)=sin(x) is the same function regardless of which D is its domain.

However, if

H′
H ∋ ψH : [0, 2π]→ [−1, 1]

A′
A ∋ ψA : [4π, 6π]→ [−1, 1] (1.2.8)

Ω′
O ∋ ψO : [8π, 10π]→ [−1, 1] ,

then the different ψk are not exactly the same. This invokes a nuanced technical issue

which we will revisit in Section 31 pertaining to a criticism of Scholze and Styx against

Mochizuki’s inter-universal Teichmüller theory (IUT).1 The definition of a function

as a binary relation between two sets makes it easy to ignore the subtle distinction

between a state space containing abstract |ψ⟩ vectors and function spaces containing

the ψ(x) wavefunction representations. It is normal in physics to write |ψ⟩= ψ(x),

meaning that the state is identically the wavefunction, but, formally, it is not. To be

very specific, or rigorous, one must ask if the definition of the function includes the

identity of the two sets related by it. Regarding the matter of M̂3, it is not relevant

whether the identity of a function depends on the identity of its domain. The nested

structure of {H′,A′,Ω′} is such that ψ ∈H′ implies ψ ∈A′ and ψ ∈Ω′, and we will

do physics in the way that ignores unnecessary mathematical nuance. We will drop

the subscripts and call {H′,A′,Ω′} an RHS even though we have added an implicit

labeling scheme such that the nested structure is broken by (1.2.4), in some sense.

MCM state spaces must have an associated manifold specified so we may know

which coordinates chart the domains of the states’ wavefunction representations. For

this purpose, we have introduced the ontological basis {êH, êA, êΩ} such that

ψ ∈ H′ ⇐⇒
∣∣ψ〉 = ∣∣ψ〉êH =

∣∣ψ; êH〉 = ψ(xi)

ψ ∈ A′ ⇐⇒
∣∣ψ〉 = ∣∣ψ〉êA =

∣∣ψ; êA〉 = ψ(xi−) (1.2.9)

ψ ∈ Ω′ ⇐⇒
∣∣ψ〉 = ∣∣ψ〉êΩ =

∣∣ψ; êΩ〉 = ψ(xi+) .

We also suppose the existence of a fourth basis element ê∅ such that |ψ⟩ê∅=ψ(xi∅)

1We will suggest that Mochizuki’s Hodge theater is a rebranded MCM unit cell, and that his later work on IUT
is an attempted completion of the M̂3 theory.
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or |ψ⟩ê∅=ψ(χa∅). (Refer to Figure 1 for placement of ∅ in the unit cell.) Now that

we have developed the requisite objects, we may supplement the abstract notation

of (1.2.2) and (1.2.3) with an ordinary operator algebra. Letting M̂3≡M̂3M̂2M̂1, we

have

M̂1

∣∣ψ; êH1

〉
= c1

∣∣ψ; êΩ1

〉
M̂2

∣∣ψ; êΩ1

〉
= c2

∣∣ψ; êA2

〉
M̂3

∣∣ψ; êA2

〉
= c3

∣∣ψ; êH2

〉
 =⇒ M̂3

∣∣ψ; êH1

〉
= c3c2c1

∣∣ψ; êH2

〉
. (1.2.10)

M̂3 executes H1→H2 via the given intermediate steps. It operates on states in one

unit cell and returns states in a time-advanced unit cell. Schrödinger evolution also

occurs between H1 and H2, and the intermediate steps of M̂3 are specified to add

complexity to the usual theory in which the Schrödinger equation is integrated from

t1 to t2. Assigning t1∈H1 and t2∈H2,
1 the intermediate steps provide a framework in

which more can happen than what QM describes as monotonic diffusion followed by

instantaneous collapse. The structure provided by the intermediate steps is pointed

out so as to avoid an appearance of redundancy in what might otherwise be written

as M̂3 : H1 → H2 without a reference to the intermediate steps that should be useful

for applications towards modified Schrödinger evolution. Further inquiry is required

to determine an analytical statement of this new theoretical structure.

In practice, the MCM cosmological lattice is infinite in extent. Each unit cell

resides at a later chronological time than all leftward unit cells, and at a later chiro-

logical time. Each successive unit cell is said to be on a higher level of aleph (Section

1.6) [2, 49] than the unit cells at earlier chirological times. Levels of aleph are an

abstract characteristic introduced to differentiate one unit cell from its neighbors.

The subscripts on the {êµ} in (1.2.10), e.g.: êΩ1 and êA2 , refer to branes on the first

and second levels of aleph. (See Figure 1 for similar labeling on Σ±.) Levels of aleph

are labeled with integers, so any Hk will have an infinite number of earlier and later

{Hj}.
In practice, it may be useful to consider cyclic M̂3 :H→Ω→A→H in place of the

non-cyclic M̂3 :H1→Ω1→A2→H2. In other words, we might drop the subscripts to

treat the problem as a small algebraic group.

1This notation means that the measurement associated with H1 happened at x0= t1, t1 was the observer’s proper
time in H1, and the same for t2 and H2.
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1.2.1 A Program in Number Theory

M̂3 is formulated to describe the process by which a theory is tested with experiment.

The operation is psychological because the chronological time interval between two

unit cells depends on how long the observer waits to test his prediction. A requirement

for regular periodicity in the overall lattice of all unit cells, or for the self-similarity

of all unit cells, is fulfilled through a regularized chirological time interval between H1

and H2. The interval in the abstract coordinates will be proportional to the golden

ratio Φ without regard for the duration of chronological time between successive

measurements. We will say more about the golden ratio and our reasons for using it

in Section 1.2.4 (see also [71,72]).

The defining property of a set of basis vectors is the linear independence of

the basis’ elements. Usually, the elements are unit vectors. The particular basis

{êH, êA, êΩ, ê∅} is called “ontological” due to the specification of certain non-unit

magnitudes for its elements. By choosing the number-theoretically significant mag-

nitudes {2, π, i,Φ} in some order for {∥êH∥, ∥êΩ∥, ∥êA∥, ∥ê∅∥}, we hope to generate

certain properties of the natural world by these numbers’ association with the struc-

ture of the unit cell. The present convention is

êH = π̂ êΩ = Φ̂ êA = 2̂ ê∅ = î

|π̂| = π |Φ̂| = Φ |2̂| = 2 |̂i| = 1 (1.2.11)

∥π̂∥ = π ∥Φ̂∥ = Φ ∥2̂∥ = 2 ∥̂i∥ = i .1

Using a further convention such that the observer’s reference frame at measurement

A is normalized to the zeroth level of aleph, M̂3 will operate as

M̂1

∣∣ψ; π̂0
〉
= π

∣∣ψ; Φ̂0
〉

M̂2

∣∣ψ; Φ̂0
〉
= Φ

∣∣ψ; 2̂1〉
M̂3

∣∣ψ; 2̂1〉 = 2
∣∣ψ; π̂1

〉
 =⇒ M̂3

∣∣ψ; π̂0
〉
= 2πΦ

∣∣ψ; π̂1
〉
. (1.2.12)

M̂3 takes a state in one unit cell, or on one level of aleph, and puts it into the next one.

This operator algebra is presented as an ansatz pending development of analytical

representations for M̂3 and |ψ; êkµ⟩. The former iterator subscript of (1.2.10) has been

refashioned as an algebraically meaningful integer exponent k. π̂0=1̂ allows us to use

1In the previous conventions for the ontological basis vectors [1,3,30], A and ∅ were oppositely labeled with î and
2̂. The present convention is better suited to the MCM formula for the fine structure constant (Section 1.9).
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ordinary QM states as MCM states in H0.
1 For now, we will assume the 2πΦ scalar

coefficient2 and proceed to examine the ontological basis.

To detail the basis’ functioning, we will use the example

x = xêx . (1.2.13)

It is understood that we may ignore the unit vector in the x direction to use notation

such that x is a vector with magnitude x in the implicit direction. Similarly, we will

recover ordinary QM state vectors in H by ignoring π̂:∣∣ψ; π̂〉 = ∣∣ψ〉π̂ = ψ(xi) . (1.2.14)

If the normalization convention includes the magnitude of π̂, i.e.:〈
ψ; π̂

∣∣ψ; π̂〉 = |π̂|〈ψ∣∣ψ〉|π̂| = 1 , (1.2.15)

then the convention of (1.2.14) induces a notion of relative scale between branes. For

instance, (1.2.14) would be written∣∣ψ; π̂0
〉
=
∣∣ψ〉π̂0 = ψ(xi)|π̂0| , (1.2.16)

while ignoring a non-unit basis vector will alter a state’s magnitude:∣∣ψ; π̂1
〉
=
∣∣ψ〉π̂1 =

1

π
ψ(xi)|π̂1| , and

∣∣ψ; π̂k〉 = ∣∣ψ〉π̂k = 1

πk
ψ(xi)|π̂k| . (1.2.17)

This concept of relative scale will be used extensively in later sections.

A further property of the hat notation is demonstrated with the redundant ex-

pression

a = a êx |êy||êz| , where |êi| = 1 . (1.2.18)

If one wants to know what a looks like when it points in in the y direction, call it a′,

one must rearrange the absolute value bars. For some operator Ôx→y, we have

Ôx→ya = Ôx→y

(
a êx|êy||êz|

)
= a |êx| êy |êz| = a′ . (1.2.19)

1π̂0=1̂ may suggest that Φ̂0=1̂ as well. To avoid any possible association of Φ̂0 with the identity operator, future
inquiry might study the case where the Ω-brane following H0 is already on the higher level of aleph. The current
labeling scheme is such that H and its adjacent A- and Ω-branes are on the same level of aleph. The level is said to
increase at ∅, as in Figure 1. However, an alternative convention in which the level of aleph increases at H must be
considered as well. In that convention, all chirologically future-directed branes beyond H0 would be labeled by k>1
on ontological basis vectors with non-unit magnitudes.

2This scalar differs from the iπΦ and iπΦ2 constants which have appeared in previous work due mainly to the
reassignments of î and 2̂.
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Usually, Ôx→y would be a π/2 rotation operation about the z-axis, but here we wish to

emphasize an algebraic picture over a geometric one. In the desired algebraic picture,

we have an implicit similitude to the three steps in (1.2.12):

M̂1 ∼ ÔH→Ω , M̂2 ∼ ÔΩ→A , and M̂3 ∼ ÔA→H . (1.2.20)

The laws of linear algebra suggest that we may execute any Ôµ→ν simply by moving

the hat around. The matter is slightly complicated in the unit cell by the non-unit

magnitudes of the ontological basis vectors, but the procedure will follow (1.2.19). To

preserve the unit magnitude of the identity in the following, we will replace the |êi|
of (1.2.19) with ∥êµ∥/∥êµ∥. Considering |̂i|=1 and ∥̂i∥= i, the norm rather than the

absolute value is used to write, for example,

ÔH→A
∣∣ψ; π̂〉 = ÔH→A

∣∣ψ〉π̂ ∥2̂∥
∥2̂∥
∥Φ̂∥
∥Φ̂∥
∥̂i∥
∥̂i∥

=
∣∣ψ〉∥π̂∥ 2̂

∥2̂∥
∥Φ̂∥
∥Φ̂∥
∥̂i∥
∥̂i∥

(1.2.21)

=
π

2

∣∣ψ; 2̂〉 .

More concisely, one inserts the relevant identity and moves the hat:

ÔH→A
∣∣ψ; π̂〉 = ÔH→A

(
1

∣∣ψ〉π̂)
= ÔH→A

(
2

2

∣∣ψ〉π̂) (1.2.22)

=
π

2

∣∣ψ; 2̂〉 .

This protocol for moving hats will be integral to the MCM prescription for quantum

gravity in Section 1.10.1.

1.2.2 An Example in Atomic Physics

The commonality of 2, π, and i in quantum theory’s analytical expressions moti-

vates their placement in the ontological basis. For example, the wavefunction of a

hydrogenic electron ψnlm is such that

ψ100 =
1√
4π

2

a
3/2
0

e−r/a0 , and ψ211 =
1√
64π

1

a
3/2
0

e−r/2a0 sin(θ)eiϕ . (1.2.23)

The numbers 2, π, and i are analytically integral in such expressions. On the other

42



Jonathan W. Tooker

hand, the absent number Φ is associated with the χ4 direction that is absent from the

usual framework for QM. An appeal to the arena of QM as the zeroth level of aleph

shows that Φ0=1 is already present in ψnlm, and every other conceivable wavefunction.

The MCM seeks to modify the usual arena for quantum theory by embedding it in a

fifth dimension. States enter the new MCM arena along Φ̂ pointing out of H in the

χ4
+ direction toward Ω. As Ω will be located at χ4

+=Φ, we may expect that factors

of Φ will accrue upon successive applications of M̂3. This is already codified into the

2πΦ constant given by M̂3|ψ; π̂0⟩=2πΦ|ψ; π̂1⟩. Such factors of Φk will be as integral

to the analytical representations of wavefunctions in non-H0 branes as are 2, π, and

i in H0.
1

In the convention such that |ψ; π̂⟩= |ψ⟩π̂=ψ(xi), we have hydrogenic states∣∣n, l,m; π̂
〉
=
∣∣n, l,m〉π̂ = ψnlm(r, θ, ϕ) , (1.2.24)

where {r, θ, ϕ} are the spherical polar representation of xi ∈ H. Using ψ100 as an

example, M̂3 operates as

M̂3
∣∣1, 0, 0; π̂0

〉
= 2πΦ

∣∣1, 0, 0; π̂1
〉
=
√
4π

Φ

a
3/2
0

e−r/a0 . (1.2.25)

ψnlm is not time-dependent, so the wavefunction must be the same across any number

of successive measurements. As a result, (1.2.25) is mathematically trivial. On the

other hand, the theory of quantum states in Hilbert space is such that any two states

which differ by a constant are the same. Therefore, (1.2.25) satisfies an important

physical constraint: the stationary state remains stationary.

Regarding time-dependent states, it is expected that the ∂0 and/or ∂4 time deriva-

tives are the generators of M̂3, and the case of M̂3 acting on time-dependent states

must be more complicated than the example of ψnlm in which all such time derivatives

vanish. In general, the structure of the unit cell is such that measurement B in H1

occurs at a later chronological time than measurement A in H0. Consequently, it is

required that we start with |ψ, t0, π̂0⟩ and end with |ψ, t1; π̂1⟩ for some t1 > t0. At

minimum, M̂3 must be complemented with Schrödinger evolution. More likely, M̂3

has its own unique time evolution equation which contains the Schrödinger equation

as the limit of vanishing chirological derivatives.

1Later, we will suggest that the exponent on Φ̂ should describe differences in the level of aleph so Φ̂∆k should
vanish for physics confined to H0.
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1.2.3 The Proton Radius in Muonic Hydrogen

An unsolved anomaly in modern physics is that the proton radius measured in muonic

hydrogen is different than the proton radius measured in electronic hydrogen [65].

Such a result might be explained in principle as a corollary of (1.2.25) because MCM

muons live in a different state space than MCM electrons (Section 0.3). In the way

that one obtains an arbitrary momentum state by applying a boost to a k=0 state,

one would obtain a muon state from an electron by applying some Ôêµ→êν in the sense

of (1.2.19). This operation would have its own non-unit magnitude, scalar constant

associated with it because 2πΦ is uniquely associated with M̂3∼ ÔHk→Hk+1
. By some

more complicated mechanism, that constant might manifest as an observably different

proton radius in the muon-nucleon bound state. Given the normalization convention

in (1.2.15) and a proton radius operator r̂p, one would obtain various matrix elements(
r̂p
)
µν

=
〈
ψ; êµ

∣∣r̂p∣∣ψ; êν〉 , (1.2.26)

for ψ in various branes. For µ= ν, these matrix elements reduce to the expectation

value ⟨r̂p⟩.

1.2.4 The φ̂ Object and C∗

The piecewise assembly of the unit cell in Figure 4a makes χ4
± appear to be linearly

dependent. However, these are two linearly independent degrees of freedom. We will

take φ̂ to point in the χ4
− direction while Φ̂ points in the direction of χ4

+. The right

angle in Figure 4b depicts a unit cell assembled from subdomains of two orthogonal,

unbounded intervals of χ4
±.

We have proposed a convention in which A and Ω are located at χ4
− = −φ and

χ4
+=Φ relative to H at limχ4

±→ 0. Assuming that H is spanned by one unit of x0,

the Φ×1 and 1×φ dimensions of the χ4
−x

0 and χ4
+x

0 boxes makes each an identical

golden rectangle. By the well-known properties of the golden ratio, Φk×Φk−1 is the

only aspect ratio that will allow an infinite tiling succession of different-sized unit

cells, each in the same proportion.1 The infinite succession of unit cells is called the

cosmological lattice. A unit scale such that each unit cell is the same size as the

others generates a constant proportion of self-similarity, but the golden ratio uniquely

allows a non-unit tiling proportion:

Φ =
b

a
=
a+ b

b
. (1.2.27)

1Physical conventions for increasing wavenumber along a golden spiral progression of unit cells were developed
in [71].
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Figure 4: Figure (b) shows an arrangement in which negative-definite χ4
− ∈Σ− and

positive-definite χ4
+ ∈ Σ+ might be assembled from two orthogonal, un-

bounded intervals of χ4
±. Compared to (a), (b) better emphasizes the linear

independence of χ4
+ and χ4

−.

Non-constant scale across successive unit cells is considered desirable for the gen-

eration of an arrow of time, and for other results such as the MCM mechanism for

dark energy (Section 7). In a unit scaling, we might appeal to the cosmological con-

stant Λ to say that A has lower energy than Ω, and that, therefore, the chirological

arrow of time should point to the left from H. However, the energy would have to

increase again from Σ− passing into Σ+ on the round trip back to H (barring some

more nuanced convention for dynamics at ∅.) In the present convention, states go

into Ω before A. To support that condition, we will implement a non-unit scale such

that M̂3 preferentially moves states toward the right in the cosmological lattice. Al-

though there does not exist an accepted energy landscape setting the chronological

arrow of time, increasing volume in future-directed unit cells may set a chirological

arrow of time pointing toward the right due to the thermodynamic tendency of en-

ergy densities to decrease. If the forward scale should be smaller, we might invoke

gravitational collapse into a singularity at ∅ to favor a rightward arrow. The main

principle is that any scale other than the unit scale can be used to support an arrow of

time. Furthermore, non-unit scale will be required to restore normalized probability

amplitudes after non-unitary evolution under M̂3 (Section 1.2.5).1 By synergy, one

would hope to connect these two cases for non-unit scale. As it relates to the present

section, Φ̂ points in the direction of increasing scale, and φ̂ points in the direction of

1Early steady state models in cosmology supposed a constant generation of new matter-energy to maintain constant
density under Hubble expansion [73, 74]. The non-unitary MCM time evolution discussed in Section 1.2.5 may serve
a similar purpose.
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decreasing scale.

The {x0, xi, χ4
±} orthogonal coordinate triads are distinguished as right- or left-

handed when χ4
± are associated with oppositely directed chirological time by Φ̂ and

φ̂. {x0, xi, χ4
+} is right-handed and {x0, xi, χ4

−} is left-handed. These orthogonal

triads are said to span C∗
± in Σ± respectively. The unit cell is extended from C in

the transverse direction by Φ̂ pointing to the right, and by φ̂ pointing to the left

or down. C and its transverse continuations are called C∗
±. To briefly clarify C∗

±

without fully formalizing it, and to indicate an avenue for productive future inquiry

into distinctness between φ̂ and Φ̂, the complex plane C spanned by 1̂ and î is extended

in the Φ̂ transverse direction and/or the φ̂ transverse direction. Using identities x̂= x̂i

and ict̂ = x̂0,1 we may associate H with C. Suppressing two spatial dimensions, x̂

and t̂ point in the 1̂ and î directions respectively. This convention for imaginary t is

required to obtain the requisite minus sign in the differential element of flat spacetime

interval:2

ds2 =
(
dx0
)2

+
(
dx1
)2

+
(
dx2
)2

+
(
dx3
)2

(1.2.28)

= −c2 dt2 + dx2 + dy2 + dz2 .

The quadratic relationship (dx0)2 = −c2dt2 implies a factor of i in the linear re-

lationship. Compared to the convention where the metric is assumed as gµν =

diag(−c2, 1, 1, 1) a priori, the convention for x0 = ict is superior for a number of

reasons including its facilitation of the present association between H and C.
The extended complex conjugation algebra for C∗

± is

φ̂∗ = Φ̂

Φ̂∗ = −iφ̂

 =⇒
(
φ̂∗)∗ = −iφ̂ ̸= φ̂ .3 (1.2.29)

This is intended to introduce a quality of irreversibility into progression across the

unit cell [30]. Referring to Figure 4a, the basis vectors pointing to the left and

right of H are not merely sign conjugates as are {1̂,−1̂} and {̂i,−î} pointing in the

directions that span H. Due to this assumed conjugation algebra, M̂3 and (M̂3)† are

not expected to raise and lower the level of aleph as the Dirac ladder operators â

and â† raise and lower the principal quantum number for simple harmonic oscillator

states. Figure 4b makes it easy to envision (M̂3)† as sending a state in H into an
1This notation for imaginary t relative to real x0 may be found in Appendix A3–2 of [75], for example.
2The relationship between negative metric signature and imaginary dimension, or imaginary dimensional trans-

posing parameter, is treated again in Section 10.
3Φ is a real number, so the meaning of the ∗ operator in C∗ must not be confused with its context in C where Φ∗

is equal to Φ.
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upward instance of Σ− other than the downward one from which it came.

At first glance, χ4
− must be imaginary relative to real χ4

+ because χ4
± are oppositely

timelike and spacelike in the KK metric. For Aµ±=0, we have

g±AB =

(
g±αβ 0

0 χ4
±

)
=



−c2 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 ±|χ4
±|


, (1.2.30)

where χ4
−=−|χ4

−| because χ4
− is negative-definite in Σ−. This metric implies

ds+ ∝
√
χ4
+ dχ

4
+ , and ds− ∝ i

√
|χ4

−| dχ4
− .1 (1.2.31)

The minus sign on g±00 requires that distance in the x0 direction is imaginary (timelike)

relative to real spatial distance in the xi directions. Likewise, the minus sign on g−44
requires that χ4

− is imaginary relative to χ4
+. To preserve the timelike character of χ4

+,

we might alternate the phase convention in successive unit cells or associate spacelike

χ4
+ with imaginary time (such as that linking QFT to statistical mechanics.) Overall,

the changing metric signature between Σ± represents a hard problem in the issue

of the forward connection of Σ+ to Σ−, but the issue is well contextualized in the

assignment of the î ontological basis vector to ∅. An extra factor of i may be what

is needed to resolve the topological mismatch between the number of spacelike and

timelike dimensions in Σ±. Furthermore, Figure 4 suggests that we might define

iχ4
± as two mutually orthogonal directions pointing out of the page such that M̂3

weaves a path along χ4
± ∈ C choosing phase as needed so that no metric signature

discrepancies are present. To accomplish this, we would rely on the free sign in the

Lorentzian metric signature {∓ ± ±±} to alternately assign a factor of i to the real

and imaginary parts of χ4
± in successive unit cells. In some sense, we might use the

i=eiπ/2 identity to associate the î ontological specifier for ∅ with a π/2 rotation away

from the direction of metric discrepancy.

In Section 1.7.3, we will associate the region of metric discrepancy with an energet-

ically forbidden region in which the potential energy is higher than the total energy. If

the metric discrepancy is associated with real χ4
+∈Σ+ followed by imaginary χ4

−∈Σ−,

1Rather than the ϕ2±=χ4
± convention shown in (1.2.30), if we require that an alternative convention for ϕ±=χ4

±
should preserve the {−+++−} signature in Σ−, which is required if g−44 is the negative Ricci scalar of AdS4, then
we obtain the complex phase in (1.2.31) more naturally without the square roots.
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then the energy landscape will be such that plane waves are preferentially steered onto

the real branch of χ4
−∈C, thus avoiding the metric discrepancy.

Finally, we have presented Φ̂ as an ontological basis vector and as a geometric

basis vector pointing in the direction of χ4
+. We will go on to develop a picture of the

ontological basis vectors {2̂, π̂, î, Φ̂} as lattice vectors anchored in each labeled brane.

These vectors will span an ontological lattice in the usual sense of crystallography.

1.2.5 The Non-Unitary Property of M̂3

In quantum mechanics, an operator Û is unitary if Û
†
Û=1. It is unitary if the inverse

is the conjugate transpose, also called the Hermitian conjugate or the adjoint. For

a time-independent Hamiltonian, the unitary time evolution operator which satisfies

Schrödinger’s equation is

Û(t1, t0) = exp

{
− iĤ

(
t1 − t0

)
ℏ

}
, such that Û(t1, t0)

∣∣ψ, t0〉 = ∣∣ψ, t1〉 .

(1.2.32)

The main application of the unitary property in quantum physics is that the proba-

bility interpretation of the wavefunction is preserved by unitary operations. Given〈
ψ, t0

∣∣ψ, t0〉 = ∫ ∞

−∞
dxψ∗(x, t0)ψ(x, t0) = 1 , (1.2.33)

meaning that the probability of observing ψ somewhere in the universe is 100% at

time t0, the unitary evolution operator is such that〈
ψ, t0

∣∣Û †(t1, t0) Û(t1, t0)
∣∣ψ, t0〉 = 〈ψ, t1∣∣ψ, t1〉 = 1 . (1.2.34)

After undergoing unitary evolution to an arbitrary time t1, the probability of finding

ψ somewhere in the universe is still 100%. The probability obtained in (1.2.33) was

multiplied by a factor of unity in (1.2.34).

It was emphasized in the development of the MCM that M̂3 is not a unitary

operator. The inverse of M̂3 is not its conjugate transpose, and it should not preserve

the probability interpretation without supplemental considerations. If the inverse of

M̂3 exists,(
M̂3
)−1

M̂3 = M̂3
(
M̂3
)−1

= 1 =⇒
(
M̂3
)−1∣∣ψ; π̂k〉 = 1

2πΦ

∣∣ψ; π̂k−1
〉
. (1.2.35)
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The rules of matrix algebra are such that(
M̂3
∣∣ψ; π̂〉)† = 〈ψ; π̂0

∣∣(M̂3
)†

=
(
2πΦ

)∗〈
ψ; π̂1

∣∣ , (1.2.36)

and the latter result may be combined with M̂3 operating to the right to show that

the inverse is not the conjugate transpose:〈
ψ; π̂0

∣∣(M̂3
)†
M̂3
∣∣ψ; π̂0

〉
=
(
2πΦ

)∗
2πΦ =⇒

(
M̂3
)† ̸= (M̂3

)−1
. (1.2.37)

M̂3 is not a unitary operator.

Now we will suggest a context in which the non-unitary property of M̂3 will define

unique MCM physics. Recalling

M̂1

∣∣ψ; π̂0
〉
= π

∣∣ψ; Φ̂0
〉

M̂2

∣∣ψ; Φ̂0
〉
= Φ

∣∣ψ; 2̂1〉
M̂3

∣∣ψ; 2̂1〉 = 2
∣∣ψ; π̂1

〉
,

(1.2.38)

consider M̂3M̂2M̂1= π̂2̂Φ̂ where Φ̂ obeys

φ̂† = Φ̂

Φ̂
†
= −iφ̂

 =⇒ φ̂†† = −iφ̂ ̸= φ̂ . (1.2.39)

The general meaning of φ̂ is as in the previous section. It indicates the χ4
− direction

rather than the −χ4
+ direction. The bold operators are cast as

Φ̂ ∼ ÔH→Ω , 2̂ ∼ ÔΩ→A , and π̂ ∼ ÔA→H . (1.2.40)

Hermitian conjugation yields(
π̂ 2̂ Φ̂

∣∣ψ; π̂k〉)† = −i 〈ψ; π̂k∣∣φ̂ 2̂
†
π̂† . (1.2.41)

This expression is intended to say that 2̂
†
and π̂† will send states back the way they

came through the cosmological lattice, but φ̂ does not reverse Φ̂. We may imagine

that φ̂ sends the ⟨ψ; π̂k| bra up the χ4
− number line (Figure 4) rather than back down

in the direction from which it came. Therefore, one would write〈
ψ; π̂k

∣∣(M̂3
)†
M̂3
∣∣ψ; π̂k〉 = 〈ψ; π̂k∣∣(φ̂ 2̂

†
π̂†)π̂ 2̂ Φ̂

∣∣ψ; π̂k〉 = c
〈
ψ; π̂k

′′∣∣ψ; π̂k′〉 .

(1.2.42)
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The k′ and k′′ notation at the right exposes what may be a shortcoming of the

convention to assign levels of aleph to entire unit cells rather than individual branes.

A single integer k is inadequate for labeling the branes which are off the beaten path

of M̂3 (such as those indicated by φ̂.) A more formal statement might include levels

of aleph (quantum numbers) for all of the ontological basis vectors so that branes are

labeled by sequences of integers. This more complicated MCM lattice structure is

intuitive in Figure 4b, but it is not needed in the usual representation of the unit cell.

(M̂3)† has no ordinary use because the process of observation and measurement

is constrained by a psychological arrow of time; a theory of making observations in

reverse time order could never be tested, seemingly. However, the full analysis of a

theory includes all possible operations and manipulations, such as time reversal oper-

ations, which would come in chronological and chirological varieties. φ̂ is introduced

to make the chirological time reversal operator more than a trivial variation on the

chronological one. It is considered desirable for physics that M̂3 and (M̂3)† should

have the sort of behavior inherent to the conjugation algebra for C∗ because it repre-

sents a physical condition of time irreversibility. All possibilities for such functioning

are predicated on the non-unitary property of M̂3. If M̂3 was unitary, call it M̂3, then〈
ψ; π̂k

∣∣(M̂3
)†
M̂3
∣∣ψ; π̂k〉 = 〈ψ; π̂k∣∣1∣∣ψ; π̂k〉 = 1 , (1.2.43)

and there would be no possibility for more complicated behaviors. Thus, the non-

unitary property is introduced in anticipation of further applications.

1.2.6 The Hierarchy Problem

The hierarchy problem asks about the origin of very large and very small numbers

in physics. As an example, it asks why the weak force is more than 20 orders of

magnitude stronger than gravitation. It is hoped that non-unitary chirological evo-

lutions, ones involving effects such as tunneling and/or interference across various

levels of aleph, will motivate such disparate numerical scales. Very small numbers

would pertain to lower levels of aleph ∼(2πΦ)−k, and large numbers would pertain to

higher levels ∼(2πΦ)k. Such effects were previously invoked to compute the 10−4m

scale for new MCM physics (Section 15). In later sections, we will develop a case

for infinite relative scale among unequal levels of aleph: scale beyond the present

irrational scale factor 2πΦ. If successive levels of aleph are associated with infinite

relative scale, one might obtain appropriate hierarchical structures as the limits of

uncertainty relationships where finite scale becomes indistinguishable from infinite

scale.
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1.2.7 Numerical Results

Responding to an observation that the ontological basis is chosen as a wild guess, it

is pointed out that no less than three important dimensionless constants fall out of

the choice without much complexity added in the path of computation.

� The fine structure constant αMCM can be generated with the ontological numbers.

αMCM is treated in Section 1.9 where a ∼0.4% discrepancy with the accepted

experimental value αQED is discussed.

� The dimensionless constant 8π from Einstein’s equation appears in a natural

way as well (Section 1.10).

� The classical EM coupling constant (4π)−1 appears in what is called the onto-

logical resolution of the identity:

1 ≡ 1̂ =
1

4π
π̂ +

φ

4
Φ̂ +

1

8
2̂− i

4
î . (1.2.44)

It is hoped that the ontological resolution of the identity will function as a scaffold

on which to unify the four fundamental forces, or possibly the strong, weak, and

EM forces with a hypothetical fifth force since gravitation is geometry, not force.

1.3 Tensor States

It was stated in [3] that MCM states specified with the ontological basis are tensor

states. Proof that such states satisfy the tensor transformation law has not appeared

previously. In this section, we will deviate from this book’s theme of open problems to

present a complete result: demonstration of tensor transformations for MCM states.

Wavefunctions satisfy the axioms of a vector space as follows.

� The vacuum state |0⟩ is the zero vector 0⃗.

� The sum (superposition) of two state vectors is another state vector.

� The (inner) product of two states is a non-state scalar.

� For a scalar c and a state |ψ⟩, the product c|ψ⟩ is still a state vector.

If there exist axioms of a tensor space, they are not known as well as the axioms

of a vector space. To show that something is a tensor, one demonstrates the tensor

transformation law which contains vector transformations as its simplest non-trivial

case. However, it is not immediately intuitive that QM states satisfy the vector trans-

formation law in the usual sense of coordinate transformations because the geometric
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picture of coordinates in state space plays little to no role in the ordinary practice of

QM. Therefore, the structural framework for such a demonstration may enhance one’s

understanding of the theory. In this section, we will illuminate a little remarked upon

feature of state spaces: they are coordinate spaces exactly like Rn. Then we will make

proofs of vector and tensor transformations for QM and MCM states respectively.

1.3.1 The Coordinates of State Space

To the extent that R3 is spanned by {x̂, ŷ, ẑ}, an N -dimensional quantum state space

is RN spanned by {ê1, ê2, . . . , êN} = {|ψ1⟩, |ψ2⟩, . . . , |ψN⟩} where {|ψk⟩} is some or-

thonormal basis. The RN structure of state space requires us to treat the spanning

basis vectors |ψk⟩ as static objects though they are the main dynamical objects in

QM. The vectors that span a Hilbert space are static because there is a unique Hilbert

space associated with each time t. However, the RN picture of a static basis is useful

for envisioning the time evolution of quantum states. Given

Â
∣∣ak〉 = ak

∣∣ak〉 , and
∣∣ψ, t〉 = N∑

k=1

ck(t)
∣∣ak〉 , (1.3.1)

one understands that |ψ, t⟩ is a vector sweeping through the RN spanned by {|ak⟩}.
The |ak⟩ eigenbasis is the geometric spanning basis of the space of states written

in that basis. Although a Hilbert space is technically the space of states at some

constant time t, time evolution may be understood as a continuous evolution in a

state space spanned by an eigenbasis of stationary states. Time evolution described

by a sweeping vector |ψ, t⟩ is simplified by the unitarity constraint: the tip of |ψ, t⟩
always lies on the N -dimensional unit sphere such that〈

ψ, t
∣∣ψ, t〉 =∑

k

c†k(t)ck(t) = 1 , (1.3.2)

where ck(t) is as in (1.3.1). The components of a vector in the {|ak⟩} basis are written
as (c1, c2, . . . , cN), so (1.3.2) defines a point on the unit sphere whose equation is∑
x2k=1. The coordinates of state space are such that the xk(t) Cartesian coordinates

are replaced with the ck(t) coefficients in the expansion of |ψ, t⟩. State space has this
structure for geometric interpretation, but quantum theory is not such that one refers

to such things in practice. Here, we will use it to demonstrate compliance with vector

and tensor transformation laws in a mathematically rigorous way. This will exceed

the compliance usually demonstrated through the above bulleted axioms of a vector

space.
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1.3.2 The Vector Transformation Law

Vector notation is such that

x =
∑
k

akêk =⇒ xµ = aµ . (1.3.3)

At first glance, we can tell that ordinary states and MCM states are vectors and

tensors respectively from

|ψ⟩ =
∑
k

ak|ak⟩ =⇒ ψµ = aµ , (1.3.4)

and its generalization as an MCM state∣∣ψ; êµ〉 =∑
k

ak
∣∣ak〉êµ =⇒ ψµν = aµêν . (1.3.5)

A one index tensor is a vector, and a vector with an extra index is a tensor. However,

this is not a formal demonstration of the transformation law. A more formal statement

of the law would be the following.

For a unit vector n̂ and an angle ϕ, let R̂(n̂, ϕ) be a rotation operator. Sup-

pose |ψ⟩= |a⟩+ |b⟩. If R̂ preserves the “angle” between |a⟩ and |b⟩, meaning

that R̂|ψ⟩=R̂|a⟩+R̂|b⟩ is such that R̂|a⟩ and R̂|b⟩ are still orthogonal if |a⟩
and |b⟩ were orthogonal, then |ψ⟩ transforms as a vector.

If two orthogonal objects belong to a vector space, then they will remain orthog-

onal under coordinate transformations. If ψ is not written in the position space

representation, then the details become modestly more complicated because the rota-

tion operator, which is only one example of a coordinate transformation, must pertain

to the coordinates of state space. As it is usually understood, n̂ indicates some spatial

rotation axis in an R3 lab frame. It does not make sense to rotate a state around

such an axis when the state is not written in the position basis. Instead, we must

generalize to the case where n̂ points in an abstract direction defined according to the

{|ak⟩} spanning states instead of the {x̂, ŷ, ẑ} basis that spans R3. Indeed, we must

generalize to the case of arbitrary coordinate changes in state space. Consideration

of rotations alone will not suffice for a rigorous demonstration.

As a thinking device, one might consider the 2D space of electron spin states

x̂ ≡ ê1 =
∣∣ ↑ 〉 , and ŷ ≡ ê2 =

∣∣ ↓ 〉 . (1.3.6)
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These states transform as spinors under rotations of the lab frame (physical space),

but they transform as vectors under rotations of state space. The state space spanned

by these eigenstates is R2. The well-known time evolution of these states is visualized

as the tip of a vector moving on the unit circle.

To formally demonstrate the vector transformation law for a vector in RN , let x

be a coordinate system in RN , and let there be a coordinate transformation

x′ = f(x) , such that x′µ = T µν x
ν . (1.3.7)

Let v=vµ be a vector in RN written in the x coordinates. It follows that

v =
n∑
k

xkêk =⇒

v = xµêµ

vµ = xµ
. (1.3.8)

v is anchored at the origin of the x coordinate system, and its tip is at the point x. In

conventional notation, the most general statement of the vector transformation law

for vectors in RN is

v′µ = vν
∂x′µ

∂xν
, (1.3.9)

where v′= v′µ is v written in the transformed x′ coordinates. Following the form of

(1.3.8), we may write

v′ =
n∑
k

x′kê′k =⇒

v′ = x′µê′µ

v′µ = x′µ
. (1.3.10)

Taking the derivative of (1.3.7) with respect to xν gives

∂x′µ

∂xν
= T µν . (1.3.11)

Substitution into (1.3.9) gives

v′µ = vνT µν . (1.3.12)

Substituting vν=xν , we obtain

v′µ = xνT µν = x′µ , (1.3.13)

where the second equality follows from (1.3.7). The result agrees with (1.3.10). There-

fore, the vector transformation law is satisfied by vectors in Rn under arbitrary coor-

dinate transformations, as is obvious since our objects were taken as vectors a priori.
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1.3.3 Vector Transformations for Ordinary States

To demonstrate the above transformation with state vectors in Hilbert space, we write

the vector transformation law as

ψ′µ = ψν
∂x′µ

∂xν
. (1.3.14)

In this case, it may not be obvious what are x and x′, or what is meant by ψ and ψ′.

Noting that a general state vector is written as

∣∣ψ〉 = N∑
k

αk
∣∣ak〉 =⇒ ψµ = αµ , 1 (1.3.15)

we see that v=
∑

k vkêk implies vk→αk and êk→|ak⟩. What we have demonstrated as

a coordinate transformation in the previous section will now be phrased as the familiar

change of basis operation. The coordinate systems x and x′ will be two different

operator eigenbases. In (1.3.15), we have implicitly used Â|ak⟩ = ak|ak⟩ to expand

ψ in the eigenbasis of Â. ψ′ will be the expansion in another eigenbasis. To rewrite

|ψ⟩ in terms of the eigenstates of some other operator B̂ such that B̂|bk⟩= bk|bk⟩, we
insert the completeness relation

1 =
N∑
j

∣∣bj〉〈bj∣∣ , (1.3.16)

into (1.3.15). This yields

∣∣ψ〉 = N∑
k

αk1
∣∣ak〉 = N∑

k

N∑
j

αk
∣∣bj〉〈bj∣∣ak〉 . (1.3.17)

Now we obtain the coordinate transformation analogue

βj =
N∑
k

αk
〈
bj
∣∣ak〉 , (1.3.18)

with which to write ∣∣ψ〉 = N∑
j

βj
∣∣bj〉 .2 (1.3.19)

1Here we have intermingled tensor and matrix index notation, as is usual in physics. If desired, one might write
αµ so that the indices balance as ψµ = αµ. In any case, (1.3.15) follows a standard physical convention in which
expansion coefficients are labeled with lower indices.
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This is the expression for what we have called v′ in the previous section. It is the same

state vector written in another eigenbasis, which is like another coordinate system in

the geometric picture of state space. This is the ψ′ appearing in (1.3.14). Switching

from summation notation to matrix multiplication notation, (1.3.18) becomes

βj = αkTjk , (1.3.20)

for the transformation matrix whose elements are Tjk= ⟨bj|ak⟩. Notice that (1.3.20)

is in the form of (1.3.7) with x′µ→ βj and x
ν→αk. Now that we have very clearly

spelled out all of the details, we may write the vector transformation law for quantum

state vectors, (1.3.14), as

ψ′j = ψk
∂βj
∂αk

. (1.3.21)

The derivative follows from (1.3.20) as

ψ′j = ψk
∂

∂αk

(
αkTjk

)
= ψkTjk . (1.3.22)

Substituting the jth coefficient from (1.3.19) on the left, and the kth coefficient from

(1.3.15), we obtain

βj = αkTjk . (1.3.23)

This is true by (1.3.20). Now we have proven that vectors in state space transform

exactly like vectors in coordinate space. Such functioning is not highly useful for QM

as practiced, but the result is valid.

1.3.4 Tensor Transformation of MCM States

For a two-index tensor, the tensor transformation law is

ψ′µν = ψκλ
∂x′µ

∂xκ
∂x′ν

∂xλ
. (1.3.24)

Using the definition ψµν= |ψ; êν⟩=ψµêν , we have already shown the that the µ index

transforms correctly. The coordinates relevant to transformations of the other index

are those specified by

ψ ∈ A ⇐⇒
∣∣ψ〉 = ∣∣ψ; 2̂〉 = ψ(xi−)

ψ ∈ H ⇐⇒
∣∣ψ〉 = ∣∣ψ; π̂〉 = ψ(xi) (1.3.25)

2The sum over k and j both go to N because change of basis operations should preserve the dimensionality of the
Hilbert space.
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ψ ∈ Ω ⇐⇒
∣∣ψ〉 = ∣∣ψ; 2̂〉 = ψ(xi+)

ψ ∈ ∅ ⇐⇒
∣∣ψ〉 = ∣∣ψ; î〉 = ψ(xi∅) .

Rather than general coordinate transformations, we will demonstrate coordinate

transformations among the physical coordinates of A, H, and Ω (and possibly ∅.)

Since the scope of transformations is limited, it will suffice to demonstrate a single

case. We will use the transformation from the π̂ coordinates to the Φ̂ coordinates so

that x is the unprimed coordinate, and x+ is the primed coordinate.

Using the transformation operator Ô (Section 1.2.1) rather than the transformation

matrix T , we have

ÔH→Ω xπ̂ = x+Φ̂ . (1.3.26)

Following the example for Ô given by (1.2.22), we obtain

ÔH→Ω xπ̂ = ÔH→Ω

(
Φ

Φ
xπ̂

)
=
π

Φ
xΦ̂ =⇒ x+ =

π

Φ
x . (1.3.27)

It follows that
∂xν+
∂xλ

=
π

Φ
δνλ , and

π

Φ
δνλ = T νλ , (1.3.28)

where T νλ is the transformation matrix between the physical coordinates in H and

those in Ω. One might write ÔH→Ω=T
ν
λ . To verify tensor transformations for MCM

states, it only remains to obtain the ψ′µν= |ψ; Φ̂⟩ state for comparison with (1.3.24):

ÔH→Ω

∣∣ψ; π̂〉 = ÔH→Ω

(
Φ

Φ

∣∣ψ〉π̂) =
Φ̂

Φ

∣∣ψ〉π =
π

Φ

∣∣ψ; Φ̂〉 . (1.3.29)

This demonstration for the ν index suffices to verify the tensor transformation law

for MCM states.

1.4 MCM Spin Spaces

The proposed structure for MCM spin state space configurations [6] is such that

states in H0 reference local elements of the unit cell or those in higher and lower

levels of aleph. It was suggested in Section 1.2.4 that χ4
± might be made complex in

the direction out of the page but mutually orthogonal and still orthogonal to xi, as in

Figure 5. In this section, we will suggest the same for x0 and x0±: the chronological

times in H, A, and Ω.

Spin-1/2 state space is canonically constructed as L2(R3)⊗C2 where L2(R3) is the

spinless state space and C2 is a 2D complex vector space. In the MCM protocol, the
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Figure 5: This figure demonstrates that we may take χ4
± as complex variables whose

real and imaginary parts span Σ± respectively.

spin-1/2 state space is constructed as

L2(R3)⊗ χ4
+{0} ⊗ χ4

−{0} . (1.4.1)

χ4
±{0} are a pair of complex numbers whose respective real and imaginary parts are the

χ4
±∈Σ± on the zeroth level of aleph. Across the unit cell, χ4

+ and χ4
− are uniquely real

and imaginary, but they are both complex when we take their mutually orthogonal

transverse continuations onto C. The spin-1 state space is canonically constructed as

L2(R3)⊗ C3 where C3 is a 3D complex vector space. In the MCM, we use

L2(R3)⊗ x0+{0} ⊗ x0{0} ⊗ x0−{0} , (1.4.2)

where Im(x0{k}) is the x
0 coordinate in Hk generating the minus sign in the {−+++}

signature of Minkowski space. x0±{k} are also understood to be complex.

For fermionic spin-2N−1
2

with N > 1, usually L2(R3) ⊗ C2N , we take the tensor

product of (1.4.1) with χ4
±{k} on other levels of aleph: however many are needed to

assemble the requisite spin degrees of freedom. This yields

L2(R3)
N−1⊗
k=0

χ4
±{k} . (1.4.3)

If allowing χ4
±{k} to become complex is found to be too complicated or needlessly

complicated, we might construct the spin-2N−1
2

state space as

L2(R3)

N−1
2⊗

k=0

(
χ4
−{k} ⊕ χ4

+{k−1}
)
⊗
(
χ4
+{k} ⊕ χ4

−{k+1}
)

, (1.4.4)
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where the χ4 variants are strictly real or imaginary, and CN is formed from N such

pairs. For N=1, this expression gives

L2(R3)⊗
(
χ4
−{0} ⊕ χ4

+{−1}
)
⊗
(
χ4
+{0} ⊕ χ4

−{1}
)

. (1.4.5)

Each parenthetical pair of strictly real or imaginary χ4
± constitutes one instance of

C. (1.4.5) generates the correct L2(R3) ⊗ C2 spin-1/2 state space without requiring

χ4
± to have simultaneous real and imaginary parts.

For bosonic spin-N , increasing N requires that we alternately add instances of x0{k}
and x0±{k} for odd or even N , but a regular recursion formula is not simply obtained.

For spin-2, we have

L2(R3)⊗ x0−{1} ⊗ x0+{0} ⊗ x0{0} ⊗ x0−{0} ⊗ x0+{−1} . (1.4.6)

For spin-3, we have

L2(R3)⊗ x0{1} ⊗ x0−{1} ⊗ x0+{0} ⊗ x0{0} ⊗ x0−{0} ⊗ x0+{−1} ⊗ x0{−1} , (1.4.7)

and so forth. It is not immediately obvious what construction might avoid allowing

x0 to become complex in the manner of (1.4.4).

In Section 13, we will show a nice application of this spin space construction toward

supersymmetry between bosons and fermions.

1.5 Maximum Action

Quantum and classical probabilities differ in that unmeasured, intermediate steps

of quantum motion between two measurements cannot be inferred from those mea-

surements.1 If a twice-measured classical ball rolls down a ramp, it has a definite

position at each instant during the motion. The motion can be inferred from either

measurement, even if one looks away while the ball is rolling. The path is the one

that minimized the action. The ball’s wavefunction does not diffuse. It is always

collapsed. For a quantum particle moving on some analogous energy landscape, the

position of the particle is not knowable while one is looking away. If a quantum ball

is observed at a location with higher energy and then at one with lower energy, and

in the absence of any intermediate measurements, it may not have followed the path

which minimized the action. Indeed, the most common interpretation of QM is that

a quantum particle does not follow any path between consecutive measurements. Be-

tween measurements, a position state is said to undergo decoherence [77] such that it

1See Sections 2-4 in [68] or Section I.2 in [76] for a concise comparison of classical and quantum probabilities.
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evolves into an increasingly diffuse superposition of eigenstates conglomerated about

the classical trajectory. Decoherence is the heatlike diffusion of probability amplitude

given by the Schrödinger equation: a complex heat equation. When one looks, the

wavefunction collapses. Contrary to the classical case, the wavefunction diffuses while

one looks away. The longer one looks away from a quantum state, the more likely it

is to be found away from the path of classical motion.

The main insight in Feynman’s formulation of non-relativistic quantum mechanics

[68] was to show that the probability amplitude for the particle having followed one

path or another is a fuzzy distribution proportional to the action along each path.

The classical trajectory minimizes the action, so the probability amplitude is greatest

along that path. The more a path fails to extremize the action, the less probable it

is that the particle might be observed along that path.

The usual formulation of QM is such that nothing other than diffusion happens

between two consecutive measurements A and B. The main purpose in writing M̂3 as

three separate operations is to hard-code into the motion stops on Ω and A between

successive H so as to increase the richness of possible dynamics. Though measure-

ments can only be made in H (the universe), the MCM postulates by construction

that there exists definite knowledge that the state was located on Ω and A between

t0 and t1 corresponding to measurements A and B. Using intuitive notation such

that t0<tΩ<tA<t1, we know that MCM states “collapse” to |ψ, tΩ; Φ̂⟩ and |ψ, tA; 2̂⟩
between measurements A and B (corresponding to states |ψ, t0; π̂0⟩ and |ψ, t1; π̂1⟩.)
Additional knowledge of the state at the intermediate times tΩ and tA is part of what

is meant when it is said that M̂3 is purposed to make things more complicated than

what is understood for ordinary operations in QM. At minimum, additional complex-

ity is manifested by three separate time evolutions H→A→Ω→H where the sign

convention for the arrow of time differs between Σ+ and Σ−. In Section 1.8.5, we will

discuss an application in which Schrödinger evolution by negative time might imple-

ment a period of wavefunction collapse following a period of wavefunction diffusion

in positive time.

It is a conjecture of the MCM that quantum and classical motions differ in the

way that they satisfy the action principle. Classical motion minimizes action, and

quantum motion maximizes it. It is taken for granted that motion along any path

totally within H must be associated with some finite action. Therefore, the path

which leaves the universe (H) to cross the unit cell is associated with infinite action.

For the purposes of physics, what is usually called finite action may be defined as

action less than some natural number of finite action increments: nℏ with n∈N, for
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example. In the language of fractional distance analysis (Section 1.6) [2], a natural

number of units of action is called an action in the neighborhood of the origin. By

default, action in the neighborhood of infinity remains to characterize motion

across the unit cell. The neighborhood of infinity may be characterized as the set of

numbers in the form ∞̂± b with 0<b<n for some n∈N. Numbers in the form ∞̂− b
are finite numbers because they are less than infinity. (Notations for ∞̂ are developed

in Section 1.6 and [2].) Thus, one is able to use such numbers to characterize motion

across the unit cell without violating a physical convention prohibiting infinite or

transfinite quantities of action. Action greater than infinity would allow superluminal

motions, etc. Many properties of action in the neighborhood of infinity remain to be

determined.

Any action in the neighborhood of infinity will be one which takes the state out

of H. Such an action makes an immediate appeal to the correspondence principle:

when action is large compared to ℏ, motion should approach the classical motion. In

other words, large action impedes the diffusion of the wavefunction. Thus, knowledge

regarding states’ definite location on the Ω- and A-branes between sequential H-
branes is supported by the correspondence principle. Classical motion is characterized

by definite knowledge of the path between A and B. In the example of the classical

ball on a ramp, the action of the ball’s motion is always large relative to ℏ due to

the ball’s macro-scale mass. In QM, one often considers large action as the limit in

which ℏ→ 0, but here we will consider S → ∞̂. The arithmetic of numbers in the

neighborhood of infinity [2] is well suited to the calculus of variations with variations

in the form S=∞̂± δS. To the contrary, S→∞ is a prime example of the “infinities

that blocked earlier theories” [70]. S=∞ is a mathematical non-starter for calculus,

and the study of maximum action has been historically impossible for this reason. For

instance, Hamilton’s stationary action principle requires any action extremum, big or

small, but Feynman’s thesis was titled “The Principle of Least Action in Quantum

Mechanics” because greatest action was a non-starter at that time. A principle of

greatest action in QM is presented here as a thesis awaiting completion, i.e.: the

equations of motion given by M̂3 should satisfy the greatest action principle.

In the ℏ→0 limit, or in the S→∞̂ limit, one obtains a classical motion identically.

Identical classical motion during transit of the unit cell is not consistent with the

structure of the MCM because KKT requires that the 5D Ricci tensor RAB must

vanish in the bulk of Σ±. If a particle with mass and energy follows a classical path

across Σ±, then R±
AB ̸=0 and the structure of the MCM will seem to collapse in self-

contradiction.1 Thus, it is required that a quantum of matter-energy should not be
1The full restrictions of KKT require in-depth analysis, as in Section 17. It is the preliminary understanding that

61



Next Steps and the Way Forward in the Modified Cosmological Model

found with a definite position inside the bulk, and an appeal is made to finite action

in the neighborhood of infinity. Unlike S=∞̂, finite action in the form ∞̂ − δS with

δS > 0 may not require total wavefunction collapse within the bulk, so the utility

of such an action toward preserving the structure of KKT must be examined. A

pseudo-classical path of totally classical motion would be the one along which S=∞̂.

This is an extremum of the action, and motion along this singular path cannot be

quantum. However, since measurements are not made in the bulk, we may send a

particle across the unit cell by all paths whose actions are S = ∞̂ − δS. Quantum

states may transit the unit cell without taking any one explicit path or forcing a non-

vanishing Ricci tensor. In this case, it will remain to demonstrate that a non-zero

probability amplitude in the bulk of Σ± is still consistent with an RAB=0 solution.

The existence of non-trivial RAB=0 solutions such as gravitational radiation sup-

ports the idea that a probability density for motion near the infinite action path can

be consistent with RAB =0. One might even connect the principle of maximum ac-

tion to states passing from one H-brane to another as gravitational waves written as

perturbations in the 5D KKT metric. Furthermore, definite location on the Ω- and

A-branes must also be reconciled with the vanishing Ricci tensor. If |ψ, tΩ; Φ̂⟩ and
|ψ, tA; 2̂⟩ are not position eigenstates, then we might appeal to the same indetermi-

nacy of the path in the bulk to avoid a Ricci tensor violation. If they are position

eigenstates, or if any other issue arises, one might preserve KKT in the bulk of Σ±

by separating Ω and A as unincluded boundaries, as H is an unincluded boundary.

We will say more about that possibility in Section 4. Specifically, we will discuss the

case for colocating Ω and A at ∅.

1.6 Fractional Distance and Levels of Aleph

The labeled branes of the unit cell are separated by finite distance in the abstract

coordinates: χA as opposed to xµ. To avoid mutual interactions, and specifically

to avoid gravitation between branes, early work in the MCM sought to place A, H,
and Ω at infinite distances with respect to one another. Due to the infinite range of

the gravitational force, finite physical distance between branes would suggest grav-

itational collapse of the overall lattice of all unit cells. On the other hand, infinite

distance is said to be unphysical, so one exciting utility for fractional distance anal-

ysis [2] is that the gravitational interaction goes to zero across any finite distance in

the neighborhood of infinity. Indeed, the MCM requirement for branes separated by

analytically tractable distances across which gravitation goes to zero was the progeni-

position eigenstates for massive particles in the bulk of Σ± are not allowed.
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tor of the ideation which led to the discovery of fractional distance and an interesting

corollary regarding the Riemann hypothesis [2, 47–49].

1.6.1 Infinity Hat

The main output of the inquiry into fractional distance was a new algebraic object ∞̂.

It is called algebraic infinity to distinguish it from ∞, called geometric infinity.

Informally, ∞̂ was already in wide use in physics before it was formalized in [2]. In

QFT for example, one often writes the integral over all of spacetime as∫
d4x =

∫
d3x

∫
dx0 = V T , (1.6.1)

where V is the volume of space, and T is an infinite amount of time which can cancel

with another T somewhere else via T/T = 1. This common physical method for

dealing with infinity is replicated with T =∞̂ and the arithmetic axioms for numbers

in the neighborhood of infinity [2]. The main difference between ∞̂ and ∞ is that

the latter has properties of additive and multiplicative absorption

x ∈ R =⇒

 x+∞ =∞

x×∞ =∞
, (1.6.2)

but ∞̂ does not have those properties. Its main algebraic properties are

∞̂ − ∞̂ = 0

∞̂
∞̂

=
∞̂
∞

= 1 (1.6.3)

0× ∞̂ = 0

|∞̂| =∞ .

More details regarding the properties and arithmetic of ∞̂ may be found in [2].

There is a theorem in [2] (Main Theorem 3.2.6) proving that some x ∈ R are

greater than any n ∈ N. Consequently, there exist some x ∈ R having greater than

zero fractional distance with respect to infinity. The number ℵX defined by

∀X ∈ [0, 1) ∃ℵX ∈ R , such that
ℵX
∞

= X , (1.6.4)

is said to have fractional distance X (with respect to infinity) because ℵX/∞=X .
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The subset of R containing numbers having fractional distance X is labeled RX , i.e.:

x ∈ RX =⇒ x

∞
= X . (1.6.5)

Building on these definitions, we may write

R0 = {x
∣∣ − n < x < n , n ∈ N }

RX =
{
ℵX + b

∣∣ |b| ∈ R0 } (1.6.6)

R1 =
{
∞̂ − b

∣∣ b ∈ R0 } .1

R0 is called the neighborhood of the origin. As the set of all real numbers less than

some natural number (and greater than some negative natural number), every x∈R0

has zero fractional distance, and ℵ0=0. When X ∈(0, 1), RX is called an intermediate

neighborhood of infinity. R1 is called the maximal neighborhood of infinity. There is

more than one real number in each neighborhood because

ℵX
∞

= X

b

∞
= 0

 =⇒ ℵX + b

∞
=
ℵX
∞

+
b

∞
= X + 0 = X . (1.6.7)

The positive-definite, arithmatic neighborhood of infinity is

R̂ =
⋃

X∈(0,1]

RX . (1.6.8)

We will discuss additional numbers in the neighborhood of infinity called non-arithmatic

numbers [2] in Section 1.6.6. The big and little parts of a real number are

Big(ℵX + b) = ℵX , and Lit(ℵX + b) = b . (1.6.9)

1.6.2 Levels of Aleph

Prior to the invention of ∞̂ = ℵ1, levels of aleph were introduced in [71]. The

theoretical framework for levels of aleph is the area of the MCM in which the most

technical progress has been made. Levels of aleph are now associated with successive

neighborhoods of fractional distance.

Each unit cell is said to be on its own level of aleph. Recalling that we have

placed A at χ4
−=−φ, H at limχ4

±→0, and Ω at χ4
+=Φ, a first approximation to a

1Notation in [2] was such that R0 did not include negative numbers.
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Figure 6: Relative to some absolute origin of R (not pictured), the origin of coordi-
nates O(π̂n) on the nth level of aleph is placed at ℵX , which is the midpoint

of the interval representation of RX . After operation with M̂3, the observer
resides on a higher level of aleph whose origin of coordinates is placed at
ℵY . FX is an immeasurable number (non-arithmatic), as in Section 1.6.6.

formal definition for each unit cell being on its own level of aleph is that there exists

a bijection between some RX \ℵX (physical coordinates) and the chirological interval

(−φ, 0)∪(0,Φ) (abstract coordinates) around a corresponding instance of H. Since

χ4
± = 0 is not defined, bijection requires that we remove one number from the RX

codomain. By removing ℵX and choosing b>0, one obtains two separate bijections:

one between ℵX − b and χ4
−, and one between ℵX + b and χ4

+, as in Figure 6. When

successive H-branes are on successive levels of aleph, any two instances of H are

automatically separated by a physical distance greater than any natural number of

meters.1 This follows because any n∈N and (ℵX + b)∈RX are such that (ℵX + b+n)

is still in RX . Therefore, the forward H-brane must be advanced in the χ4 direction

by greater than a natural number of physical distance units.

In the pure mathematical analysis of fractional distance appearing in [2], the metric

along R is taken as the Euclidean metric. However, the application in the MCM

for successive levels of aleph to exist on different scales requires a metric such that

len(RX ) ̸=len(RY) when X ̸= Y . Aside from the irrational, non-unit magnitude scale

factor 2πΦ inherent to M̂3|ψ; π̂0⟩ = 2πΦ|ψ; π̂1⟩, we might use the ∞̂ notation to

implement a change of scale such that the length of one neighborhood is infinitely

1There does not exist a clear requirement for an x4± physical coordinate, but we will discuss the case.

65



Next Steps and the Way Forward in the Modified Cosmological Model

great or small with respect to another. This additional scale would be implicit in the

exponent on π̂k that enumerates levels of aleph.

1.6.3 Gravitational Potential Energy

One way to avoid gravitation between branes is to suppose that there does not exist

any physical counterpart to the abstract χ4 coordinate on the fifth dimension. If

the gravitational potential energy U ̸=U(χ4), then there is no Newtonian gravitation

across Σ±. However, it may be desirable to define a physical distance between branes

in addition to the abstract distance. In that case, consider branes H1 and H2 as

masses m1 and m2 separated by a real-valued distance r such that |r| ̸∈ R0. Let

r=ℵX r̂ with X >0 so the gravitational potential energy is

U(r) = −Gm1m2

ℵX
= − 1

X
Gm1m2

∞̂
=

0

X
= 0 . (1.6.10)

It follows that H-branes will not mutually gravitate if G, m1, and m2 remain in the

neighborhood of the origin.

We have not yet considered that a change of scale might refer to quantities other

than the distances in the metric. If the scale of the level of aleph associated with

H2 is such that m2 ̸∈R0, then a non-zero gravitational energy will result, even across

separations in the neighborhood of infinity. Given m2=ℵY , we have

U(r) = −Gm1ℵY
ℵX

= −Gm1Y
X

. (1.6.11)

Mass in the neighborhood of infinity must be associated with curvature of spacetime

in the neighborhood of infinity, indicating a likely singularity. If levels of aleph change

the mass scale, one might conceive of an adjacent higher level of aleph as existing

within, rather than beyond, a ∅ singularity separating unit cells.

If non-zero gravitational energy is present between branes, we might consider the

spin-1/2 matter particle interpretation of MCM universes to make an appeal to Pauli

exclusion degeneracy pressure. This pressure will offset gravitational collapse, and

it may be important in the lattice whose branes are the standard model fermions.

A simpler explanation for avoiding gravitational collapse notes that the Newtonian

force still vanishes for m2 in the neighborhood of infinity if one assumes an intuitive

arithmetic:

F =
Gm1m2

r2
r̂ =

Gm1ℵY
ℵ2X

r̂ ∝ 1

∞̂
. (1.6.12)

To avoid a vanishing Newtonian force, one would have to scale Newton’s constant G
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to the higher level of aleph as well. In that case, m1 is the only remaining quantity

(aside from r̂) on the lower level of aleph, and F mimics the force on an infinitesimal

mass. In effect, we have rescaled the big and little parts of a real number as a little

part and an infinitesimal part. While infinitesimal masses are not used in Newtonian

gravitation, only infinitesimal test masses follow the geodesics usually derived in GR.

All other masses’ backreaction will push them away from stationary geodesics.

1.6.4 Arithmetic in the Neighborhood of Infinity

The well-known rules of arithmetic for numbers in the neighborhood of the origin are

such that multiplication and division are mutually associative, e.g.:

x, y, z ∈ R0 =⇒ x×
(y
z

)
=
(x
z

)
× y . (1.6.13)

Arithmetic for ∞̂ and other numbers with non-vanishing fractional distance requires

that division and multiplication are not mutually associative in all cases [2], e.g.:

x, y, z ∈ R ≠⇒ x×
(y
z

)
=
(x
z

)
× y . (1.6.14)

Consequently, division is not identically multiplication by an inverse. Rather, divi-

sion is a separate operation. Under the usual rules for associative arithmetic in the

neighborhood of the origin, we might write for some b ̸=0

ℵX + b = X ∞̂+ b
∞̂
∞̂

=

(
X +

b

∞̂

)
∞̂ = (X + 0) ∞̂ = ℵX . (1.6.15)

This implies b=0, a contradiction. When associativity is not taken for granted, the

manipulation in (1.6.15) stalls at the second step. It is not possible to pull out a

factor of ∞̂ to form the parenthetical expression

X ∞̂+ b
∞̂
∞̂

−→
(
X +

b

∞̂

)
∞̂ , (1.6.16)

because that makes an appeal to associativity, i.e.:

∞̂
∞̂
× 1 =

1

∞̂
× ∞̂ . (1.6.17)

The contradiction in (1.6.15) is avoided because (1.6.14) says that (1.6.17) is not

implied. If associativity were allowed, we might manipulate (1.6.17) as

1 =
∞̂
∞̂

= ∞̂ × 1

∞̂
= ∞̂ × 0 = 0 . (1.6.18)
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Assuming such associativity has produced another contradiction.

In the neighborhood of the origin, arithmetic operations are as they are usually

understood. In (1.6.10), we were able to pull Gm1m2/X out of the fraction with ∞̂
because G,m1,m2,X ∈ R0. Since M̂3 moves states across levels of aleph, a formal

equation for M̂3 may exceed that which can be stated using arithmetic only in the

neighborhood of the origin. Acknowledging that Dirac kets are only a concise notation

for states’ more complicated analytical representations, the requirement that M̂3

changes the level of aleph may require that the analytical expression for M̂3|ψ; π̂0⟩=
c|ψ; π̂1⟩ diverges in the neighborhood of the origin. This would follow from infinite

relative scale between successive unit cells.

1.6.5 Reference Frames on Levels of Aleph

The M̂3 operator sends ψ to the next higher level of aleph. Although that opera-

tor is non-unitary, the probability interpretation is restored by a translation of the

observer’s frame of reference onto the corresponding level of aleph, or into the cor-

responding unit cell with a given scale. Having better defined what a level of aleph

is, now we may better clarify the what is meant by translation onto a higher level of

aleph.

The constants 2, π, and Φ that we have used in M̂3|ψ; π̂0⟩=2πΦ|ψ; π̂1⟩ all belong
to R0. Assuming |ψ; π̂0⟩ is valued in the neighborhood of the origin (this follows

from ⟨ψ|ψ⟩ = 1 when we make accommodations for C), multiplication by another

number in the neighborhood of the origin such as 2πΦ cannot yield a number in the

neighborhood of infinity. The product of any two natural numbers is still less than

another natural number, so the non-unit scalar constant 2πΦ is not sufficient to alter

the fractional distance of |ψ; π̂0⟩. Instead, the exponent on π̂ should denote the scale

of a given level of aleph relative to that in H0 labeled with π̂0.

If the unit cell of measurement A is in the RX neighborhood, then the unit cell of

measurement B belongs to the sequentially greater RY neighborhood. Since X and

Y belong to a continuum [0, 1)⊂ R0, there is some nuance which must be resolved

before we may label sequential neighborhoods as integer-valued levels of aleph. The

countable enumeration of an uncountable set is not possible, in general.1 The resolu-

tion to this problem comes through a physical treatment of the observer’s reference

frame. In general, the observer only knows about H and has no way to measure χ4

relative to some absolute origin O ̸∈ H. In the absence of any information that might

be used to calculate an absolute distance fraction X , we introduce a convention such

1Treatment of paradoxical issues pertaining to the countable enumeration of an uncountable set may be found in
Section 7 of [2].
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that the observer’s current level of aleph is always π̂0. The normalization of all other

quantities against this convention is what is meant by translation of the observer’s

frame of reference onto a new level of aleph. When the observer is on a given level of

aleph corresponding to some RX neighborhood, the observer’s origin of coordinates

is placed at ℵX . The level of aleph corresponding to the local RX neighborhood is

the neighborhood of the origin in the observer’s coordinates (Figure 6). After oper-

ation with M̂3, the observer at measurement B must redefine his coordinate system

so that measurement A was taken on the π̂−1 level of aleph in a lower neighborhood

of fractional distance. When M̂3 sends a state to the next higher level, there is no

requirement to determine a Y that is the least real number greater than X .1 Thus, we

avoid any problem pertaining to the paradoxical enumeration of uncountable objects

by countable integers because distance fractions such as X and Y are not observable.

While an observer has no way to calculate X or Y relative to an absolute ori-

gin (which physics suggests should not exist), he does have information about the

number of measurements he has taken. Such measurements are easily and properly

labeled with integers. When we introduce a convention such that the level of aleph

is regularized by defining the observer’s origin of lab coordinates at the ℵX specified

by π̂n (Figure 6), the scale of those coordinates must also be regularized so that the

probability interpretation of the wavefunction is restored after non-unitary evolution.

Redefinition of the observer’s coordinate system on the higher level of aleph is not

only a translation, it is also a change of scale. These mechanisms and their details

require further clarifications.2

1.6.6 Immeasurable Numbers

Another discovery in fractional distance analysis was the set F containing all immea-

surable real numbers, also called non-arithmatic real numbers. Given

X ̸= Y =⇒ RX ∩ RY = ∅ , (1.6.19)

meaning different neighborhoods of fractional distance do not intersect, the interval

R = (−∞,∞) can be simply connected only if there exist real numbers not in any

neighborhood of fractional distance. These are the non-arithmatic, immeasurable

numbers FX ∈ F such that FX is the least upper bound of the open set RX . Pre-

1Although real analysis has suggested previously that there cannot exist a least real number greater than another
real number (or a least positive real number), fractional distance analysis seems to suggest that such numbers may
exist. These issues are treated in Section 7 of [2].

2Normalization of the observer’s new frame in RX back to R0 is such that numbers are altered as (ℵX ± b)→±b.
The positive-definite property of x∈RX is lost. Therefore, we might associate a reversed time arrow along χ4

− with the
property of negative numbers to increase in magnitude in the opposite direction to the increase of positive numbers.
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viously in the history of analysis, irrational numbers were introduced to complete

intervals of rationals, and the immeasurables are introduced for the same purpose.

Immeasurables complete the disconnected neighborhoods of infinity in the way that

irrationals complete the disconnected rationals [2].

If the various piecewise χ4
± and χ4

∅ are concatenated to make a smooth curve from

Hk to Hk+1 in one affine parameter, call it χ4, then the location of ∅ along that

curve is given by some χ4 ∈F, as in Figure 6 (Section 1.6.2). In other words, if the

neighborhood of χ4 around Hk is parameterized as RX , then the higher level of aleph

on the far side of ∅ is a neighborhood of greater fractional distance RY such that

Y > X . RX spans the interval of χ4 on one level of aleph, and RY spans it on the

next level (Figure 6). In the χ4 parameterization of the path between two H-branes,
∅ becomes a topological obstruction because χ4 ∈ F is a non-arithmatic number.1

Arithmetic is not defined in the usual way for such numbers, and the value χ4=FX

is a hard-coded topological boundary condition. Waves that time evolve in χ4 cannot

be simply transmitted through χ4=FX . In this way, ∅ is similar to the topological

obstruction at H. H and ∅ must function as topological obstructions to separate the

KK theories in Σ±. Recall that the MCM introduces two disconnected 5D metrics,

each containing an EM potential 4-vector and a dual 4-vector. The extra pair of

potential vectors is meant to avoid a requirement of KKT that all solutions must be

ones in which the EM field strength tensor vanishes. The MCM workaround requires

the mutual topological isolation of Σ±. This is achieved with H placed at undefined

χ4
±=0 and ∅ placed at some FX ∈F for which normal arithmetic is not defined.

It has been supposed that the topological discrepancy between the Σ± metric

signatures might be assigned to a phase acquired in a process akin to specular optical

reflection from a singularity at ∅ [72]. Phase shifted optical reflection would be

associated with gravitational transmission through a black hole/white hole pair in the

∅-brane.2 Overall, the manner of forward connection from Σ+ to Σ− is prominent

among the unresolved issues in the MCM, and in fractional distance analysis. To wit,

it was not uniquely determined in [2] whether F is a set of disconnected points or

disconnected intervals. It was assumed for simplicity that the FX are single numbers,

but they may be intervals of numbers. In an exactly congruent problem, the MCM has

not yet determined whether A and Ω are separated by an interval, a point, or if their

union is the object that we have labeled ∅.3 Referring again to Figure 6, the thinking

1Non-arithmatic numbers are motivated, defined, and discussed in Section 7.5 of [2].
2In the physical metric, ∅ will be associated with the high curvature limits of de Sitter and anti-de Sitter space

and must, therefore, be a topological singularity in the physical coordinates with infinite curvature or curvature in
the neighborhood of infinity.

3In the convention where the union of A and Ω is identified with ∅, these branes would become unincluded
boundaries of Σ±.
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that branes should not mutually gravitate suggests that A and Ω should lie at (or in)

FX relative to H, but it is not determined if an interval should separate them. Such

open questions regarding Ω, ∅, and A are treated independently in Section 4.

Strong congruence between fractional distance analysis and the MCM is further

evidence that the latter is physically robust. In pure mathematical analysis [2], a

paradox was suggested such that there should exist a least positive real number, or a

least real number greater than another real number [2]. In the arena of physics, there

is no such paradox because the absence of an absolute origin makes it impossible

for an observer to compute physically meaningful absolute distance fractions. The

absence of any absolute reference frame has been known at least since the time of

Galileo. (Coordinate transformations between arbitrary origins of coordinates are

called Galilean transformations.) The lack of any absolute reference frame is integral

to Einstein’s theory of relativistic Lorentz transformations as well. Even questions

about Mach’s principle that escape description in GR refer to the same lack of an

absolute reference frame [78]. Furthermore, the mathematical analysis of fractional

distance in [2] left an open question regarding whether successive neighborhoods of

fractional distance are separated by single numbers or intervals of numbers. This

question is mirrored perfectly in the issue of the forward connection of Σ+ to Σ− on a

higher level of aleph. The main qualitative issues raised in the physical analysis were

the main quantitative issues discovered in the mathematical analysis. This identical

overlap between physics and an only-tangentially related exercise in real analysis is

good evidence that the MCM is a robust physical theory. The prior precedent of

uncanny historical overlap between physics and analysis is good evidence that M̂3

can be formalized at the level suggested in this paper.

1.6.7 The Big Exponential Function

Quantum states are most often represented as sums of exponential functions. The

following modification to the exponential function was posed as an analytical structure

on which one might differentiate representations of |ψ; π̂k⟩ and |ψ; π̂j⟩ when j ̸= k.

There is no such ready structure in the usual expression for the exponential function.

In [71], we posed

eikx =
∞∑
n=0

(
ikx
)n

n!
=

ℵ0∑
0

(
ikx
)n

n!
+

ℵ∞∑
ℵ0

(
ikx
)n

n!
+

ℵ∞∞∑
ℵ∞

(
ikx
)n

n!
+ . . . , (1.6.20)

where each sum over aleph pertains to a level of aleph. This early modification to

ex has been formalized subsequently as the big exponential function Ex [2], and,
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in the current notation, ex retains it usual meaning as a sum over n∈N. Fractional

distance is such that every natural number belongs to the neighborhood of the origin,

so it was supposed that the infinite sum in the exponential function might be expanded

as Ex to include more than a natural number of terms. Given N0 ≡ N ⊂ R0, we

define a new set N∞ consisting of the natural numbers and their analogues in every

neighborhood of fractional distance. Using N∞, the big exponential function is

Eikx =
∑
n∈N∞

(
ikx
)n

n!
=
∑
n∈N0

(
ikx
)n

n!
+
∑
n∈NX1

(
ikx
)n

n!
+
∑
n∈NX2

(
ikx
)n

n!
+ . . . . (1.6.21)

By the property

x ∈ R0

y ∈ RY

Y > 0

 =⇒ x

y
= 0 , (1.6.22)

given in [2], it follows that kx in the neighborhood of the origin implies that all but

the first sum on the right side of (1.6.20) will vanish. In (1.6.21), the sums over n ̸∈N0

vanish for the same reason when kx ∈ R0. It is proven in [2] (Theorem 6.2.5) that

Ex = ex when x ∈ R0, but the big exponential function is not identically equal to

ex when kx ̸∈ R0. Along with the new rules for arithmetic in the neighborhood of

infinity [2], this function provides a tool for new methods in physics.

Spacelike and timelike coordinate separations often appear in the argument of

the exponential function. The expression exp{i[k·(x2−x1) − ω(t2−t1)]} is common

enough. Therefore, one utility for Ex should be for the specification of wavefunctions

on different levels of aleph such that ∆x and ∆t, or their chirological analogues, should

be quantities with non-vanishing fractional distance. Given a wavefunction |ψ, π̂n⟩,
the π̂n object might act as a window function—a Kronecker δ analogue—selecting

only the sum over the NX corresponding to the nth level of aleph. In a normalized

convention such that the observer always sees himself on π̂0=1̂, the big exponential

function will always reduce to the regular exponential function if ∆x,∆t∈R0. This

will always be the case for physics confined to H. However, the MCM seeks to expand

the realm of physics beyond H, and beyond the local level of aleph. It is hoped that

certain quantum effects may be attributed to tunneling or interference effects across

levels of aleph. The big exponential function is purposed as a scaffold on which to

develop analytical statements of such effects. Other use cases for levels of aleph via

the big exponential function include the following.

� All methods for anharmonic potentials in QFT rely on series decompositions of
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integrals of exponential functions. Decomposition by big rather than little expo-

nential functions may be a useful tool for tackling problems which are currently

perceived as intractable.

� The Feynman rules for constructing amplitudes from diagrams might be altered

so that a diagram’s elements pertain to levels of aleph. In some intuitive way, one

would associate QED’s enumerated loop corrections with levels of aleph leading

to an enhanced understanding of the theory.

� Quantum theory’s well-known perturbative powers series in the fine structure

constant may be better interpreted as contributions from different levels of aleph.

Each αn term in a power series would come from the π̂±n levels measured relative

to the observer’s location on π̂0.

� Levels of aleph were integral to solving the Riemann hypothesis. The architecture

[49] of the later direct contradictions [2, 47, 48, 79] was totally reliant on odd

and even levels of aleph. In the picture described by Figure 6, the even levels

of aleph are the coordinate systems attached to Hk. The odd levels refer to

another coordinate systems whose origin is in ∅. The latter would be used to

stitch together the even levels, as in Section 1.6.8.

� Though levels of aleph were not cited in computing the characteristic length

scale 10−4m (Section 15) [3], the general idea was that contributions from other

levels of aleph would alter the expected Fnetẑ = 0⃗ balance of Newtonian forces

for a spinning disc in H0.

1.6.8 A Practical Implementation of Transfinite Numbers

The lack of arithmetic for non-arithmatic numbers makes any parameterization of

the unit cell including such numbers inherently cumbersome. Since the observer has

no way to measure absolute fractional distance, and since coordinates should always

be chosen to simplify physics as much as possible, one would seek a parameterization

of the path between successive H-branes which does not rely on x ∈ F. Rather

than parameterizing the total extent of χ4 in one simply connected interval of R (up

to a complex phase), we may use the transfinite continuation of R, call it T, and
a piecewise connected parameter. (The transfinitely continued real number line T
follows from the definitions of {R0,RX ,R1} extended to the case of X > 1.) In the

suggested transfinite parameterization, ∅ lies at ∞̂ relative to an origin in Hk, and

sequential H-branes are separated by two levels of aleph. If we assume for simplicity

that Ω and A are colocated at ∅, Hk+2 lies at 2∞̂, etc. The scheme by which one
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would execute the parameterization as χ4∈T is outlined in Figures 7-9. The bulk of

successive Σ± will be doubly charted in coordinates whose origins are in the successive

bounding branes. Following an example from real analysis in which the 2-sphere is

covered by a double charting of coordinates whose origins are at its two opposite

poles, coordinates anchored in H0 in the form χ4
+{0} = 0̂ + b stretch nearly to Ω.1

(The subscript {k} on χ4
±{k} labels the level of aleph.) F0 is the least upper bound of

R0={x | 0̂+b for |b|<n∈N}, so we say the 0̂+b chart stretches nearly to Ω located at

χ4=F0 in the simply connected parameter. Similarly, coordinates measured relative

to Ω in the form χ4
+{1} = ∞̂ − b will stretch nearly back to H0. If Ω and A are

colocated, then the coordinates anchored at A∪Ω≡∅ will also stretch almost to H2

as χ4
−{1}=∞̂+ b. In terms of χ4

∅ coordinates, we would write

χ4
+{1} ∪ χ4

−{1} = χ4
∅{1} . (1.6.23)

The χ4
−{1} will overlap with χ4

−{2}=2∞̂ − b, and so on. The χ4
∅{k+1} on odd levels of

aleph will double chart the Σ± spanned by χ4
+{k} and χ4

−{k+2}. This scheme for dou-

ble charting between the neighborhood of the origin and the maximal neighborhood

infinity makes it possible for us to avoid any reference to the FX numbers for which

normal arithmetic is not defined.

Contrary to the lack of arithmetic defined for x ∈ F, we have already defined a

complete system of transfinite arithmetic for x=n∞̂ when n ∈ N [2]. The transfinite

continuation should permit a representation of the translation of an observer’s refer-

ence frame onto a higher level of aleph as nothing but a Galilean transformation (up to

a change of scale.) After operating with M̂3 to leave the χ4
±{0}=0̂±b coordinates and

arrive in the χ4
±{1}=2∞̂± b coordinates, a coordinate system in the form χ4

{1}=0̂± b
is easily recovered by subtracting 2∞̂.2 Furthermore, this scheme for χ4∈T restores

the original notion of odd and even levels of aleph [1, 49]. To distinguish odd and

even levels of aleph, namely, conventions would be amended such that ∅ is one level

higher than H0 and the forward H-brane is two levels higher. This is intuitive when

the coordinates on the π̂n level of aleph are such that χ4
{n} = n∞̂ ± b. The oddness

or evenness of the level of aleph is that of the iterator n.

1The hat on 0̂ is a convenient notation demonstrating that one may measure distance relative to any origin of
coordinates. It is a convention to place zero at the origin, but one may measure relative to any other number, such
as ∞̂.

2Using numbers in the neighborhood of infinity, this section necessarily describes physical parameterizations
along χ4. The abstract coordinates are introduced so that we may describe distances along χ4 with numbers in
the neighborhood of the origin. So, to the extent that we have suggested that infinite relative scale between unit
cells should be encoded on the k quantum number in |ψ; π̂k⟩, the Galilean transformation subtracting 2∞̂ might be

associated with subtracting 2π in the abstract coordinates. This might be further associated with the 2π in M̂3’s
returned value 2πΦ.
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Figure 7: This figure shows the structure of R as developed in [2]. (The negative
branch of R is omitted.) Due to the lack of standard arithmetic operations
for FX ∈F, it is desirable that the path between successive H-branes should
be parameterized without reference to FX .

Figure 8: This figure shows the real number line separated between the neighborhood
of the origin R0 and the maximal neighborhood of infinity R1. Relating to
the objects of Figure 7, the neighborhood of the origin R0 terminates at F0.
Since it is not possible to do arithmetic with non-arithmatic numbers such
as F0 [2], we should introduce a coordinate chart that does not reference
them. We propose to introduce a coordinate transformation such that, for
instance, every x= b∈R0 is associated with some x′=(∞̂ − b)∈R1, as in
Figure 9.

Figure 9: Even levels of aleph are sewn together with odd levels, and vice versa, as
in [49]. The midpoint of the least intermediate neighborhood of fractional
distance is labeled ℵY . In the scheme where Ω and A are colocated with ∅,
an intractable χ4=F0 at the Σ+→Σ− step of M̂3 is made tractable by a
coordinate transformation in which F0→∞̂. Arithmetic, and by extension
calculus, is well defined for ∞̂. It is proposed that the 5D bulk of Σ+

0 should
be doubly charted in R0 and R1 so that no reference is made to any x∈F
during H→H evolution under M̂3. In this figure’s parameterization such
that χ4 ∈T, the non-arithmatic FX are replaced by odd integer multiples
of ∞̂, and all ℵX are replaced by even integer multiples.
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Going beyond infinity is not allowed in real analysis, but neither is going onto

the complex plane, and that is standard in physics. Going beyond infinity into T is

only the longitudinal continuation of R in the way that going onto C is the transverse

continuation. All the tools of complex analysis have the highest utility in physics, and

we suggest that any tools developed in the transfinite analysis of fractional distance

are likely to be equally useful for physics.

1.6.9 Further Considerations for Even and Odd Levels of Aleph

Consider the limit of ℵx as x goes to 0. For any x>0, this number has non-vanishing

fractional distance and must be greater than any n∈N. From this we conclude

lim
x→0
ℵx ̸= 0 . (1.6.24)

Since F0 is defined to be the least real number greater than every natural number, a

reasonable supposition is

lim
x→0
ℵx = F0 . (1.6.25)

If we were to take ℵ0 = F0 rather than the stated ℵ0 = 0, then every other FX

should also be some ℵX . Thus, we might suppose that the piecewise double charting

suggested in Figure 9 is naturally as in Figure 10. However, the double charting of

intervals in two simultaneous neighborhoods of infinity RX ̸=RY is such that

x ∈ RX ,RY =⇒ x

∞
= X , and

x

∞
= Y . (1.6.26)

To resolve this contradiction, we might assign RY as an odd level of aleph and say

that all odd {ℵY} are the immeasurable FX ∈ F. In this convention, the neighbor-

hoods of fractional distance associated with successive H-branes are even levels. The

non-arithmatic property would be associated to the separation of X and Y by a

hypothetical least positive real number as∣∣Y − X ∣∣ = undefined . (1.6.27)

However, the Cauchy sequences definition of R [2] might suggest that |Y − X |= 0,

so further analysis is required. The non-arithmatic, odd neighborhoods of fractional

distance would be distinguished from the open, even neighborhoods by topological

closure. We will not use this convention in the present book. It is mentioned mainly

because ℵ0=0 was given in the main paper on fractional distance analysis [2] while

that equality may not be supported by the ε–δ formalism, and because ℵ0 = F0

supports a desirable construction for even and odd levels of aleph.
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Figure 10: Compare this figure to Figures 7 and 9. In this scheme, odd levels of
aleph are associated with immeasurable numbers. The connectedness of
R would require that odd neighborhoods are topologically closed because
the even neighborhoods are open.

As a consequence of this scheme for odd and even levels of aleph, one might suppose

that the non-definition of χ4
±=0 is better characterized by the location of theH-brane

at a non-arithmatic value of χ4 in the reversed convention for choosing even and odd.

1.7 Operators, States, and the Schrödinger Equation

1.7.1 M̂3 as a Translation Operator

The usual quantum theory implements time evolution between measurements as dif-

fusion (or oscillation) followed by collapse. The MCM supplements the usual theory

of successive measurements in H with intermediate steps at Ω and A. Therefore,

given M̂3=
∏

λ M̂λ, one might take M̂λ as an ordinary translation operator Ĵλ such

that we would have the following for λ∈{+,−,∅}:

M̂λ ≡ Ĵλ(∆χ4
λ) = cλ exp

{
−
ip̂λ∆χ

4
λ

ℏ

}
, with p̂λ = −iℏ∂λ . (1.7.1)

(See Appendix B for a review of the translation operator Ĵ .) In this way, M̂3 would

send states across the unit cell as

M̂3
∣∣ψ, π̂0

〉
= Ĵ− Ĵ∅ Ĵ+

∣∣ψ; π̂0
〉

= π Ĵ− Ĵ∅
∣∣ψ; Φ̂0

〉
(1.7.2)

= Φπ Ĵ−
∣∣ψ; 2̂1〉

= 2πΦ
∣∣ψ; π̂1

〉
.

There are a number of problems with this definition for M̂3. These deficiencies provide

guidance toward a better analytical representation.
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� The unit cell is such that for H located at limχ4
±→0, we have A at χ4

−=−φ and

Ω at χ4
+=Φ. This allows us to define appropriate Ĵλ with ∆χ4

+=Φ and ∆χ4
−=φ.

(The latter is supplemented by an understanding that ∆χ4
− is defined according

to the scale of the forward level of aleph, and that it must increase in the opposite

direction to χ4
+.) However, the step Ω→A may be more like a time reversal or a

reflection than a translation operation. If Ω is a black hole and A is a white hole

connected by a zero distance wormhole (the case in which Ω and A are colocated

at ∅ rather than bounding a region containing it), a reversal of the time arrow

may be all that is needed to execute Ω→A. However, it is not yet determined

whether A and Ω bound the region containing ∅, or if they are colocated there.

(These cases are discussed in Section 4.) So, it is not clear that the Ω→ A
step involves any translation at all. If it does, simple translation cannot tell

the whole story because the metric signature changes between Σ±. Waves (or

heatlike solutions) cannot be simply transmitted through the obstruction in the

topology induced by the changing metric signature.

� With subscripts running over {+,−,∅}, one would assume [p̂j, p̂k] = 0 and,

consequently, [M̂j, M̂k]=0. If these operators commute, then we should be able

to reorder them, but that is not consistent with the overall idea. For instance,

the M̂2 operator executing Ω→A should only act on states in Ω. It may not

make sense for it to act on other states.

� Ĵ executes equal-time parallel transport. Since observation B necessarily takes

place at some chronological time later than that associated with observation

A, the translation operator alone is not sufficient to accomplish the evolution.

The state M̂3|ψ; π̂n⟩=c|ψ; π̂n+1⟩ must show up in Hn+1 with a time that agrees

with Û(tn+1, tn)|ψ, tn⟩ = |ψ, tn+1⟩. In other words, MCM time evolution must

incorporate Schrödinger evolution as a simultaneous process during a transit of

the unit cell. Static transport by M̂ ∝ Ĵ cannot agree with time-dependent

experimental results.

1.7.2 M̂3 as a Ladder Operator

M̂3 is like a ladder operator for the level of aleph. It increases the k quantum number

when it operates on |ψ, π̂k⟩. To better understand M̂3 and its associated constant

2πΦ, we will look at the Dirac ladder operators

â† =

√
mω

2ℏ

(
x̂−

ip̂

mω

)
, and â =

√
mω

2ℏ

(
x̂+

ip̂

mω

)
. (1.7.3)
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They raise and lower the n quantum number for states in the simple harmonic oscil-

lator (SHO) potential. Such states are denoted |n⟩. Dirac notation is such that

â†
∣∣n〉 = √n+ 1

∣∣n+ 1
〉
, and â

∣∣n〉 = √n∣∣n− 1
〉
. (1.7.4)

So far, however, we have treated M̂3 only in the Dirac notation

M̂3
∣∣ψ; π̂n〉 = 2πΦ

∣∣ψ, π̂n+1
〉
, (1.7.5)

without first writing down its analytical expression, as in (1.7.3). Namely, (1.7.4)

is only a shorthand developed after Schrödinger’s equation was solved for the SHO

Hamiltonian

Ĥ =
p̂ 2

2m
+
mω2x̂ 2

2
, with ω =

√
k

m
. (1.7.6)

The solution is ∣∣n〉 = ϕn(x) =
1

π1/4
(
2nn!

)1/2Hn(x) e
−x2/2 , (1.7.7)

where Hn is the nth Hermite polynomial. This result shows that the real physics of

(1.7.4) comes from (1.7.7) and (1.7.3). Operation with â and â† on ϕn(x) provably

yields â†|n⟩ =
√
n+ 1|n + 1⟩ and â|n⟩ =

√
n|n − 1⟩. For M̂3, we have jumped into

the end result of the operator algebra M̂3|ψ, π̂n⟩=2πΦ|ψ; π̂n+1⟩ without first finding
the analytical representation of M̂3. On top of that, we have suggested that a more

complicated equation than Schrödinger’s equation is needed for M̂3 without writing

that equation down and solving for its states. For example, SHO states are such that

∣∣n〉 = 1
√
n!

(
â†
)n∣∣0〉 , (1.7.8)

but we have not yet found an analytical form for M̂3 with which to provably write∣∣ψ; π̂n〉 = cn
(
M̂3
)n∣∣ψ; π̂0

〉
. (1.7.9)

Even if we did have the analytical form of M̂3, all we know about |ψ; π̂0⟩ is that it

must reduce to the corresponding quantum mechanical |ψ⟩ in the limit of χ4
±→ 0.

That may or may not be a trivial constraint. As SHO states are uniquely determined

from the SHO Hamiltonian and Schrödinger’s equation jointly, MCM analogues of

these important fundamentals are required.

Regarding the discovery of the Schrödinger equation, Schrödinger deduced it (or

guessed it) following a process of trial and error [80, 81]. He was well directed in his
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search by an understanding that the equation for the wavefunction should be first

order in its time derivative, but the MCM has two kinds of time, and the expected

equation for M̂3 should be third order in at least one of them. Thus, a potential

iterative development process searching for the MCM equation may be far more cum-

bersome than Schrödinger’s search for his eponymous complex heat equation. Luckily,

we will observe in Section 1.11 that certain results suggest a narrowing of the field of

all possible equations for M̂3.

1.7.3 MCM Plane Wave States

Kaluza–Klein theory requires that there should not exist any 5D matter-energy in

the bulk of Σ±. This suggests that we should treat the bulk as free space devoid

of any potential energy landscape. The Hamiltonian operator for free space in one

dimension is

Ĥ0 = −
ℏ2

2m
∂2x , (1.7.10)

and the solutions to the according Schrödinger’s equation are plane waves:

ϕ(x, t) = exp
{
i
[
kx− ω(k)t

]}
, with ω(k) =

ℏk2

2m
. (1.7.11)

In the position representation, infinite plane waves are momentum eigenstates. Free

momentum eigenstates cannot be observed, so, referring to the rigged Hilbert space

{H′,A′,Ω′}, infinite plane waves cannot live in A′, which is ordinary Hilbert space.

On the other hand, plane waves in a finite region V are constrained by ϕ′(∂V ) = 0,

where ∂V is the boundary of V . Subject to this boundary condition, ϕ′ is normalizable

and can belong to A′.

The main utility of infinite plane waves is for the construction of wavepackets

which are normalizable and observable, even in unbounded regions:

u(x, t) =
1√
2π

∫ ∞

−∞
dk A(k) exp

{
i
[
kx− ω(k)t

]}︸ ︷︷ ︸
ϕ(x,t)

=⇒ u ∈ A′ . (1.7.12)

The infinite plane waves in the integrand are Fourier transforms of Dirac δ functions.

Such functions and their Fourier transforms, two representations of the same state,

only live in Ω′. So, since plane waves (i) satisfy the Schrödinger equation, (ii) are

the analytical basis for all-important wavepackets, and (iii) they appeal to the small

sliver of extra freedom afforded by the Ω′ part of the MCM’s rigged Hilbert space, ϕ

is an appropriate state for the presumed energy landscape between two instances of

H. The search for M̂3’s equation should begin with M̂3 acting on plane waves.
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The new equation should contain non-vanishing derivatives with respect to χ4, so

the ansatz for an MCM plane wave will be

ψ(x, t, χ4
±) = exp

{
i
(
kx− ωt± χ4

±
)}

, 1 (1.7.13)

where χ4
± includes an implicit χ4

∅ case, if needed. Appealing to χ4 as a non-physical,

abstract coordinate, we will assume it is dimensionless and does not require an ana-

logue of k or ω.2 ψ(x, t, χ4
±) reduces to the QM wavefunction ϕ(x, t) in the χ4

±→ 0

limit corresponding to H. This limiting behavior is a hard constraint on the theory

since QM is known to agree with experiment. As per usual in physics, one starts with

a boundary condition and then develops solutions accordingly. The present boundary

condition is that an MCM plane wave in the bulk must reduce to an ordinary plane

wave in H.
Landau’s treatment of plane waves is demonstrative [82].

“A plane wave is a mathematical abstraction, a solution to the wave

equation which has constant phase along a 2D infinite plane. Although

these may not be physically realizable, they are a convenient substitute

for a wave packet of definite momentum and are the conventional basis for

expanding the wave function of an interacting particle. The wave functions

of quantum mechanics form a Hilbert space, that is, a linear vector space

of infinite dimension. Whereas the dynamical coordinates r and p of wave

functions are continuous, the eigenvalues or parameters of these functions,

such as the bound-state energies E=−κ2i /2µ are discrete. Any Hermitian

Hamiltonian can be used to generate a complete, orthogonal set of wave

functions. The free-particle Hamiltonian,

H0 =
p2

2µ
= −∇

2µ
, (1.7.14)

is particularly convenient because it generates the plane waves:

p̃ϕk(r) = kϕk(r) , k = |k|

H0ϕk = Ekϕk(r) , Ek = k2/2µ
(1.7.15)

ϕk(r) = Neik·r , N =


(
2π
)−3/2

infinite domain ,

V −1/2 finite domain .

1For simplicity, we intermingle physical and abstract coordinates in (1.7.13).
2As MCM plane waves are developed, we will choose to include a coefficient as a scale factor for χ4. The coefficient

will be sufficient to accommodate its dimensionless and dimensionful cases.
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For simplicity in developing the formalism (and a patina of mathematical

rigor), it is useful to consider the plane waves as occupying a finite volume

(a box). The box and the periodic boundary conditions we impose on the

wave functions are just for convenience (scattered waves are certainly not

periodic); eventually we will go to the limit of an infinite domain.

“Little Boxes

“To determine the allowed eigenenergies, we place the plane waves [ϕk(r)]

in a box of volume V with sides (Lx, Ly, Lz), and demand that they satisfy

the periodic boundary conditions

ϕk(x+ Lx, y + Ly, z + Lz) = ϕk(x, y, z) , (1.7.16)

=⇒ (kxLx, kyLy, kzLz) = 2π(ix, iy, iz) .

Here (ix, iy, iz)≡ i is a set of three positive or negative integers which de-

termine the allowed, discrete wave vectors and thus energies:

ki = 2π

(
ix
Lx
,
iy
Ly
,
iz
Lz

)
, Ei =

k2i
2µ

. (1.7.17)

With these boundary conditions, the plane waves for different values of i

and j are orthogonal. By choosing the normalization constant N we make

the plane waves orthonormal :

ϕki
(r) ≡ ϕi(r) =

eiki·r
√
V

, (1.7.18)

=⇒
∫
d3rϕ∗

i (r)ϕj(r) = δij , (orthonormality) .

Note that in the confined volume of the box, the variable k is discrete but

the variable r is continuous (but limited.) The discreteness of ki leads to

the Kronecker delta function in [(1.7.18)]. Since the free Hamiltonian is

Hermitian, plane waves form a complete set in which any solution ψ(r) of

Schrödinger’s equation can be expanded:

ψ(r) =
∞∑
i

ciϕi(r) . (1.7.19)

Orthonormality determines the ci’s (multiply [(1.7.19)] by ϕ∗ and integrate
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over r):

ci =

∫
d3r′ ϕ∗

i (r
′)ψ(r′) . (1.7.20)

If we substitute this back into [(1.7.19)] and interchange the order of inte-

gration and summation, we obtain

ψ(r) =

∫
d3r′

[
∞∑
i

ϕ∗
i (r

′)ϕi(r)

]
ψ(r′) . (1.7.21)

Yet because [(1.7.21)] must be an identity, we identify the term in the brack-

ets as some kind of unit operator. This yields the closure or completeness

relation for discrete states:

∞∑
i

ϕ∗
i (r

′)ϕi(r) = δ(r′ − r) , (closure) . (1.7.22)

“The Big Box

“To obtain plane waves in an infinite domain, we let the box size ap-

proach infinity. In this limit of very large L and very large i, the index i is

still an integer so ∆i≡1.1 The momenta ki in [(1.7.17)] remain finite but

become continuous:

2π

Li
∆i → dki , ∆ix →

Lx
2π
dki (1.7.23)

∑
∆i → V

∫
d3k(
2π
)3 .

“[...] To generalize the closure relation [(1.7.22)] to a big box, we insert

a ∆i=1 into the sum in [(1.7.22)], and take the L→∞ limit:

∞∑
i

∆iϕ∗
i (r

′)ϕi(r) = δ(r′ − r) , (1.7.24)

=⇒ V

∫
d3k(
2π
)3 e−ik·r′√

V

eik·r√
V

= δ(r′ − r) , (closure) .2

1This notation means that the discrete version of the differential element of i, ∆i, is equal to one because that is
the smallest increment of change for an integer-valued quantity.

83



Next Steps and the Way Forward in the Modified Cosmological Model

This gives the form for plane waves in an infinite domain:

ϕi(r) =
eiki·r
√
V

=⇒ ϕk(r) =
eik·r(
2π
)3/2 . (1.7.25)

The orthogonality relation [(1.7.18)] for an infinite domain is now just the

closure relation with a change of variable,

δij →
∫

d3r(
2π
)3 e−ik′·reik·r = δ(k′ − k) (orthogonality) .” (1.7.26)

For disambiguation with the imaginary number i, we will replace Landau’s integer

i with j in the following. The factor of (2π)−3/2 in (1.7.25) reflects the fact that

time-independent plane waves in an infinite domain are non-physical and cannot be

normalized in R. Instead, these states are normalized to the 3D Dirac δ function, as

in (1.7.26). Since it is desired that the physical distance between branes exceeds any

number in the neighborhood of the origin, the continuous k, unbounded, big box case

proportional to (2π)−3/2 should be associated with the physical coordinates. The big

box case also describes unbounded plane waves in H when we take the ei(kx−ωt±χ
4
±)

ansatz with χ4 = 0. The discrete k, small box case proportional to V −1/2 should

pertain to the abstract coordinates. The convention in which A and Ω are surfaces of

constant χ4
−=−φ, and χ4

+=Φ is such that Σ± are small boxes in the fifth direction.

Consider the orthonormalism of discrete momentum states, as in (1.7.18). The

orthogonality of ϕj1 and ϕj2 when j1 ̸= j2 is well suited to the orthogonality of wave-

functions on different levels of aleph. It was suggested in Section 1.2.5 that the

ontological basis might act as lattice vectors for a cosmological lattice in which each

lattice site has its own level of aleph specified by some tuple of integers. In that

picture, small box plane waves are such that states at different lattice sites are or-

thogonal. Lattice sites specified by integer combinations of lattice vectors {2̂, π̂, Φ̂, î}
are enumerated with j ≡ (j2, jπ, jΦ, ji) analogous to Landau’s i ≡ (ix, iy, iz). One

caveat, however, is that the unit cell only requires the small box condition for the χ4
±

directions. It is not yet determined whether Σ± should be bounded in the abstract

χµ± coordinates. One is advised that the big or small box convention will depend on

the choice of coordinates, and that we have still not determined if Σ± are bounded

in the χµ± directions (or if x4± coordinates should exist at all.)

{ϕj} are a complete orthonormal set, but the non-unitarity of the M̂3 and/or

Ôêµ→êν operators suggest that the MCM plane wave basis {ψj} ought to be orthogonal
2The Dirac δ function has inverse units to its argument: δ(r) has units of [m−3].
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and not orthonormal. The lack of normalism follows from the relative scale between

levels of aleph. If the relative scale between the RX and RY levels of aleph is C, then
len(RX )/len(RY)=C. In the rescaling r→Cr, the 3D wave vector and energy rescale

as

k′
j = 2π

(
jx
CLx

,
jy
CLy

,
jz
CLz

)
, and E ′

j =
ℏ2k′2

j

2m
=

ℏ2k2
j

2mC2
=
Ej
C2

.1 (1.7.27)

Thus, the energy changes from one lattice site to another. Noting that ℏ has units

of [kg][m2][s−1], the normalization of the observer’s reference frame onto the level of

aleph where the relative scale is C may require that meters are redefined to absorb

the two factors of C appearing in the energy’s denominator. Presuming C ≥ 1, as is

the case for C=2πΦ, the energy decreases with increasing j. This is a positive result

because the physical arrow of time never points towards increasing energy (in the

absence of work.) This energy variation may have further applications to the MCM

mechanism for dark energy discussed in Section 7. Namely, cosmological redshift is

such that photons lose energy with time.

In the preceding, we have considered only some generalized χ4 without appealing

to opposite sign and/or imaginary phase between χ4
±. The behavior of quantum states

with real and imaginary wavenumbers is known from

k =

√
2m
(
E − V

)
ℏ

.2 (1.7.28)

The wavenumber k is real when E > V . It is imaginary when E < V . Coupled

with the i in eikx, we have wave propagation in the classically allowed region where

E > V and exponential damping in the classically forbidden region where E < V .

It was suggested earlier that allowing χ4
± to be complex will allow us to avoid the

metric signature discrepancy at the Ω→A step of M̂3, and now we will suggest an

implementation by adding a wavenumber or frequency multiplier to the ansatz as

ψ(x, t, χ4) = exp
{
i
(
kx− ωt+ κχ4

)}
, where κ =

√
2m
(
E − V

)
ℏ

. (1.7.29)

By choosing an appropriate energy scale on the forward level of aleph, namely V ∈Σ−
{1}

higher than E ∈Σ+
{0}, we might make the region of metric discrepancy a classically

forbidden region so that κ becomes imaginary. Then we will obtain exponential

1Compare to (1.7.17).
2This formula for the wavenumber k is standard in elementary QM problems. See Section 2.6 in [83] or Section

2.4 in [84], for example.
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damping of the wavefunction in the region of metric discrepancy:

ψ(x, t, χ4) = exp
{
i
(
kx− ωt+ i|κ|χ4

)}
= exp

{
i
(
kx− ωt

)}
e−|κ|χ4

. (1.7.30)

Through our consideration of plane wave states, now we have come to a likely,

natural resolution for the metric discrepancy between Σ±. Since we would want

damping to increase with penetration into Σ−, χ4 as in (1.7.30) has its origin in A (or

in ∅ if A is colocated with Ω.) The energy landscape will steer propagating waves

from Σ+ onto iχ4
− spanning another instance of Σ− where the convention for real and

imaginary χ4
± is reversed with the freedom to write the metric signature as either of

{∓±±±}. This will reduce the topological discontinuities from appearing at H and

∅ to one in H alone.1 Everything is reset at H, so there is not so pressing a question

of how solutions might be transmitted through it. The act of observation associated

with H gives us more options for dealing with discontinuity there.

Another issue is that the we have associated the region of metric discrepancy with

the classically forbidden region of an elementary QM barrier problem, but the for-

bidden region always has the same metric as the allowed region in such problems.

Investigation is required to determine whether the usual mechanics of real and imag-

inary wavenumbers are permitted simultaneously with a changing metric signature.

If the unit cell is constructible so as to avoid a discrepancy at ∅, then what appears

as damping in a 1D QM scattering problem will be manifested in the unit cell as

oscillating propagation in the direction perpendicular to the page. In this way, the

energy landscape guides undamped propagation in the lattice. If the branch of χ4

beyond a metric discrepancy is classically forbidden, then states will want to avoid

that branch without any need to introduce supplemental mechanisms. The energy

landscape will automatically favor continuation onto the classically allowed branch.2

Such conditions are the heart of physics. In the previous sections, we have mostly

proposed abstract mathematical mechanisms for what M̂3 is or does, but now we

have taken a step toward the physical nitty gritty.

To finish this section, we will mention that a topological mismatch between Σ±

forbids perfect transmission from one box into another though this is the boundary

condition supposed in (1.7.16) if the box is the full unit cell. Barring the obvious case

where Σ± are two different boxes, one resolution is that we might consider the unit

1In Section 0.2, we introduced a convention in which the 4D metrics in Σ± were oppositely signed as {∓±±±}.
Here, we use the same sign convention {−+++} for both sides of the unit cell and add the sign conjugated convention
in the spaces crossed by iχ4

±.
2If a right-moving wave avoids a forbidden region by diverting onto the directions into and out of the page,

one might expect attenuation in the lattice. The non-unitary property of M̂3 should counteract this potential for
attenuation.
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cell as a small but non-trivial box with symplectic geometry between its piecewise

Σ± parts. Symplectic geometry equips a manifold with a 2-form whose property

dx∧dy=−dy∧dx at least approximates what is intended for the conjugation algebra

of C∗ with (φ̂∗)∗ ̸= φ̂.

1.7.4 The Schrödinger Equation and its Potential Modifications

The Schrödinger equation

iℏ∂0
∣∣ψ, t〉 = Ĥ

∣∣ψ, t〉 = (− ℏ2

2m
∇2 + V̂

)∣∣ψ, t〉 , (1.7.31)

provides an excellent template for what a physical equation looks like. The appear-

ance of both time and space derivatives remedies the problem of equal-time parallel

transport cited for M̂3 as a translation operator in Section 1.7.1. With such an equa-

tion for M̂3, we would obtain its analytical form as we have obtained the ladder

operators in Section 1.7.2.

While Schrödinger’s equation incorporates the requisite elements of physics lacking

in the current description of M̂3, it may or may not be sufficient for MCM evolution

on its own. If it is, M̂3 will show up as a new energy in Ĥ:

M̂3
∣∣ψ; π̂0

〉
= 2πΦ

∣∣ψ; π̂1
〉

←→ ĤMCM

∣∣ψE〉 = EMCM

∣∣ψE〉 . (1.7.32)

To evaluate this form for M̂3, we must first examine whether or not |ψ, π̂0⟩ is an

eigenstate of M̂3. Since [Û , Ĥ]=0, an energy eigenstate |ψE; t0⟩ is an eigenstate of Û
despite the values in the ket changing:

Û
∣∣ψ, t0〉 = ∣∣ψ; t〉 . (1.7.33)

The time dependence boils down to a phase, and the state remains the same. Since we

have not found the analytical form of M̂3 needed to test whether it commutes with

Ĥ, we cannot say if ψE is an eigenstate of M̂3. Non-unitarity and changing scale

across levels of aleph suggest it may not be. However, the mathematical expression

for being sent to a higher level of aleph may be as simple as an accrued π̂ so that

π̂k→ π̂k+1 in the way that energy eigenstates acquire a phase under operation with

Û : e0→eiEt/ℏ. If ψE is not an eigenstate of M̂3 and [M̂3, Ĥ] ̸=0, a likely resolution is

that M̂3 should satisfy a modified Schrödinger equation. In that case, M̂3 will show

up in the time derivative part of an equation which reduces to Schrödinger’s equation

in the limit of vanishing χ4 and vanishing derivatives with respect to χ4. For example,
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one would consider equations roughly in the form(
M̂3 + iℏ∂0

)∣∣ψ, t; π̂0
〉
= ĤMCM

∣∣ψ′, t′; π̂1
〉
. (1.7.34)

where M̂3 contains a new time derivative on the left, and ĤMCM contains a new energy

on the right.

The unitary time evolution operator Û satisfies Schrödinger’s equation on its own.

We may factor out the |ψ, t0⟩ time-independent part of |ψ, t⟩= Û(t, t0)|ψ, t0⟩ to write

an equation for Û rather than ψ. In that way, M̂3 may satisfy a time evolution

equation without ψ in it at all. This was more or less the original idea in supposing

Υ̂= Û+M̂3 [3, 30]. Given

iℏ∂t Û = ĤÛ , (1.7.35)

we would write

iℏ∂tΥ̂ = ĤMCMΥ̂ , (1.7.36)

or we would seek new equations. We will treat Υ̂ in Section 1.11 where its cases

for use in an MCM total evolution equation are discussed beyond the modifications

presented here.

The remainder of this section catalogs avenues along which Schrödinger’s existing

equation might be modified without starting over from scratch. This should be useful

and/or demonstrative because any new MCM equation should contain Schrödinger’s

equation as a limit. Possible modifications are listed and then described.

� Schrödinger evolution in χ4:

∂0 → ∂4 (1.7.37)

� A time gradient:

∂0 → ∇̃ = ∂01+ ∂4Φ̂ , where (1, Φ̂) = (π̂0, Φ̂1) (1.7.38)

� Momentum in the χ4 direction:

∇2
i → ∇̂2 = ∇2

i +∇2
4 (1.7.39)

� A separable potential energy:

Ĥ → Ĥ = Ĥ0 + V̂ (x, t) + V̂MCM(χ
4, t) (1.7.40)
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� A non-separable potential energy:

Ĥ → Ĥ = Ĥ0 + V̂MCM(x, χ
4, t) (1.7.41)

� Classical transport of a quantum system:

ψ̇ → x =⇒ Fnet = mẍ→ m
...
ψ (1.7.42)

Schrödinger Evolution in χ4 An elementary modification ∂0→ ∂4 on the left side of

Schrödinger’s equation is such that

iℏ∂4
∣∣ψ, χ4

〉
= Ĥ

∣∣ψ, χ4
〉
. (1.7.43)

This equation is well suited to a further resolution of χ4 into its piecewise parts: χ4
+,

χ4
∅, and χ4

−. It was suggested in [85] that the steps of H → Ω → A → H might

be motions derived from three integrated Schrödinger equations using ∂+, ∂∅, and

∂− in place of ∂t on the LHS. Such a description by concatenated integration paths

necessarily relies on the sum of three operations rather than the product
∏
M̂i which

has been supposed. This might be resolved by moving the M̂i into an exponential

function such that

M̂3 =
3∏

k=1

eM̂k . (1.7.44)

This form is familiar from the Û=e−iĤt/ℏ chronological time evolution operator which

M̂3 complements as the chirological evolution operator. Exponential structure in Û
underpins the path integral as〈

xI
∣∣e−iĤt/ℏ∣∣xF〉 = 〈x0∣∣e−iĤδt/ℏe−iĤδt/ℏ . . . e−iĤδt/ℏ∣∣xN〉 (1.7.45)

=

(
N−1∏
k=1

∫
dxn

)〈
x0
∣∣e−iĤδt/ℏ∣∣x1〉〈x1∣∣e−iĤδt/ℏ∣∣x2〉〈x2∣∣ . . . ∣∣xN〉 ,

so (1.7.44) is well suited to piecewise evolutions along MCM cosmological lattice

vectors. Taking χ4
∅ to have no linear extent, meaning the case in which Ω and A are

colocated at ∅, one might substitute the requisite chronological evolution |ψ, t0⟩→
|ψ, t1⟩ for the ∂∅ step of M̂3. There is a likeness between H and ∅ as obstructions

between Σ±, but the mechanism by which we might associate t ∈ H and χ4
∅ ∈ ∅

remains to be investigated. Furthermore, the dimensions of (1.7.43) are contrary to

the previous convention in which χ4 is dimensionless.
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A Time Gradient The time gradient ∇̃ follows from ∂0→∂4. Rather than replacing

∂0 with ∂4, we supplement the Schrödinger equation’s chronological time derivative

with an added chirological part:

iℏ∇̃
∣∣ψ〉 = iℏ

(
∂0π̂ + ∂4Φ̂

)∣∣ψ〉 = Ĥ
∣∣ψ′〉 . (1.7.46)

A deficiency is that the gradient ought to include components for the other ontological

basis vectors as

∇̃ = ∂0π̂ + ∂+Φ̂ + ∂∅î+ ∂−2̂ . (1.7.47)

This does not appear to respect the ordering of the H→Ω→A→H steps, but that

might be remedied if the disordered derivatives vanish as needed during piecewise

motions across the unit cell. Perhaps 2̂ and î should be removed from the time

gradient on the grounds that they indicate physical and abstract space contrary to

the π̂ and Φ̂ that we have used to indicate physical and abstract time.

As written in (1.7.46), integrated motion along χ4 would raise the level of aleph

with Φ̂ acting on the χ4 part of |ψ, t, χ4⟩, but the x0 part does not raise it with

π̂0 = 1. Operation with the time gradient yields wavefunctions on two levels of

aleph. Following the plane wave prescription in the previous section, wavefunctions

on different levels of aleph are orthogonal. Hence, Ĥ operating on ψ would have to

result in the sum of two orthogonal states. This is not the behavior usually associated

with the Ĥ operator.

Momentum in the χ4 Direction Canonical quantization in the position representation

is such that

pi → −iℏ∂i . (1.7.48)

One would assume that momentum in the χ4 direction quantizes as

p4 → −iℏ∂4 . (1.7.49)

The kinetic part of the Hamiltonian would be altered as

Ĥ0 = −
ℏ2

2m
∇̂2 = − ℏ2

2m

4∑
k=1

∂2k . (1.7.50)

Within ∂4, the {χ4
+, χ

4
∅, χ

4
−} structure is such that each variant should be given its

own derivative. In the picture of ontological basis vectors as cosmological lattice

vectors, one would assume the possibility for arbitrary momenta in the form p4 =
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(aχ̂4
+, bχ̂

4
∅, cχ̂

4
−). In that case, one might omit the spatial momentum of physical

3-space to write

Ĥ ′
0

∣∣ψ〉 = − ℏ2

2m

(
∂2+ + ∂2∅ + ∂2−

)∣∣ψ〉 . (1.7.51)

However, (1.7.51) assigns physical dimension to the abstract coordinates which prob-

ably ought to be dimensionless. In that case, one would drop the ℏ2/m from (1.7.51)

with an intention to write a Schrödinger equation completely in the abstract coordi-

nates. Furthermore, (1.7.49) may not be the correct quantization prescription at all.

The three-fold structure on χ4 is such that its prescription for quantization might be

exotic.

A New Separable or Non-Separable Potential Energy Function While the KKT re-

quirement for a vanishing 5D Ricci tensor is an obstacle to the direct introduction of

a new polynomial energy function of χ4, the physical concept of a unit cell invokes

a regular, periodic potential energy function. Such a function is the foundation of

lattice physics. An upside down Dirac comb forbidding the bulk of Σ± while allowing

the labeled branes seems like an energy that would motivate H→Ω→A→H as a

generalized Euler–Lagrange process. What a new periodic term in Ĥ might be when

KKT requires no 5D matter-energy deserves further study.

Another issue is that we have no units for χ4 (yet), but any new energy function

must be quantifiable in Joules if it is of the separable variety. Non-constant energy

functions always depend on the units of the coordinates to achieve the dimensionality

of energy. An example of a non-separable, new energy function not requiring dimen-

sionful χ4 is one where a dimensionless piece associated with the unit cell multiplies

part of an existing Hamiltonian, or all of it. This would represent, for example, the

scale factor for changing energies across changing levels of aleph (Section 1.7.3). For

dimensionful χ4, the MCM plane wave ansatz must be revised as

ψ(x, t, χ4
±) = exp

{
i
(
k · x− ωt+ β±χ

4
±
)}

, (1.7.52)

where β± is a frequency or wavenumber analogue. If we are to keep the Schrödinger

equation’s time derivative part as it is, the only possibility for new physics is a new

energy term. While this strongly suggests that a fundamental modification to the

time derivative part of Schrödinger’s equation is required, we will briefly examine the

case in which a third derivative associated with M̂3 appears as a new energy term.

Operating on ψ with ∂34 will bring down three powers of the scalar β. As written,

(1.7.52) allows plane waves to propagate only along cosmological lattice vectors. To
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add propagation in the direction of arbitrary superpositions of lattice vectors, which

is to allow waves with arbitrary p4=(p+, p∅, p−), the ansatz must be revised as

ψ(x, t,χ4) = exp
{
i
(
k · x− ωt+ β ·χ4

)}
, with χ4 = (χ4

+, χ
4
∅, χ

4
−) . (1.7.53)

In this case, the third derivative will bring down a vector |β|2β resulting in an eccen-

tric analytical expression:

iℏ∂0ψ =
(
Ĥ0 + i∂34

)
ψ =

(
|p|2

2m
+ |β|2β

)
ψ . (1.7.54)

What would be the meaning of the sum of a scalar and a vector? The main venue for

such a sum in physics is the quaternions. The sum of a vector and a scalar cannot

be written off immediately as nonsensical because the MCM Hamiltonian for time

arrow spinors (Section 12) is quaternion-valued [85]. Furthermore, the behavior of

even derivatives to return scalars and odd derivatives to return vectors may be useful

in a scheme for separating odd and even levels of aleph.

Classical Transport of a Quantum System Since the introduction of a third derivative

into the formalism is desired, we might combine the first order Schrödinger equation

with Newton’s second order force law such that

iℏψ̇ = Ĥψ , and m
...
ψ = FMCM . (1.7.55)

The time derivative of ψ replaces the classical position x. This supplementation of

Schrödinger’s equation as a classical trajectory for ψ̇ across the unit cell may be useful

for avoiding KKT Ricci tensor violations in the bulk because the quantity ψ̇ is not

directly associated with matter-energy distributions. It is only the rate of change of

a complex-valued probability amplitude.

As an off-the-cuff example of what is meant by classical transport of a quantum

system, consider that lattice physics is an extended application of Hooke’s law. Re-

stricted to positive displacements, Hooke’s law is

mẍ = kx =⇒ ...
x =

k

m
ẋ . (1.7.56)

One might attempt to associate the oscillation of masses connected by springs (lattice

sites) with the oscillation of the wavefunctions attached to each lattice site. Since

the Hamiltonian is constructed from the Lagrangian as H =
∑
pq̇ − L(q, q̇), (1.7.56)

offers an easy way to introduce a third derivative term into the energy function.
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Substituting the oscillation of position with the oscillation of the wavefunction allows

us to put the third derivative directly into the L(q, q̇) function with
...
x ∝ ẋ.

1.8 Wavefunction Collapse

1.8.1 A Possibility for Retrocausality

A good and modern overview of issues related to retrocausality in wavefunction col-

lapse is found in [86]. To paraphrase briefly, Ellerman’s thesis is that Schrödinger’s

cat is in an entangled superposition of life and death eigenstates while the box is

closed, and that opening the box does not retrocausally affect the life or death of the

cat during that time. Rather, opening the box forces the collapse of the life/death

superposition into one eigenstate or the other by placing a detector outside of the

box. Detectors are modeled in QM as operators which project quantum systems onto

their eigenstates. If the box is opened at time t, then the wavefunction is collapsed

only for times later than t. Ellerman contends, rightly, that the language of QM is

not such that we may determine the life or death of the cat prior to the measurement.

This writer’s minor criticism, however, is the lack of a caveat: Ellerman assumes that

QM is the correct description of nature. He discounts the possibility that QM is

merely a hack allowing us to predict experiments’ results. He does not contextualize

the possibility that such effects as retrocausality may be objectively real even while

QM does not predict them. What is real or not is a matter of semantics, or not, but

it remains true that there may exist a better description of reality than QM. The

interpretation of that other description might suggest retrocausality.

Even while this writer agrees with Ellerman regarding the interpretation of QM,

it is not known what is inside the closed box. Not knowing what is inside is different

that knowing that there is a superposition. If QM’s usual interpretation is correct,

which we have fair reason to suspect, then we would know that the cat exists as a

superposition until a detector projects it into one of its life eigenstates. Even then,

the reader is encouraged to understand that opening the box may, in fact, retro-

causally affect the life or death of the cat because ignorance of the cat’s state is not

exactly knowledge that the state is a superposition. That implication depends on an

assumption that QM is more than just a hack for telling the results of experiments.

Obviously, this writer’s opinion on QM is exactly that. There probably does exists

a better theory than QM. Whether or not a better description would preclude retro-

causality is unknown. The context for retrocausality in the MCM is that the EM

potential Aµ in H is a superposition of contributions from Aµ± in Σ± (Section 16), so

it follows that physics in the present is at least retrocausal from the abstract future
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χ4
+ > 0. How that may or may not relate to objective, chronological retrocausality

from the Minkowskian future light cone remains to be determined.

1.8.2 A Thought Experiment for Retrocausality

Consider a Schrödinger’s cat experiment in the presence of a time machine. A cat is

placed inside a box with a radioactive isotope. A detector will release a poison if the

isotope decays. There exists a clock stationary in the box’ lab frame which measures

lab time. The isotope is removed after a duration of time such that there is a 50%

chance of the cat being poisoned. The isotope is removed automatically from the box

at lab time t0. Then the box is opened at t2>t0, and the cat is observed to be alive

or dead. After that, the observer uses the time machine to travel back in time. In

the past, he opens the box at lab time t1 such that t0 < t1 < t2. The isotope was

already removed from the box at t0, so the poison was either released or not before

t1. If wavefunction collapse does not have retrocausal effects, there should be a 50%

chance of finding the cat either alive or dead at t1 despite the cat being found in one

state or the other at t2. The theory of quantum mechanics predicts that the collapse

of the cat’s wavefunction to the alive or dead eigenstate at t2 should not effect the

probability for observing one state or the other in the past at t1, but theory alone

is not sufficient to determine the outcome of an experiment. It is possible that real

time machine experiments would show that if the cat is observed to be alive or dead

at t2, then opening the box at t1 will always yield a like result. The interpretation

would be that life or death was decided before t0 when the isotope was removed.

In that case, quantum theory would have to concede the retrocausal effects disputed

in [86]. Without doing the experiment, there is no way to know what the result would

be. Even if the result of the experiment showed that the cat’s state at t1 does not

universally agree with the state at t2, the many worlds interpretation of QM would

still make it impossible to conclude that the cat was in a superposition prior to the

respective measurements.

1.8.3 The Collapse Problem

The issue of collapse is mysterious independently from any questions about causality.

How exactly does a detector put a superposition quantum state into an eigenstate?

Neither quantum theory nor its interpretations offer a good answer to this question.

It is intrinsic to QM that observables are represented by Hermitian operators. Once

that is established, mathematical collapse by projection follows directly. However, the

axiom that a physical detector should be represented by a non-physical instantaneous
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collapse operator is unsatisfying. If an operator acts on a non-eigenstate at time t0,

and an eigenstate is instantaneously output, one could ask about the state at t0 and

get two good answers, or two bad ones. Although we might make an appeal to uncer-

tainly in the experimental resolution of time, QM is a theory of states in Hilbert space

at a definite time. Is the state at t0 collapsed or diffuse? Is it semi-diffuse? State re-

duction is a discontinuous mathematical operation, but an appeal to the Θ(t− t0)= 1
2

property of the Heaviside function cannot tell us anything about the physics at t0
because the theory of linear operators does not permit halfway collapse in progress.

So, it is disappointing that QM provides no equations of motion such that diffuse,

unmeasured superposition states might evolve smoothly into sharp, measured eigen-

states. Due to Schrödinger’s equation being a heat equation, Schrödinger evolution

can only broaden probability distributions. It can never narrow them. This flies in

the face of what is observed: wavefunctions diffuse, and then they collapse. Some-

thing more than H→H Schrödinger evolution must take place between consecutive

measurements. The intermediate steps of H→Ω→A→H are introduced to accom-

modate a theoretical structure for that additional process. Two extra steps will allow

us to add one step of new physics and a second step to ensure that the new physics

arrives at the known result, albeit with a better explanation than QM provides.

In general, the action of an observation on a quantum state is a projection into

one of the corresponding operator’s eigenstates. However, the action of that operator

on a state is

Â
∣∣ψ〉 = Â

∑
cn
∣∣an〉 =∑ cnan

∣∣an〉 . (1.8.1)

This has not executed the projection operation. Namely, a measurement of observable

A should be

P̂k
∣∣ψ〉 = ∣∣ak〉 , (1.8.2)

so that if eigenvalue ak is obtained from the first measurement, any number of rapidly

repeated measurements will also yield ak. In (1.8.2), P̂k has projected ψ into the 1D

eigenspace spanned by |ak⟩. Unfortunately, there is no dynamical equation for this,

and we must say, “This is where the magic happens.” Only after finding eigenvalue

ak, collapse is implemented by operating with

P̂k =
1

ck

∣∣ak〉⟨ak∣∣ . (1.8.3)

This extra step at the end of a time evolution is unnatural and clunky, but it is the

best QM has to offer for a mathematical description of wavefunction collapse.

Regarding two events a and b and their corresponding measurements A and B,
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it is known that the states observed at A and B cannot be δ functions. δ functions

are not valid wavefunctions in the sense of the Born interpretation which says that a

wavefunction’s modulus squared is a real number. δ functions are also non-compliant

with Heisenberg uncertainty. However, it is an open question of ontology and/or

epistemology whether or not δ functions are part of the process. QM says nothing

about whether a physical detector forces a quantum state into a mathematically

singular δ function at a or b, or only into the width of an experimental resolution.

To wit, there exist two position operators: x̂ and X̂x2
x1
. The first asks where the

particle is, and the second asks if the particle is between x1 and x2. Projection onto

an eigenstate of x̂ kicks the state out of Hilbert space as

P̂x̂ :

{∫
dk A(k) ei(kx−ωt)

}
︸ ︷︷ ︸

wavepackets

→
{
δ(x− x0)

}︸ ︷︷ ︸
eigenstates of x̂

. (1.8.4)

This means that projection onto an eigenstate of x̂ at a or b cannot possibly return the

narrowly peaked wavepacket observed at A or B. In terms of the RHS {H′,A′,Ω′},
(1.8.4) reads as P̂x̂ : H′ → Ω′. On the other hand, X̂x2

x1
is such that

P̂X̂ :

{∫
dk A(k) ei(kx−ωt)

}
︸ ︷︷ ︸

wavepackets

→
{∫

dk A(k) ei(kx−ωt)
}

︸ ︷︷ ︸
eigenstates X̂x2

x1

. (1.8.5)

Since a physical measurement can never give us more information than whether or

not a particle is found in some region, X̂x2
x1

represents a physical measurement while

x̂ does not. So, there exists an important, open question about what is really going

on at a and b.

In the psychological picture of the MCM, the observer learning that the particle is

or is not in a given region is the measurement A or B, not the event a or b. δ-valued

states are not observable, and the question of the unobserved state at a or b remains

open: does the wavefunction collapse to a δ function between A and B, or does it

not? Although the eigenstates of x̂ are not observable, do they correspond to the

results of the state interacting with a detector at the events a and b? The inability

of QM to answer this question is referenced when it is asked if QM might be “a

hack.” We would like the theory to tell us about a and b, but it only tells us about A

and B. QM works around the deeper issue regarding fundamental interactions while

answering the practical question about what is visible. A quantum mechanic from

Copenhagen might argue that asking about the ontological realism of a state away
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from A or B is a blunder because that knowledge does not exist, but the truth is only

that such knowledge does not exist within QM. It might exist, and another theory

might describe it. The three-fold process of M̂3 is formulated to add resolution to

this gray area. Under M̂3, an event happens at a, the results of which are observed at

A. Then one predicts what will happen at b, waits for b to happen, and then observes

the results of b at B.

We want to know how probability distributions can become narrower when the

Schrödinger equation only broadens them, and we want to know if they become sin-

gularly narrow as δ functions at some point during the transit of the unit cell. If

there is a layer of quantum theory where δ functions are obtained, that layer would

be uniquely well suited to connections with the theory of test masses moving along

geodesics in relativistic spacetime because GR is a theory of points, or position eigen-

states. Thus, the MCM’s three-fold structure is purposed toward to answering such

questions about the separateness of the a, b event layer and the A,B observation

layer. Suggesting the relevance of the time lag between the two, the MCM prediction

that observables should be correlated with the delay between an event and its mea-

surement was confirmed in BaBar’s observation of time reversal symmetry violation

(Section 0.1) [32]. Such delay effects are consistent with a state collapsing to a δ

function at an event, and then returning to the Hilbert space as a wavepacket when

the observer is eventually notified of the event.

Due to Weyl’s criterion, the eigenstates of an operator with a continuous spectrum

can be approximated to arbitrary precision by the states in the operator’s domain

of self-adjointness.1 Referring to (1.8.4), Weyl’s criterion says that a δ function may

be well approximated by wavepackets from the Hilbert space. If one substitutes the

approximate eigenvectors for the real eigenvectors, the P̂x̂ projection operator can

output the state which is observed at A or B. In this approximation, P̂x̂ :H′→H′

does not kick states out Hilbert space, and there is no inherent appeal to rigged

Hilbert space. However, the method of approximate eigenvectors identifies a, b with

A,B when the real time lag between them leaves room for additional physics. QM

has little or nothing to say about this lag, and the Weyl convention for approximate

eigenvectors presumes its non-existence.

It is acutely important for the MCM whether or not the state actually collapses to

a δ function, so we must not preclude the possibility for δ functions to appear in the

chirological time evolution of a state from Hk to Hk+1. For instance, if there are no

1Unbounded operators such as x̂ and p̂ are typically not self-adjoint on all of Hilbert space. The subspace of Hilbert
space on which an operator is self-adjoint (Hermitian) is the main limitation selecting the H′ subspace of Hilbert space
A′ as the space of physical states in RHS. Since physical observables are represented in QM by self-adjoint operators,
physical states must reside within an operator’s domain of self-adjointness.
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δ-valued states during a transit of the unit cell, then there is no place in the theory for

states unique to the Ω′ part of rigged Hilbert space. In turn, this will affect the MCM

scheme of fundamental particles because the three generations of matter particles are

(presently) associated with the three RHS state spaces. A distinct and potentially

useful property of the Ω′ states is that a wavepacket u(x, t)∈H′ will thermalize, or

diffuse, such that∣∣ψ, t0〉 = c0(t0)u0(x) −→
∣∣ψ, t1〉 =∑

j

cj(t1)uj(x) . (1.8.6)

However, if that same state is moved into Ω′ as

ψ ∈ H′ ⊂ Ω′ =⇒ ψ ∈ Ω′ , (1.8.7)

then we should expect distinct thermalization behavior on the expanded basis:∣∣ψ, t0〉 = c0(t)u0(x) −→
∣∣ψ, t1〉 =∑

j

cj(t1)uj(x)+
∑
k

dk(t1)δ(x−xk) .1 (1.8.8)

Such behaviors might be observably correlated with correlation amplitudes.

δ functions are also desirable for applications toward quantum gravity. The layer

of quantum collapse to a δ function at a, b is well suited to communication with GR

because GR is a theory of points in spacetime. Points are exact time and space eigen-

states, not approximate ones. Although it is required to describe measurements with

X̂x2
x1
, an association of events with x̂ introduces a layer where the objects of quantum

theory are mathematically compatible with the objects in the theory of gravitation.

For this reason and others, the MCM mechanism for wavefunction collapse should

aim to produce mathematically singular δ functions.

1.8.4 The Double Slit Experiment

The double slit experiment is depicted in Figure 11. In Section 1.8.5, we will examine

the problem of the wavefunction collapsing to a point of scintillation at ts. In this

section, we will examine only the destruction of the interference pattern on the screen

when the path through the slits is measured.

With two slits labeled R and L, the MCM proposal to explain the observed wave-

1For convenience, we use discrete notation for continuous states.
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Figure 11: Above, measurements at the source and screen are taken inH0 andH1. No
measurement is made to determine which slit the particle passed through.
After many repetitions, wave interference is observed on the screen because
the monochromatic wavefronts emanating from each slit are on the same
level of aleph. Below, three measurements are made. In addition to looking
at the source and screen, the observer determines which slit the particle
passes through. After many repetitions, wave interference is not observed
because the intermediate measurement increased the level of aleph for the
wavefront coming through one slit or the other. Waves on different levels
of aleph cannot form interference patterns because they are orthogonal.

particle duality [71] is

Waves −→


∣∣ψR, t0; π̂0

〉
→
∣∣ψR, tp; π̂0

〉
→
∣∣ψR, ts; π̂1

〉
∣∣ψL, t0; π̂0

〉
→
∣∣ψL, tp; π̂0

〉
→
∣∣ψL, ts; π̂1

〉 (1.8.9)

Particles −→


∣∣ψR, t0; π̂0

〉
→
∣∣ψR, tp; π̂1

〉
→
∣∣ψR, ts; π̂2

〉
∣∣ψL, t0; π̂0

〉
→
∣∣ψL, tp; π̂0

〉
→
∣∣ψL, ts; π̂1

〉 . (1.8.10)

A first measurement regards the preparation of a monochromatic particle beam at t0.

This measurement takes place in H0, so the state of a particle at the source is∣∣ψ, t0; π̂0
〉
=

1√
2

∣∣ψR, t0; π̂0
〉
+

1√
2

∣∣ψL, t0; π̂0
〉
. (1.8.11)

The total probability amplitude is the sum of the amplitudes for going through the

upper and lower slits. At tp, the beam hits the diffraction plate. Then it continues as

ψR and ψL waves having slits R and L as their respective sources. If no measurement

is made at the slits, each will emit a wavefront of probability amplitude on the π̂0
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level of aleph. (Recall that π̂k levels of aleph enumerate successive measurements.)

Since ψR and ψL are monochromatic and on the same level of aleph, they are not

orthogonal. The waves will interfere, and a subsequent measurement at ts will never

show a particle arriving on the screen at the minima between interference fringes.

Many repetitions will show that the probability distribution on the screen is consistent

with interference between wavefronts sourced from R and L, as in (1.8.9).

Early attempts to explain wave-particle duality in the double slit experiment re-

sulted in the uncontrollable disturbance hypothesis. It was supposed that the act

of measurement cannot be ideal, and that, therefore, the measurement interaction

between two quantum systems adds an unobservable phase to the observed state: ψR
or ψL. In turn, that phase destroys the interference pattern. The uncontrollable dis-

turbance explanation has not panned out, and increasingly complicated workarounds

were formulated so as to avoid the conclusion that the particle knows about what

will happen at tp. However, the double slit experiment is very strange, and no one

understands it. It is hard to avoid the conclusion that the particle somehow knows

whether or not an observer will determine the path through the diffraction plate. If

a position measurement is made at tp, it is usually said that the particle knows to go

through one slit or the other. As a result, the interference pattern is destroyed due

to the lack of any wave emittance from the other slit. This explanation is unsatis-

fying because the particle should not know anything other than to obey the action

principle.

A superior MCM explanation for the observed phenomenon is that the particle

always goes through both slits [71]. Rather than knowing what the observer will

do at tp, a measurement at the diffraction plate separates ψR and ψL onto different

levels of aleph. The interference pattern is destroyed because orthogonal plane waves

cannot interfere, as in (1.8.10). (Orthogonal plane waves were developed in Section

1.7.3.) The problem that remains is to formulate a mechanism by which the collapse

associated with an intermediate measurement at tp will separate ψR and ψL onto two

different levels of aleph. An alternative mechanism might invoke the action associated

with a transit of the unit cell so that the particle choosing one slit or another in the

presence of an intermediate measurement does reflect the action principle. Crossing

an extra unit cell would have greater action favored by the maximum action principle.

In the remainder of this section, however, we will consider the former process from [71]:

the particle always goes through both slits.

The MCM plane wave ansatz is

ψ(x, t, χ4) = ei(k·x−ωt+βχ
4) . (1.8.12)
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The double slit application requires β whether or not χ4 is dimensionless. To use the

rules for orthogonal plane waves (Section 1.7.3), we must encode the level of aleph

onto the χ4 part of the argument with β. Following the usual notation for

ϕ(x, t) = A0e
ikµxµ = A0e

i(k·x−ωt) ≡
∣∣kµ〉 , (1.8.13)

we will write the ansatz as

ψ(x, t) = A0e
ikAx

A ≡
∣∣kA〉 . (1.8.14)

The minus sign on ωt in (1.8.13) follows from the {−+++} metric signature in H.
The sign on χ4 in (1.8.14) will depend on the {− + + + ±} metric signature in Σ±.

Intermingling for simplicity the abstract and physical coordinates, and ignoring the

constant A0, the orthogonality of MCM plane waves follows as〈
k′A
∣∣kA〉 = ∫ ∞

−∞
dt e−i(ω−ω

′)t︸ ︷︷ ︸
δ(ω′−ω)

∫∫∫
d3x ei(k−k′)·k︸ ︷︷ ︸
δ(3)(k−k′)

∫ ∞

−∞
dχ4 ei(β−β

′)χ4

. (1.8.15)

If the χ4 part is like a small box plane wave (Section 1.7.3), β should be discrete,

and the integral over χ4 becomes the Kronecker δ. If β is continuous, it becomes the

Dirac δ. The case of discrete βn lends itself directly to the identification of lattice

sites or levels of aleph. Since each piecewise χ4
± or χ4

∅ has its origin in a given brane

with a corresponding scale, βn would be a scale factor used to preserve the notion of

disparate relative scale between levels of aleph. This scale must be considered when

taking the inner product of states on different levels of aleph. For instance, the inner

product of states in the µ- and ν-branes on the m and n levels of aleph would be〈
k′A
∣∣kA〉 = 〈ψ′; ênν

∣∣ψ; êmµ 〉 = ∫ d4x ei(kλ−k
′
λ)x

λ

︸ ︷︷ ︸
⟨ψ′|ψ⟩

∫ ∞

−∞
dχ4 ei(|êµ|

m−|êν |n)χ4

︸ ︷︷ ︸
δµνδmn

. (1.8.16)

We have previously obtained the relative scale 2πΦ between two H-branes as the
increase of scale at each labeled brane by an amount proportional to the magnitude

of its ontological specifier, as in Figure 12. The β in (1.8.16) imposes that relative

scale on χ4 in the plane wave state: the scale is the absolute value of êmµ . Considering

the big box case of unbounded plane waves, however, β is continuous rather than

discrete. This continuum of scale factor is also seen in Figure 12. Using notation

in which the continuous χ4 parameter associated with the primed level of aleph is
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Figure 12: The monotonic increase of |êµ| across the unit cell’s labeled branes suggests
a continuum of scale factor β.

χ′=β′χ4 + c′, we would write〈
ψ′; êν

∣∣ψ; êµ〉 = 〈ψ′∣∣ψ〉 ∫ ∞

−∞
dχ4 ei(χ

′−χ′′)︸ ︷︷ ︸
δ(β′−β′′)

. (1.8.17)

Either of (1.8.16) or (1.8.17) is sufficient to motivate the wave-particle duality

observed in the double slit experiment. All that is required for (1.8.9) and (1.8.10)

is that β identifies the level of aleph, and that waves on different levels of aleph are

orthogonal. With this condition written plainly, future work must devise a mechanism

by which a measurement at tp will separate ψR and ψL onto different levels of aleph.

1.8.5 An Application for the Theory of Negative Time

As state reduction (wavefunction collapse) is understood in the present theory, a

measurement at time t0 is essentially such that

ψ̇(t0) =∞ . (1.8.18)

This is inherently problematic because ∞ is analytically intractable, and ψ̇ obeys

iℏψ̇ = Ĥψ . (1.8.19)

If ψ̇ =∞, Schrödinger’s equation is only satisfied with unphysical, infinite energy.

Furthermore, the time arrow is such that infinite ψ̇ will cause total decoherence of the

wavefunction rather than total collapse. In this section, we will sketch a theoretical

mechanism for the apparent infinite rate of wavefunction collapse, and for a period

of Schrödinger coalescence following the usual period of Schrödinger diffusion.

Even without a diffraction grating between a source and a scintillation screen, it
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is not known how the wavefunction might undergo smooth diffusion in transit and

then suddenly collapse to a point on the screen. Wavepackets evolving under the

Schrödinger equation can only become broader, never narrower. It is also not known

whether the wavefunction collapses to a δ function on the screen or only down into

the region spanned by a finite spot of scintillation. The state’s confinement to the

spot may be better associated with the time that the scintillation photons reach the

observer than it is with the interaction between the beam and the screen. The state

at the time of that interaction, b as opposed to B, may be a δ function. So, despite

the observer’s knowledge being limited by the experimental resolution, we might ask

what the wavefunction is really doing on the screen. Is it proper to consider a theory

in which the observed interaction between the screen and the particle outputs a δ

function? While the answers to such questions are not known, it is known that

nothing more than one’s preference supports the argument against asking what is

really happening in QM.1

QM is such that the wavefunction obeys Schrödinger’s equation at all times except

when measurements are made. There, singular, instantaneous collapse flies in the face

of all other known physical processes. Fractional distance analysis offers new tools for

recasting ψ̇=∞ as another expression not at odds with physics as usual. Any rate

of collapse in the neighborhood of infinity must be observationally indistinguishable

from an infinite rate of collapse, so we may replace ψ̇=∞ with

ψ̇ ∈ R̂ =⇒ ψ̇(t0) = ℵX + b . (1.8.20)

(R̂ is the positive branch of R less the neighborhood of the origin and the non-

arithmatics, as in Section 1.6.1.) With this rate of collapse, iℏψ̇(t0)=Ĥψ(t0) implies

a finite Hamiltonian:

|ψ|2 ≤ ∞

ψ̇(t0) ∈ R̂

 =⇒
∣∣Ĥψ∣∣ ∈ R̂ . (1.8.21)

Energy in the neighborhood of infinity is consistent with the principle of maximum

action discussed in Section 1.5. Presuming free space between a beam source and a

scintillation screen, energy in the neighborhood of infinity requires that we write

Ĥ = Ĥ0 + Ĥint . (1.8.22)

1’t Hooft’s non-MCM cellular automata model of QM addresses similar questions about what really happens in
QM with novel objects such as ontological states, beables, and changeables. The cellular automata model is parsed for
future inquiry in Section 58.
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Here, the interaction energy associated with ψ̇∈ R̂ vanishes everywhere except for the

time and place of a measurement. Ĥint should not be a function of the chronological

time because the observer may choose to make a measurement at arbitrary times.

Such a function could not be defined until after t0 was chosen. Referring back to

the double slit experiment, Ĥint cannot be a function of the spatial variables alone

because collapse only happens at the spatial position of the slits when a measurement

is made. Therefore, Ĥint should be a function of the chirological time such that the

arbitrary t= t0 is associated with a regularized periodicity in χ4. For example, we have

associated the preparation of a beam with measurement A in H0, so the observation

of a subsequent scintillation spot in the path of the beam should be associated with

measurement B in H1. Between A and B, event b must occur: the interaction of the

beam and the scintillator. We will take that as the place where ψ̇ suddenly becomes

very large. This sudden change of scale in ψ̇ is well associated with the change of the

level of aleph at ∅ which is located at a constant abstract distance between successive

H-branes. Perhaps we might associate event b with the ∅-brane and set a δ-like Ĥint

term at the location of that topological obstruction between Ω and A. A δ function

is a good candidate for an energy that vanishes everywhere except for the event of

wavefunction collapse when it becomes infinite or enters the neighborhood of infinity.

Now we have suggested a method by which one might obtain the large |ψ̇| observed
in experiments, but it remains to explain the sign on ψ̇. For that, we will refer to the

theory of negative time. A good application will be to implement dynamical collapse

as a step of reversed time evolution in M̂3 through a region with a reversed time arrow

such as Σ−. (We may also introduce a reversed time arrow in the χ4
∅ coordinates

between ∅ and A if needed.) Diffusion by Schrödinger evolution in positive time will

become coalescence in negative time, as is required for wavefunction collapse.1 Since

this step occurs on the higher level of aleph associated with Σ−
{k+1}, we may appeal

to the scale of that level of aleph generating the appearance of discontinuous, non-

dynamical collapse as observed from the lower level. The problem of ψ̇ ̸∈R0 might

be further simplified through an appeal to infinite relative scale between two levels

of aleph. Using ψ̇{k} to refer to the rate of change given in the scale of Hk, we may

obtain

ψ̇{0} = ℵX + b −→ ψ̇{1} =
ψ̇{0}

ℵY
=
X
Y

.2 (1.8.23)

1Theorem 7.5.29 in [2] shows that two parameters on a curve, one on a higher level of aleph than the other, cannot
share an origin, so reverse time coalescence should give δ’s at locations other than those associated with prior collapse.

2Arithmetic in the neighborhood of infinity [2] is such that (ℵX + b)/(ℵY + c)=X/Y∈R0. The loss of information
about b in (1.8.23) may have applications toward information loss in quantum processes which exceed the scope of
the present section.
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Here, we assume that normalization of the observer’s reference frame onto the k=1

level of aleph requires division by ℵY = Y∞̂. This choice of scale, or a similar one,

makes it possible to resolve the apparent instantaneous rate of change observed on

one level of aleph as a rate in the neighborhood of the origin on the other level of

aleph.

For the present theoretical application, we must refer to the original picture of

M̂3 executing t0→ tmax→ tmin→ t1 where t1 = (t0 + ∆t) [30]. We will identify this

process with the current one so that Ω is associated with tmax, and A is associated

with tmin. Essentially, we will require that ∅ is a big bounce separating two cycles of

cosmology, and that it can be reached in the x0 direction or the χ4 direction. This

fits an interpretation of ∅ as a black brane or a black hole/white hole pair.1 Having

established this identification of paths in principle, we will examine the evolution of a

wavepacket across the unit cell parameterized with the chronological time. The steps

of M̂3 will be taken as t0→∞̂, ∞̂→−∞̂, and −∞̂→(t0 +∆t).

Given a δ function initial condition at a t=0 in H0, a particle subjected only to

the free particle Hamiltonian Ĥ0 evolves as

ψ(x, t) =


δ(x) for t = 0√

m

2πℏt
exp

(
−iπ
4

)
exp

(
imx2

2ℏt

)
for t > 0

. (1.8.24)

When the wavepacket gets to Ω or ∅ associated with chronological timelike infinity,

we have

ψ(x, ∞̂) =

√
m

2πℏ∞̂
exp

(
−iπ
4

)
exp

(
imx2

2ℏ∞̂

)
= 0 .2 (1.8.25)

This final state demonstrates an important difference between the wave equation and

the heat equation: the wave equation can recover initial conditions by reversing time,

but it is impossible to recover the initial conditions by reversing the heat equation.

Starting with ψ(x,−∞̂) = 0 as the initial condition for a final leg of M̂3 will not

result in a recondensed δ function if ψ̇(x,−∞̂) = 0, which is the present case. To

reconstitute a δ function by reverse time Schrödinger evolution from the ψ=0 initial

condition, a non-vanishing ψ̇ initial condition is required. As a matter of simulating

this condition with numerical analysis, we should consider the backward difference

1If the periodicity of x0 associated with cosmological bouncing sets the x0 axis as a great circle of a sphere, the
periodicity on χ4 is necessarily more complicated than a second great circle. Great circles of a sphere intersect twice,
but we desire that chronos and chiros should intersect at the past and future bounces, and in the present. Scribing
this triple intersection onto a sphere gives chiros a character of chirality or helicity relative to chronos.

2ψ=0 does not satisfy the ⟨ψ|ψ⟩=1 probability condition. We might avoid this problem by citing the zero volume
of ∅ in the physical coordinates. Even if ψ did not equal zero, the integral over a pointlike ∅ singularity would not
be equal to unity. However, we might appeal to the changing level of aleph to resolve the point as a volume.
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formula approximation for the first derivative:

ψ̇(x, t) =
ψ(x, t)− ψ(x, t− δt)

δt
. (1.8.26)

By imposing the condition that ψ(x, t−δt) was non-zero, meaning that the wavefunc-

tion did not become identically zero until the last step of a Gaussian integration to

infinity, we will obtain a non-zero ψ̇ initial condition for the M̂3 step of −∞̂→ t0+∆t.

We will use the M̂2 step of ∞̂→−∞̂ to reverse the sign on ψ̇. A cursory examination

of (1.8.24) shows that ψ=0 for any t ̸∈R0, so the M̂1 step should evolve ψ only to the

end of the neighborhood of the origin. Evidently, we are working in the coordinates

where ∞̂ is identified with F0, as in Section 1.6.8 (Figure 9). If we identify ∞̂ with

the first time beyond time in the neighborhood of the origin, then ψ(x, t−δt) ̸=0, and

the backward difference formula for the derivative will facilitate reconstitution of the

δ function beyond infinity. That step will begin with a non-vanishing first derivative.

The method described above will move δ(x) in H0 to δ(x) in H1. However, the

chronological time inH1 is t0+∆t. Decoherence occurs in the time interval (t0, t+∆t),

so if a detector collapsed the state to δ(x) at event a, the detector should collapse it

to δ(x±∆x) at event b. Uncertainty is such that repeated measurements of position

should differ somewhat. As a proposal for obtaining the ∆x spatial variation needed

for agreement with experiments, we will refer to the irrational part of the relative

scale between levels of aleph. This is the 2πΦ appearing in M̂3|ψ; π̂0⟩= 2πΦ|ψ; π̂1⟩
(wherein infinite relative scale may be implicit in π̂k → π̂k+1.) When rescaling the

observer’s frame onto a new level of aleph as in (1.8.23), and when the scale is an

irrational number, we may achieve wavefunction decoherence leading to δ(x±∆x) as

a novel numerical effect.

Due to an inability to exactly represent irrational numbers as floats, it will not be

possible to exactly reverse diffusion in Σ+ with coalescence in Σ− when x is altered

by an irrational scale factor. For instance, we have shown that the coordinate trans-

formations between the {xµ+, xµ, x
µ
−} physical coordinates are all such that the entries

in the transformation matrix are real numbers, but the relationship that sets t= ∞̂
as a conformal infinity at χ4

+=Φ is likely to have a function in it, e.g.:

t(χ4
+) = tan

(
πχ4

+

2Φ

)
=⇒ t(Φ) =∞ . (1.8.27)

In turn, the transformation matrix between physical and abstract coordinates will

have non-constant function entries whose chain rule properties under differentiation

are much different than the static scale factors among the different branes’ physi-
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cal coordinates. Upon irrational rescaling, the appearance of Φ in the argument of

functions periodic in 2π will inevitably require float-precision approximations. The

associated rounding error might be useful for producing what QM assigns as stochas-

tics to dynamics in the MCM. δ(x) in H0 will be reconstituted as δ(x ±∆x) on H1

simply due to rounding error even if the Gaussian time steps are exactly reversed.

Furthermore, when Φ appears in the periodic argument of functions such as ex, the

accumulation of rounding error across many levels of aleph will never lead to runaway,

unphysical solutions because the error will be taken modulo the period. The rounding

error pushed through the function’s periodicity may lead to behaviors similar to sin-

gle slit diffraction particles appearing randomly on a scintillation screen. One would

attempt to the write the correlation function describing the rate of decoherence of a

wavefunction between t and t+∆t in terms of the rounding error. The language of

Lyapunov exponents may be appropriate for such a characterization because chaos is

a byproduct of determinism.

1.9 The Fine Structure Constant

Dirac is quoted as saying the origin of the fine structure constant is, “the most

important unsolved problem in physics,” and rightly so. The link between electro-

magnetism, special relativity, and quantum theory given by the inclusion of e, c, and

ℏ in

αQED =
e2

4πε0ℏc
, (1.9.1)

is a tantalizing hint of some fundamental unification which has escaped detection in

prevailing theories. In that vein, Feynman wrote the following [87].

“It is a simple number that has been experimentally determined to be

close to 0.08542455. (My physicist friends won’t recognize this number, be-

cause they like to remember it as the inverse of its square: about 137.03597

with about an uncertainty of about 2 in the last decimal place. It has been a

mystery ever since it was discovered more than fifty years ago, and all good

theoretical physicists put this number up on their wall and worry about

it.) Immediately you would like to know where this number for a coupling

comes from: is it related to pi [emphasis added ] or perhaps to the base of

natural logarithms? Nobody knows. It’s one of the greatest damn myster-

ies of physics: a magic number that comes to us with no understanding by

man. You might say the ‘hand of God’ wrote that number, and ‘we don’t

know how He pushed his pencil.’ We know what kind of a dance to do
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experimentally to measure this number very accurately, but we don’t know

what kind of dance to do on the computer to make this number come out,

without putting it in secretly!”

The MCM value for the fine structure constant (FSC) is very much “related to pi”:

α−1
MCM = 2π +

(
Φπ
)3 ≈ 137 . (1.9.2)

The original motivation for M̂3 in [30] was nothing more than a requirement to

generate the (Φπ)3 term in α−1
MCM. The other context for M̂3 and Υ̂ = Û + M̂3

was reverse engineered from that. (Appendix A reviews the original ideation for

M̂3.) Since the subsequent introduction of the chirological variables has called into

question the ∂x + ∂3t structure of

Υ̂
∣∣Ψα

〉
=
(
∂x + ∂3t

)∣∣Ψα

〉
= α−1

MCM

∣∣Ψα

〉
, (1.9.3)

in this section we will use α̂ such that

α̂
∣∣Ψα

〉
= α−1

MCM

∣∣Ψα

〉
. (1.9.4)

Then we will return to Υ̂ in Section 1.11 to discuss its simultaneous roles regard-

ing αMCM and total evolution combining the chronological and chirological evolution

operators Û and M̂3. A 0.4% discrepancy between αMCM and αQED is discussed in

Section 1.9.4.

1.9.1 Fine Structure in the Unit Cell

The best way to find a place for α̂ and/or its eigenstate might begin with a survey

of physics’ existing roles for αQED: the electron g − 2, the Josephson junction, Som-

merfeld’s work regarding the fine structure splitting of atomic energy levels, etc. For

each given context, one would seek to amend existing relationships and interpretations

with principles unique to the MCM.

The most elementary physical statement of the FSC is the ratio of two energies:

the energy Eee needed to close the distance d between two electrons and the energy

Eγ of a photon with wavelength λ=2πd:

Eee
Eγ

=

(
e2

4πε0d

)
(
hc

2πd

) =
e2

4πε0ℏc
= α . (1.9.5)
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Figure 13: On the right, MCM fundamental matter particles are quanta of spacetime
spanned by xi (space) and either of x0 or χ4 (time). MCM fundamental
bosons are constructed as connections of matter particles. On the left, the
objects of the unit cell are easily parsed as two electrons and a photon.
Each H-brane is an x0xi quantum associated with the electron, and the
photon is formed as the union of two x0xi quanta. The pictured arrange-
ment of the unit cell emphasizes the chronological continuity of x0 between
H0 and H1.

The MCM particle scheme in Figure 13 (also Section 0.3) is such that electrons are

quanta of spacetime spanned by xi and x0. Photons are constructed from pairs of such

quanta. Therefore, the Eee/Eγ definition of α suggests the ratio of the energy between

two H-branes to the energy of a complete unit cell. As in Section 1.4 regarding MCM

spin spaces, the {A,H,Ω} structure is evocative of the three spin states afforded to

photons. Even the {Σ+,∅,Σ−} structure suggests the massless photon’s restriction

to two polarization directions. Work is required to develop the MCM particle scheme

to the point where more concrete statements can be made regarding the Eee/Eγ ratio.

Furthermore, the hydrogen atom’s electron and three nuclear quarks may be

matched with an x0xi quantum and three {+,∅,−} variants of the χ4xi spacetime

quantum. Since the hydrogen atom is foremost among α’s physical settings, one

would study the cases for the association of hydrogen’s constructive elements with

the structure of the unit cell. Particularly, we have associated the subscripting on χ4

with QCD color charge, so the up-up-down quark construction of the proton does not

precisely match the three variants of χ4. Instead, the particle scheme is such that the

proton is constructed as two right-handed χ4xi spacetimes, and one left-handed. The

intuitive association in Figure 13 is that the Σ± between two H-branes combine with

another instance of Σ+ or Σ− such that one has opposite helicity to the other two.
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Such issues remain to be studied and developed. Particularly, the introduction of ∞̂
following the initial formulation of the MCM particle scheme in [6] is such that we

might differentiate pairs of leptons or quarks as triads being anchored at the origin

0̂ or at ∞̂ which functions as the origin of a neighborhood of infinity. In this way,

the uud nucleon structure might be associated with ∅ attached to 0̂ and each of A,Ω
attached to ±∞̂. A polar model of the unit cell as a 5D sphere whose radial direction

is χ4 is also in order.

1.9.2 The Fine Structure Constant as an Eigenvalue

The FSC is observable, so it should be the real eigenvalue of a Hermitian operator α̂.

An ansatz for α̂ is

α̂ =
(
i∂0
)
+
(
i∂4
)3

, (1.9.6)

where

i∂0
∣∣Ψα

〉
= 2π

∣∣Ψα

〉
, and

(
i∂4
)3∣∣Ψα

〉
=
(
Φπ
)3∣∣Ψα

〉
. (1.9.7)

The i∂ operator is a sign conjugated momentum operator in the position represen-

tation or a position operator in the momentum representation. Such operators are

Hermitian, and the sum of two Hermitian operators is Hermitian.1 It follows that α̂ is

Hermitian. Its eigenvalue 2π+(Φπ)3 is real, so α̂ meets QM’s minimum requirements

for the operator representation of an observable.

Given the proposed form of α̂, the eigenstate with eigenvalue α−1
MCM is

Ψα(x
0, χ4) = exp

{
−i
(
2πx0 + Φπχ4

)}
. (1.9.8)

The particle-in-a-box wavefunction used for Ψα in [3, 30] was not an eigenstate of

α̂, but a former trivial deficiency is remedied in (1.9.8). Still, it remains to find

the meaning of this Ψα state. Since it is our desire to associate the FSC with the

structure of the unit cell, we should consider the case in which Ψα is a plane wave

whose wave vector k or kµ is an MCM reciprocal lattice vector in the MCM direct

lattice. The case in which Ψα is the state of the lattice rather than a state subjected

to the lattice’s regularity structure must be considered. Association of Ψα with the

lattice itself will motivate a context for the Υ̂ total evolution operator to return a

universal eigenvalue when it acts on Ψα. We will return to Υ̂ in Section 1.11.2

1Since the momentum operator is defined on an infinite-dimensional Hilbert space, the Hermiticity condition
Ô=Ô† is technically replaced with a broader condition of self-adjointness. This condition requires that operation to
the right and operation to the left with the conjugate transpose produce the same result.

2A Schrödinger equation for the identity operator was an idea for the origin of α which was omitted from this
book because it could not be quickly developed. However, one might attempt to write a Schrödinger equation for the
identity operator to characterize changing scale from one brane to the next. This exercise would be guided by the
intention to associate αMCM with the changing level of aleph.
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1.9.3 Plane Waves

The fine structure constant should be a characteristic value associated with the unit

cell. Per Section 1.7.3, plane wave states bounded in a finite region are written as

ϕj(r) =
eikj ·r
√
V

, (1.9.9)

where kj is the j
th quantized wavenumber allowed by the finite boundary conditions.

Although we expect (Φπ)3 to come from a third derivative, the V dependence in ϕj
gives a hint of what is needed for αMCM. (Φπ)

3 is the volume of a 3D box whose sides

have length Φπ. The volume interpretation is interesting and deserving of further

study because π̂ and Φ̂ are associated with the H and Ω bounding branes of Σ+ while

the A and H bounding branes of Σ− are associated with 2̂ and π̂. This association of

2 and π in Σ−, and Φ and π in Σ+ is oddly similar to the arrangement of numbers in

2π+(Φπ)3. However, the association of V with αMCM does not directly relate to an

operator eigenvalue α̂|Ψα⟩= α−1|Ψα⟩, apparently. Instead, the volume would show

up in the allowed quantized kj associated with ∂x acting on ϕj. The discrete kj and

ωj are

kj = 2π

(
jx
Lx
,
jy
Ly
,
jz
Lz

)
, and ωj =

k2j
2ℏµ

, (1.9.10)

and we might expect some quantized spectrum for β in the MCM ansatz

ψj(x, t, χ
4) = exp

{
i
(
kj · x− ωjt+ βjχ

4
)}

, (1.9.11)

where j becomes a tuple of five integers. Quantization in β would follow from the

unit cell’s boundary conditions along the χ4 direction.

Considering (1.9.11), spatial derivatives hitting x will produce a sum of three

analytical terms not compatible with αMCM. The original use case for ∂x in [30] relied

on a reduction to one spatial dimension (Appendix A), but the gradient acting on a

3D spatial wavefunction will return three summed factors of 2π, two of which do not

appear in α−1
MCM. This suggests that α̂ should be a combination of ∂0 and ∂4, or a

combination of {∂+, ∂∅, ∂−} derivatives. Allowable forms for α̂|Ψα⟩ include

α̂
∣∣Ψα

〉
= i
(
∂0 + ∂4

)
ei(kj ·x−2πt−Φπχ4) = 2π +

(
Φπ
)3

, (1.9.12)

and

α̂
∣∣Ψα

〉
= i
(
∂− − ∂3+

)
ei(kj ·x−ωjt−2πχ4

−+Φπχ4
+) = 2π +

(
Φπ
)3

. (1.9.13)

Following the program of the particle in a box developed in [3, 30], one would deter-
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mine which geometries are consistent with a given quantization for ω and β. However,

a problem which remains will be an unbounded quantization spectrum leading to an

infinite tier of eigenvalues for α. Experiment does not suggest that the FSC is only one

dimensionless number from a large catalog of such numbers. At best, αMCM≈αQED is

one of three or four dimensionless coupling constants, the others being αWeak, αStrong,

and possibly the numerically disparate αGrav.

1.9.4 Disagreement Between αMCM and αQED

The L3 Collaboration writes the following [88].

“At zero momentum transfer, the QED fine structure constant α(0) is

very accurately known from the measurement of the anomalous magnetic

moment of the electron and from solid-state physics measurements:

α−1(0) = 137.03599976(50) . (1.9.14)

In QED, vacuum polarization corrections to processes involving the ex-

change of virtual photons result in a Q2 dependence, or running, of the

effective fine-structure constant, α(Q2).”

Figure 14 shows that α−1
QED tends to decrease with increasing energy, so it is notable

that

α−1
MCM = 2π +

(
Φπ
)3 ≈ 137.62788 , (1.9.15)

is higher even than what the L3 Collaboration have called α−1(0):

α−1(0)− α−1
MCM ≈ −0.59 . (1.9.16)

Therefore, it must be noted that the energy of scale of a process is not absolute. It

depends on the renormalization scheme as well as the manner of association between

Q2 and the Mandelstam variables, as in Figure 15. It is a common convention to set

the energy scale of αQED to the rest energy of the electron Ee=511keV so that

αQED ≡ α(0) −→ αQED ≡ α(E2
e ) =

e2

4πε0ℏc
. (1.9.17)

This allows us to suppose that α−1
MCM>α

−1
QED might be the true α−1(0). Though the

small scale of keV relative to the GeV scale in Figure 14 suggest that αMCM probably

does not lie on the linear trend of the standard model, the kinks at low energy the

end of the supersymmetric standard model suggest that the uncharted low energy
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Figure 14: This figure shows an updated plot of Amaldi, de Boer, and Fürstenau
[89]. In units natural to high energy physics, the αi plotted here are the
electromagnetic, weak, and strong coupling constants respectively. The
standard model (left) nearly unifies the coupling constants of the forces,
but the (minimal) supersymmetric standard model (right) exactly unifies
them at a given energy scale. These famous plots refute any detractors’
claims about indisputable precision in the currently accepted value of αQED

ruling out a physical basis for αMCM.

Figure 15: Plots of ∆α vs E are taken from a seminar of Venanzoni [90] regarding
results from the KLOE collaboration [91]. The s and t variables are the
usual Mandelstam variables for particle scattering. With time increasing
to the right in the inset particle diagrams, one observes that the exchanged
photon moves through the timelike and spacelike regions in the respective
interactions.
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region might accommodate αMCM as a value not on the trend line. Since the units of

Figure 14 are not ones in which α−1
QED ≈ 137, a calculation is required to determine

whether even the accepted constant lies on the trend line.

Several measurements of the running of α suggest that αMCM is a reasonable num-

ber. The main results of the L3 collaboration reported in [88] were

α−1(−2.1)− α−1(−6.25) = 0.78± 0.26
(
∆Q2 = 4.15

)
(1.9.18)

α−1(−12.25)− α−1(−3435) = 3.80± 1.29
(
∆Q2 = 3422

)
,

where Q2 is in units of GeV2. Referring to (1.9.16), one notes that

0.59 < 0.78 < 3.80 . (1.9.19)

This suggests the Q2 difference between αMCM and αQED is less than 4GeV2. This

agrees with the supposition for αMCM≡α(0) and αQED≡α(E2
e ), if it isn’t a bit larger

than would be expected. The result reported by the OPAL collaboration in [92] was

∆α(−6.07)−∆α(−1.81) ≈ 0.0044
(
∆Q2 = 4.26

)
. (1.9.20)

Using

α(Q2) =
α(0)

1−∆α(Q2)
, (1.9.21)

(given in [88]) to compute

∆αQED = 1− αMCM

αQED

≈ 0.0043 , and ∆αMCM = 0 , (1.9.22)

we find

∆α−1
QED −∆α−1

MCM ≈ 0.0043 . (1.9.23)

OPAL’s result also fits the present picture of αMCM. In [91], the KLOE collaboration

reports a measurement in the low energy region omitted from Figure 14. They find∣∣∣∣α(Q2
avg)

α(0)

∣∣∣∣2 ≈ 1.029 , for 0.605GeV ≤ Q ≤ 0.975GeV .1 (1.9.24)

Comparing to the present model, we find∣∣∣∣ αQED

αMCM

∣∣∣∣2 ≡ ∣∣∣∣α(E2
e )

α(0)

∣∣∣∣2 ≈ ∣∣∣∣137.03600−1

137.62788−1

∣∣∣∣2 = 1.009 . (1.9.25)

1This value is averaged from Table 2 in [91].
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So, while the discrepancy between αMCM and αQED might have seemed high, KLOE

reports much greater running in the low energy region than might be intuited from

the results of the L3 and OPAL collaborations [88, 92], or from Figure 14 [89]. In

addition to the mild kinks at the low energy range of the supersymmetric model and

the wide running observed by KLOE, the sharp resonance structure observed for α

running in the timelike region (Figure 15) might easily accommodate the present

supposition for αMCM.

The MCM value for the fine structure constant is well within the experimental

bounds. The fact that α−1
MCM>α

−1
QED is well fitting to the theme of the MCM. Since

the running of the fine structure constant is associated with an effective charge on the

electron due to screening by vacuum polarization, a hypothetical α−1
MCM<α

−1
QED would

force us to associate αMCM with some effective α(Q2) not well suited to the desired

absoluteness of a fundamentally ontological picture. As it is, however, α−1
MCM>α

−1
QED

allows to choose αMCM = α(0) as the perfect, non-effective value that one might

associate with an underlying geometric structure of reality.

Overall, the main purpose of this section has been to refute detractors’ claims

that high precision in the currently accepted value of αQED categorically rules out

a physical basis for αMCM. To that end, the following relevant excerpts appear in a

publication of NIST [93] and a publication of Fritzsch [94].

“Indeed, due to e+e− and other vacuum polarization processes, at an

energy corresponding to the mass of the W boson (approximately 81 GeV,

equivalent to a distance of approximately 2 × 10−17m), α(mW ) is approxi-

mately 1/128 compared with its zero-energy value of approximately 1/137.

Thus the famous number 1/137 is not unique or especially fundamental.”

“[A]t energies which were reached by the LEP–Accelerator,1 of the order

of 200 GeV, the associated value of the finestructure constant is more than

10% higher than at low energy. In any case this signifies that one should

not attach a specific fundamental meaning to the numerical value of the

finestructure constant.”

These sources state what all subject matter experts already knew: detractors’

citations to the 0.4% FSC discrepancy as conclusive evidence of terminal wrongness

are nothing but the libelous vomit of those who would prey on the non-expertise of

certain third parties.2

1These results are found in [88].
2An example of such third parties would be the ones for whom Ellis and You concocted their lie about “reasonable

doubt” in [28].
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1.9.5 Grand Unification

The variation of the fundamental coupling constants is the matter at the heart of the

grand unification of fundamental forces which the MCM hopes to achieve, as in Figure

14. In addition to seeking unification of the coupling constants at a given energy scale,

now we might explore cases for all three αi(0) to fall out of the ontological numbers

combined with the geometry of the unit cell. Even the fourth coupling constant for

gravity which is omitted from grand unification due to its vastly disparate scale (the

hierarchy problem) might now be studied as a characterization of the changing scale

from one level of aleph to another.

1.10 Quantum Gravity

1.10.1 Einstein’s Equation

There are a few equations which can be used to initiate the MCM route to Einstein’s

equation. The original route in [3] was as follows. Suppose that the third chronological

time derivative of the ansatz

ψ(x, t, χ4) = exp
{
i
(
kx− ωt+ βχ4

)}
, (1.10.1)

is equal to the translation operator definition of M̂3 (Section 1.7.1):

M̂3
∣∣ψ; π̂〉 = M̂3

∣∣ψ; π̂〉
∂30
∣∣ψ; π̂〉 = Ĵ−Ĵ∅Ĵ+

∣∣ψ; π̂〉 (1.10.2)(
− iω

)3∣∣ψ; π̂〉 = 2πΦ
∣∣ψ; π̂〉

8iπ3ν3
∣∣ψ; π̂〉 = 2π

∣∣ψ; π̂〉+ 2πφ
∣∣ψ; π̂〉 .1

The final line follows from Φ= 1 + φ. In Section 1.10.3, we will give a new, better

motivation for operating differently with M̂3 on the left and right sides of (1.10.2).

The purpose here, however, is to present the mechanism as it appeared previously.

In earlier sections, we discussed two different cases of orthogonality for MCM

states. First, wavefunctions in each unit cell might be orthogonal from those in other

unit cells. Separating the scale factor to maintain ⟨ψ|ψ⟩=1, this condition is written〈
ψ; êmµ

∣∣ψ; ênν〉 = δmn∥êmµ ∥|ênν∥ , (1.10.3)

1In [3], the convention was such that M̂3|ψ; π̂1⟩= iπΦ2|ψ; π̂2⟩ rather than the current convention for M̂3|ψ; π̂0⟩=
2πΦ|ψ; π̂1⟩.
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where m,n refer to the level of aleph. The other picture of orthogonality sets wave-

functions in each brane orthogonal from those in every other brane:〈
ψ; êmµ

∣∣ψ; ênν〉 = δµνδmn∥êmµ ∥|ênν∥ . (1.10.4)

If we are to proceed as in [3], it is required that we adopt the former convention

of (1.10.3). The variants of ψ located in the A-, H-, or Ω-branes of any one unit

cell cannot be linearly independent from each other. Linear dependence allows us to

proceed from (1.10.2) by inserting the identity and rearranging the hats:1

8iπ3ν3
∣∣ψ; π̂〉 = 2π

∥Φ̂∥
∥Φ̂∥

∣∣ψ; π̂〉+ 2πφ
∥2̂∥
∥2̂∥

∣∣ψ; π̂〉
8iπ3ν3

∣∣ψ; π̂〉 = 2π∥π̂∥
Φ

∣∣ψ; Φ̂〉+ 2πφ∥π̂∥
2

∣∣ψ; 2̂〉 (1.10.5)

8πiΦν3
∣∣ψ; π̂〉 = 2

∣∣ψ; Φ̂〉+ ∣∣ψ; 2̂〉 .

Due to the constant 8π appearing at the end of (1.10.5), and due to that alone, the

resultant expression was recognized to be in the form of Einstein’s equation

8πTµν = Gµν + gµνΛ . (1.10.6)

(The overall research program leading to the final line of (1.10.5) is summarized in

Section 1.10.7.) Recasting (1.10.5) as Einstein’s equation requires the introduction of

new variables:

iΦν3
∣∣ψ; π̂〉→ Tµν

2
∣∣ψ; Φ̂〉→ Gµν (1.10.7)∣∣ψ; 2̂〉→ gµνΛ .

Substitution of these variables back into the final line of (1.10.5) yields (1.10.6).

The interpretation of this result is that general relativity describes a condition in

which the present is the sum of the past and the future. Intuitively, we have the

stress-energy tensor Tµν associated with the H-brane. Less intuitively, the Einstein

tensor Gµν is associated with Ω, and the cosmological constant is attached to A. The
meaning of Tµν ∈H is clear enough, but the meanings of the other assignments are

1This procedure for rearranging hats follows (1.2.22) in Section 1.2.1.
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not obvious. Furthermore, we have arbitrarily chosen the entire Einstein tensor

Gµν ≡ Rµν −
R

2
gµν , (1.10.8)

for association with Ω when we might have let Λ→ 0 and assigned the Ricci tensor

and the Ricci scalar to Ω and A through maps other than those in (1.10.7). We have

also assumed that the new variables are in one-to-one correspondence with the states

rather than with their linear combinations.

The desire to phrase general relativity as a statement of the present being equal to

a sum a contributions from the past and future is confounded (or complicated) when

we include an iterator for the level of aleph:

M̂3|ψ; π̂⟩=2πΦ|ψ; π̂⟩ −→ M̂3|ψ; π̂k⟩=2πΦ|ψ; π̂k+1⟩ . (1.10.9)

With the k iterators, Einstein’s equation tells us that the present on one level of aleph

is equal to a sum of contributions from the past and future relative to some time in

the future. Unfortunately, this interpretation is much less clean than what can be

said in the absence of the iterators. To make better sense of the place for Einstein’s

equation, we must first refer to the picture of MCM cosmology states which have gone

untreated thus far.

1.10.2 MCM Cosmology States

Even before the MCM particle scheme was introduced to solve the fundamental prob-

lem of QFT (Section 0.3) [6], the universe was treated as a quantum particle to resolve

another question about why matter dominates over anti-matter in the cosmos [31].

Upon introducing a reverse time universe in fulfillment of a requirement for conserved

momentum at a big bang (or big bounce), an eigenbasis of quantum cosmology

states was defined for a time arrow operator [40]:

T̂
∣∣t+〉 = ∣∣t+〉

T̂
∣∣bounce〉 = 0 (1.10.10)

T̂
∣∣t−〉 = −∣∣t−〉 .

|t+⟩ is the state of a universe U+ whose time arrow is such that the energy of that

universe is positive-definite. |t−⟩ is the state of U− whose energy is negative-definite.

|bounce⟩ is the state of U± simultaneously collapsed to a singularity.1 An observer’s

1In the MCM’s original big bounce treatment [31, 40], |bounce⟩ referred to the apex of a “quantum geometric
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inability to distinguish |t±⟩ led to the |t⋆⟩ superposition as the observer’s present

moment. In quantum theory, ignorance about eigenstates is represented with super-

positions of eigenstates, as is the case for Schrödinger’s cat. The observer writes∣∣t⋆〉 = ∣∣t+〉+ ∣∣t−〉 , (1.10.11)

when he is unable to determine if his present moment belongs to a positively or nega-

tively increasing continuum of time. The |t⋆⟩= |t+⟩+|t−⟩ relationship is important for

MCM electrogravity (Section 18) and the connection of the unit cell to KKT (Section

17) [7]. A simple statement of what it means for the present to be defined as the sum

of components from the past and future is found in the definition

Aµ =
1

2
A+
µ +

1

2
A−
µ . (1.10.12)

This says that the EM potential 4-vector Aµ in H is defined by A±
µ in Σ± (Section

16) [7]. The metric in H defined as a superposition of g±AB as χ4
± → 0 is another

example. The exact details of these dependencies remain to be worked out, but we

have clarified what it means for the present to be defined as a sum of contributions

from the past and future.

The MCM supposes that a cosmogenesis bounce event is equivalent to spontaneous

pair creation in the quantum vacuum.1 In [40], the M̂CM operator was introduced

to affect this pair creation as

M̂CM
∣∣bounce〉 = ∣∣t+〉+ ∣∣t−〉 .2 (1.10.13)

The fourth time state |t⋆⟩ is like a state in a Hilbert space of states at time t0
corresponding to the present. Due to certain likenesses between the singular present

moment and the singular apex of a big bounce, the present was identified with the

bounce as ∣∣t⋆〉 ≡ ∣∣bounce〉 =⇒ T̂
∣∣t⋆⟩ = 0 . (1.10.14)

Thus, the convergence of U± on the bounce was associated with the convergence of

the past and future on the present. Subsequent work now suggests that the |t⋆⟩ and
bounce” rather than a true singularity. However, the language of quantum geometry has since been deprecated in the
MCM. The original formulation made an appeal to Ashtekar’s “repulsive force of quantum geometry” [58] to avoid
total topological collapse at the bounce, but it is likely that Ashtekar’s avoidance of total collapse was only an artifact
of his numerical algorithms, in the opinion of this writer. Presently, we do associate ∅ with a topological singularity
of infinite curvature.

1A pair of universes coming into existence spontaneously is like pair creation in the vacuum while the total bounce
process for a crunch followed by a bang is like annihilation to a photon followed by γ→e+ p.

2The M̂CM operator was called L̂QC in [40].
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|bounce⟩ cosmology states should be associated with the H- and ∅-branes respec-

tively, and the |t⋆⟩ ≠ |bounce⟩ structure is preferable for a number of reasons. For

one, it avoids an implied identification between a spatially extended present moment

and a non-extended big crunch singularity. Whether or not we identify the bounce

with the present, we must reconcile∣∣t⋆〉 = ∣∣t+〉+ ∣∣t−〉 , and M̂CM
∣∣t⋆〉 = ∣∣t+〉+ ∣∣t−〉 (1.10.15)

where the latter mimics (1.10.13) to say that we must be able to obtain past and future

states from a state in the present. The equations in (1.10.15) can only be consistent

if M̂CM is the identity operator, which is not exactly the intended meaning. In this

section, we will show that M̂CM is a new completeness relation. Such relations are

inserted into expressions as the identity.

The |t±⟩ states were originally associated with the positive and negative x0 modes

needed to conserve momentum at the big bang, but subsequent work allows us to as-

sociate them with χ4
±. Moving in that direction, we will define a separate chirological

time arrow operator

T̂
∣∣χ4

+

〉
=
∣∣χ4

+

〉
T̂
∣∣χ4

∅
〉
= 0 (1.10.16)

T̂
∣∣χ4

−
〉
= −

∣∣χ4
−
〉
.

with a complete set of eigenstates:

1 =
∑
k

∣∣χ4
k

〉〈
χ4
k

∣∣ , where k ∈ {+,∅,−} . (1.10.17)

When T̂ replaces T̂ as it appears in (1.10.10) and we identify |bounce⟩≡|χ4
∅⟩ ̸= |x0⟩,

we avoid a degeneracy of the 0 eigenvalue between |t⋆⟩ and |bounce⟩. Instead, they

are eigenstates of different operators reflecting different physical conditions. The

chronological time cannot exist at all in a singularity such as |bounce⟩ because time

and space are condensed to a point. On the other hand, we are well motivated to have

χ4
∅ already defined at the singularity because it is an abstract coordinate. (Recall that

the singularity is associated with the embedded physical metric, not the 5D metric.)
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The T̂ time arrow states may be connected to the ontological states as∣∣t+〉 ≡ ∣∣x0+〉 = ∣∣ψ; Φ̂〉 = ∣∣ψ; Ω〉∣∣t⋆〉 ≡ ∣∣x0〉 =
∣∣ψ; π̂〉 = ∣∣ψ;H〉∣∣t−〉 ≡ ∣∣x0−〉 = ∣∣ψ; 2̂〉 = ∣∣ψ;A〉

 =⇒
T̂
∣∣ψ; Φ̂〉 = ∣∣ψ; Φ̂〉

T̂
∣∣ψ; π̂〉 = 0

T̂
∣∣ψ; 2̂〉 = −∣∣ψ; 2̂〉 ,

(1.10.18)

but it remains to be determined if t± are the past and future of x0 ∈H, if they are

x0+ ∈Ω and x0− ∈A, or if these possibilities are the same. If we use the ontological

basis conventions in (1.10.18), the chirological states must have some other identities:∣∣t+〉 ≡ ∣∣χ4
+

〉
=
∣∣ψ; Σ+

〉
∣∣bounce〉 ≡ ∣∣χ4

∅
〉
=
∣∣ψ;∅〉∣∣t−〉 ≡ ∣∣χ4

−
〉
=
∣∣ψ; Σ−〉

 =⇒
T̂
∣∣ψ; Σ+

〉
=
∣∣ψ; Σ+

〉
T̂
∣∣ψ;∅〉 = 0

T̂
∣∣ψ; Σ−〉 = −∣∣ψ; Σ−〉 .

(1.10.19)

As a guess for how we might describe the new chirological states with the ontological

basis, we will introduce notation such that∣∣ψ; Ω〉 = ∣∣ψ(x); Φ̂〉 ∣∣ψ; Σ+
〉
=
∣∣ψ(χ); Φ̂〉∣∣ψ;H〉 = ∣∣ψ(x); π̂〉 ∣∣ψ;∅〉 = ∣∣ψ(χ); î〉 (1.10.20)∣∣ψ;A〉 = ∣∣ψ(x); 2̂〉 ∣∣ψ; Σ−〉 = ∣∣ψ(χ); 2̂〉 .

This notation is made clearer when the ψ(χ) wavefunction is renamed with the letter

ξ, i.e.: ∣∣ξ; Σ−〉 = ∣∣ξ(χ); 2̂〉 , or
∣∣ξ; Σ−〉 = ∣∣ξ; 2̂〉 . (1.10.21)

We will use the ξ notation in following sections, but presently we will continue with

the |x0⟩ and |χ4⟩ notations.
The structure of quantum theory is such that there should exist a transformation

matrix for expressing an arbitrary cosmology state in the chronological or chirological

time arrow eigenbasis. If M̂CM is the completeness relation, the |t⋆⟩= |x0⟩ state is

written in the chirological basis as∣∣x0〉 = M̂CM
∣∣x0〉 =∑

k

∣∣χ4
k

〉〈
χ4
k

∣∣x0〉 =∑
k

ck
∣∣χ4

k

〉
, (1.10.22)

where k ∈ {+,∅,−}. Letting M̂CM be the completeness relation for chronological
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states and taking k∈{+, ⋆,−}, we obtain∣∣χ4
∅
〉
= M̂CM

∣∣χ4
∅
〉
=
∑
k

∣∣tk〉〈tk∣∣χ4
∅
〉
=
∑
k

ck
∣∣tk〉 , (1.10.23)

By setting c⋆=c∅=0, we will obtain equations roughly in the form of (1.10.13):∣∣x0〉 = ∣∣χ4
+

〉
+
∣∣χ4

−
〉
, and

∣∣χ4
∅
〉
=
∣∣t+〉+ ∣∣t−〉 . (1.10.24)

However, this does not necessarily reflect the argument that an observer’s inability

to distinguish t± should lead to the superposition∣∣t⋆〉 = ∣∣t+〉+ ∣∣t−〉 . (1.10.25)

As a guiding principle, one notes that the orthogonal eigenvectors of an operator

can never be expressed as linear combinations of the other eigenvectors. This is

contrary to what is presumed for the |x0⟩ = |x0+⟩ + |x0−⟩ relationship if |x0⟩ is an

eigenvector of T̂ with eigenvalue 0. The similar |x0⟩ = |χ4
+⟩ + |χ4

−⟩ has no such

problem, so |x0⟩ ̸= |bounce⟩ is implied. We will revisit these issues in Section 12 when

presenting time arrow spinor states that only have ±1 eigenvalues. Presently, more

thinking is required to understand what reason we might have to set c⋆ = c∅ = 0 in

the expansions of |t⋆⟩ and |bounce⟩, or if we should work in a basis that does not

have a zero eigenvalue.1 For example, it was decided in [40] that we should write

M̂CM|bounce⟩= |t+⟩+ |t−⟩, but not

M̂CM
∣∣bounce〉 = ∣∣t+〉+ ∣∣t−〉+ ∣∣t⋆〉 , (1.10.26)

because |t⋆⟩ and |bounce⟩ were identified. Subsequently, we have disassociated them

as H and ∅, so we must consider (1.10.26) as a valid case of (1.10.23) deserving

further inquiry with c⋆ ̸=0.

Now that we have introduced time arrow eigenstates, we have set the stage for

a new approach to quantum gravity. Then we will return to MCM cosmology states

in Section 12.

1.10.3 A New Approach to Quantum Gravity

The completeness relations for time arrow states allow us to more tidily phrase general

relativity as a relationship between the stress-energy tensor in the present and a sum of

1One might attempt to implement non-conservation of information in the information-conserving framework of
quantum theory via transformations between 2D and 3D time arrow eigenstate bases for MCM quantum cosmology
states.
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contributions from the past and future. In the method of Section 1.10.1, we supposed

that there should be two different ways for M̂3 to act on ψ, but this was not well

motivated. To proceed with a better derivation of Einstein’s equation, we will operate

with M̂3 on a state written in the chronological and chirological eigenbases. Using

the ξ notation as in (1.10.21), completeness yields∣∣ψ; π̂〉 =∑
k

∣∣ξ; êk〉〈ξ; êk∣∣ψ; π̂〉 = c+
∣∣ξ; Φ̂〉+ c∅

∣∣ξ; î〉+ c−
∣∣ξ; 2̂〉 . (1.10.27)

Acting with M̂3 on both sides yields

M̂3
∣∣ψ; π̂〉 = M̂3

(
c+
∣∣ξ; Φ̂〉+ c∅

∣∣ξ; î〉+ c−
∣∣ξ; 2̂〉) . (1.10.28)

Now we may say that M̂3 has different representations when it acts on states written

in the different time arrow eigenbases. For example, the Ŝz spin operator is only ℏ/2
times the σz Pauli matrix when it operates on states written in the Sz eigenbasis. It

takes a different form when it operates on states written in the Sx or Sy eigenbases.

One of the major deficiencies in the MCM has been the lack of a good reason for

why M̂3 might act on a state in two different ways, as in (1.10.2), and now we have

one: M̂3 acts on chronological states differently than chirological ones. The extent to

which such a mechanism was a missing puzzle piece in the MCM cannot be overstated.

(1.10.28) is probably the most significant new result reported in this book.

To proceed from (1.10.28) differently than the previous derivation starting at

(1.10.2), we will work in the picture where states in different branes are linearly

independent: 〈
ψ; êmµ

∣∣ψ; ênν〉 = δmnδµν∥êmµ ∥∥ênν∥ .1 (1.10.29)

Once again assuming that M̂3 operates on the chronological state as the third chrono-

logical time derivative, we have

8iπ3ν3
∣∣ψ; π̂〉 = M̂3

(
c+
∣∣ξ; Φ̂〉+ c∅

∣∣ξ; î〉+ c−
∣∣ξ; 2̂〉) . (1.10.30)

Assuming c∅=0, this reduces to Einstein’s equation via

iπ2ν3
∣∣ψ; π̂〉→ Tµν

c+M̂
3
∣∣ξ; Φ̂〉→ Gµν (1.10.31)

c−M̂
3
∣∣ξ; 2̂〉→ gµνΛ ,

1Compare to (1.10.3).
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or similar. The cases for c∅ ̸=0 would be accommodated by the parts of Gµν=Rµν −
R
2
gµν . Since we have taken the states in different branes to be linearly independent,

we might write the c∅=0 case as

iπ2ν3
∣∣ψ; π̂〉→ Tµν

c+M̂
3
∣∣ξ; Φ̂〉→ Rµν (1.10.32)

c−M̂
3
∣∣ξ; 2̂〉→ (

Λ− R

2

)
gµν .

The previous definition for the new variables

iΦν3
∣∣ψ; π̂〉→ Tµν

2
∣∣ψ; Φ̂〉→ Gµν (1.10.33)∣∣ψ; 2̂〉→ gµνΛ .

in Section 1.10.1 left an open question about how the same ψ could be mapped to

three different tensors when the êµ do not analytically represent much more than a

change of scale. In (1.10.31) and (1.10.32), this problem may be avoided if chirological

states are not eigenstates of M̂3. Work is needed to develop the ψ(x) and ξ(χ) ana-

lytical representations of the time arrow states and to determine the transformation

equations for obtaining the gravitational theory. Finding the exact correspondence

between MCM states and GR tensors is the principal outstanding work unit for MCM

quantum gravity.

Overall, the language of the respective time basis states answers a question which

was left open in previous descriptions of MCM quantum gravity [1,3,72,95–97]. Now

M̂3 can operate on the same state in two different ways if the state is represented in

two different eigenbases. Finally, the identification of M̂3 as a third time derivative

in one representation remains in good agreement with our other intention to generate

the (Φπ)3 term needed for αMCM.

1.10.4 Comparison to Higgs’ Seminal Result

To demonstrate that the MCM mechanism for quantum gravity represents a standard

method in physics, we will compare it to the method used by Higgs in his 1964 pa-

per regarding what is now called the Higgs(–Englert–Brout–Guralnik–Hagen–Kibble)

mechanism. Higgs wrote the following [12].

“[Consider the case in which two] scalar fields φ1, φ2 and a real vector
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field Aµ interact through the Lagrangian density

L = −1

2

(
∇φ1

)2 − 1

2

(
∇φ2

)2 − V (φ2
1 + φ2

2)−
1

4
FµνF

µν , (1.10.34)

where

∇µφ1 = ∂µφ1 − eAµφ2

∇µφ2 = ∂µφ2 + eAµφ1 (1.10.35)

Fµν = ∂µAν − ∂νAµ ,

e is a dimensionless coupling constant, and the metric is taken as −+++.

L is invariant under simultaneous gauge transformations of the first kind

on φ1 ± iφ2 and the second kind on Aµ. Let us suppose that V ′(φ2
0) =

0, V ′(φ2
0)>0; then spontaneous breakdown of U(1) symmetry occurs. Con-

sider the equations (derived from [(1.10.34)] by treating ∆φ1,∆φ2, and Aµ
as small quantities) governing the propagation of small oscillations about

the ‘vacuum’ solutions φ1(x)=0, φ2(x)=φ0:

∂µ
{
∂µ
(
∆φ1

)
− eφ0Aµ

}
= 0 ,{

∂2 − 4φ2
0V

′′(φ2
0)
}(

∆φ2

)
= 0 , (1.10.36)

∂νF
µν = eφ0{∂µ

(
∆φ1

)
− eφ0Aµ} .

Equation [(1.10.36b)] describes wave whose quanta have (bare) mass 2φ0{V ′′

(φ2
0)}1/2; Eqs. [(1.10.36a)] and [(1.10.36c)] may be transformed, by the in-

troduction of new variables

Bµ = Aµ −
(
eφ0

)−1
∂µ
(
∆φ1

)
, (1.10.37)

Gµν = ∂µBν − ∂νBµ = Fµν ,

into the form

∂µB
µ = 0 , ∂νG

µν + e2φ2
0B

µ = 0 . (1.10.38)

Equation [(1.10.38)] describes vector waves whose quanta have (bare) mass

eφ0. In the absence of the gauge field coupling (e=0) the situation is quite

different: Equations [(1.10.36a)] and [(1.10.36c)] describe zero-mass scalar

and vector bosons, respectively. In passing, we note that the right-hand side

of [(1.10.36c)] is just the linear approximation to the conserved current[.]”
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In (1.10.35), Higgs assumes his scalar fields φ1, φ2 obey certain equations. Simi-

larly, we have assumed that there exist two different, complete time arrow eigenbases

satisfying

M̂3
∣∣ψ; π̂〉 = ∂30

∣∣ψ; π̂〉 , and
∣∣ψ; π̂〉 = c+

∣∣ξ; Φ̂〉+ c∅
∣∣ξ; î〉+ c−

∣∣ξ; 2̂〉 . (1.10.39)

Higgs imposes a broken U(1) symmetry by setting V ′(φ2
0) = 0 and V ′(φ2

0) > 0. We

have set c∅=0 to write

8iπ3ν3
∣∣ψ; π̂1

〉
= c+M̂

3
∣∣ξ; Φ̂〉+ c−M̂

3
∣∣ξ; 2̂〉 . (1.10.40)

Next, Higgs introduces variables Bµ and Gµν . Our next step was to introduce new

variables as

iπ2ν3
∣∣ψ; π̂〉→ Tµν

c+M̂
3
∣∣ξ; Φ̂〉→ Gµν (1.10.41)

c−M̂
3
∣∣ξ; 2̂〉→ gµνΛ .

Written in his new variables, Higgs claims that (1.10.38) “describes vector waves

whose quanta have (bare) mass eφ0.” We have claimed that (1.10.40) written in

terms of our new variables is Einstein’s equation, which is true.

The main deficiency of the MCM program relative to Higgs’ is that the new

MCM variables are introduced by an unstated correspondence between rank-2 ten-

sors whereas Higgs has given his new variables with definite tensorial equations. This

deficiency requires remediation in future work.

1.10.5 An Alternative for M̂3

MCM quantum gravity is a relationship between M̂3 acting on a state’s representation

in the chronological and chirological bases. Therefore, one might ask if M̂3 : H→
Ω→A→H can be achieved by acting on chirological states rather than the |ψ; π̂⟩
chronological state that we have discussed. The representation of a chronological

eigenstate in the chirological basis as∣∣ψ, t0; π̂0
〉
≡
∣∣x0〉 = ∣∣χ4

+

〉
+
∣∣χ4

−
〉
, (1.10.42)

suggests that M̂3 acting on |x0⟩ would act on |χ4
+⟩ and |χ4

−⟩ simultaneously in the

other representation. Recalling that the arrows of time point oppositely in Σ±, M̂3

might evolve |χ4
+⟩ and |χ4

−⟩ to Ω and A such that the evolved state |ψ, t1; π̂1⟩ is deter-
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Figure 16: This figure illustrates a method in which one might avoid parameterizing a
smooth curve through ∅. On the left, the solid and dashed lines show the
trajectories of χ4

+ and χ4
− eigenstates away from H along their respective

arrows of time. By concatenating the path through Σ− to the end of the
path through Σ+, we obtain an evolvedψ +∆ψ state in H1.

mined from the difference or ratio across ∅ without computing a smooth trajectory

through it. By fixing the path in Σ+ and adjusting the path in Σ− to fit a matching

condition at ∅, the |ψ, t0; π̂0⟩ initial state would be adjusted to the |ψ, t1; π̂1⟩ final
state in H1, as in Figure 16.

This method would be a trick for computing the steps of M̂3 out of order so as to

avoid computing a step of smooth evolution through ∅. One would attempt to corre-

late the ∆ψ obtained from this method with the ∆ψ obtained from the Schrödinger

equation. The conjecture that this parallel method for M̂3 might exist is included

here in large part because the possibility for reverse engineering a solution from the

Schrödinger equation represents a definite work unit with an absolute calculation as

its starting point.

1.10.6 The Planck Law

One of the most exciting features of the MCM mechanism for quantum gravity is the

exotic ν3 frequency dependence in the stress-energy tensor:

iπ2ν3
∣∣ψ; π̂〉→ Tµν . (1.10.43)

Physics’ foremost setting for ν3 is the Planck law

B(ν, T ) =
2hν3

c2
1

e
hν
kT − 1

. (1.10.44)

B is called the spectral radiance of blackbody radiation. The function B(ν, T ) returns

the energy carried by blackbody photons in each slice of constant wavelength at a
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given temperature. Similarly, we have obtained Einstein’s equation by associating

the ν3ψ term with the stress-energy tensor in H which is the χ4 = 0 slice of the χ4

spectrum (up to some nuance about χ4
±=0 not being defined.) This likeness of the

stress-energy tensor and the spectral radiance is exciting because the ν3 dependence

is already known to describe energy per slice, and the Planck law is approximately

the only place in physics where ν3 appears. This congruence in the ν3 dependency is

interpreted as another strong hint that the MCM is producing results which deserve

further study.

Written in terms of the wavelength, the Planck law is

B(λ, T ) = −B(ν, T )
dν

dλ
=

2hc2

λ5
1

e
hc

λkT − 1
. (1.10.45)

This formula is true only for blackbody photons having dispersion relation ω(λ) =

2πcλ−1. The antiderivatives of (1.10.44) and (1.10.45) are proportional to ν4 and

λ−4, and it is the antiderivatives which obey the λν = c on-shell dispersion relation

for photons. Namely, it is only in the integrated radiance that we may make direct

substitutions with ω(λ). For example, if we plug the photonic dispersion relation into

(1.10.43), we get

iπ2ν3
∣∣ψ; π̂〉 = iπ2c3

λ3
∣∣ψ; π̂〉 , (1.10.46)

which is not in the λ−5 form of (1.10.45). To preserve the relationship between the

state corresponding to the stress-energy tensor and the Planck law, we must associate

the integrated Planck law with the integrated wavefunction, as in the Dirac bra-ket.

This is well reasoned because the wavefunction describing probability amplitude in

some non-singular region of space would be associated with the Planck radiance in

a non-singular band of the EM spectrum. Infinitesimal probability amplitude per

position is matched with infinitesimal energy per wavelength. The expressions must

be integrated for comparison to observables.

The Stefan–Boltzmann law says that the total emitted blackbody energy (per unit

time) is equal to a constant times the fourth power of the temperature. Therefore, we

would seek to associate the normalization of the MCM state with the temperature.

χ4 describes the relative scale of the normalization of states among different branes,

so we may seek to associate χ4 with the thermodynamic temperature T in B(ν, T )

suggesting (ν, T )→ (x0, χ4). With this identification of variables, it follows that the

stress-energy tensor in question is the one at a definite chronological time in the brane

whose scale is set by χ4. In good agreement, the state |ψ; π̂⟩ which maps to Tµν is

implicitly |ψ, t; π̂⟩ at some definite time t. Furthermore, Wien’s displacement law
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predicts the peak of the spectral intensity function, and this should be associated

with the expectation of some operator operating on the state associated with Tµν .

1.10.7 A Large Enough Number of Coincidences

If the proof is in the pudding, we have only presented an exceptional basket of ingredi-

ents for M̂3 and its use cases. If M̂3 should never pan out, other results regarding the

Riemann hypothesis, classical electrogravity, and the fundamental problem of QFT

will stand on their own. Experimental data will eventually confirm that the spectrum

of MCM lattice vibrations is the true particle spectrum, or it will not. In the hope

and belief that M̂3 will pan out, the purpose of this section is to review and summa-

rize a large number of positive results following from M̂3 and leading to Einstein’s

equation. These results support the supposed existence of the new variables needed

to obtain general relativity from a picture of quantum mechanics.

Firstly, it must be emphasized that the original discovery of Einstein’s equation

in the MCM was not goal-sought. When it was found, there was no intention to

find it. It was not recognized until it had already been written. After discovering

2π + (Φπ)3≈137, the operator M̂3 was goal-sought toward (Φπ)3, but that was not

the case for the dimensionless 8π in

8πTµν = Gµν + gµνΛ . (1.10.47)

Neither was it the intention to show that GR is a restatement of the M̂CM|t⋆⟩ =
|t+⟩ + |t−⟩ equation which had already been supposed as the MCM’s philosophical

kernel [31, 40]. When 8π first appeared in 2012 [3], the context had nothing to do

with GR. Given a translation operator definition of M̂3 as in

M̂3
∣∣ψ; π̂0

〉
= 2πΦ

∣∣ψ; π̂1
〉
, 1 (1.10.48)

it was asked what would happen if M̂ was a time derivative. The result which followed

was described in Section 1.10.1. New variables were introduced, and the result was

Einstein’s equation [3, 96].

With the serendipity of the development now emphasized, it is acknowledged that

the number of hypothesized and/or supposed inputs required to construct the orig-

inal mechanism [3, 96] was large enough to generate the superficial appearance that

a sufficiently long string of suppositions can be used to output any desired result.

However, the quantum gravity result, which is a new tool for synthesizing the objects

of two disparate mathematical languages, was not desired. It fell out on its own from
1A different constant than 2πΦ was used in [3].
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unrelated thinking. Ten years later, the result is now greatly improved, as in Section

1.10.3. We have reduced the number of unanswered questions left by the original

derivation. Those questions included the following.

� Why should M̂3 act on ψ in two different ways?

� If M̂3 does act on ψ in two different ways, why should one of them be a third

time derivative?

� Why should we invoke the given numerical values for the ontological basis at all

when linearly independent bases are usually defined by orthogonality irrespective

of magnitude?

� Even if the above are granted, what is the definite relationship between the

|ψ; êµ⟩ states and the objects in Einstein’s equation?

M̂3 should have a different representation when acting on the eigenstates of the

chronological and chirological time arrow operators. This answers the first question

about why the other questions are worth asking. The second question asks why

M̂3 should take the form of the third time derivative needed to generate 8π and

the ν3 connection to Planck’s law. This question remains open, but M̂3 = ∂3 was

already found to be useful for work predating the quantum gravity application. It

was expected that a third derivative is needed for α̂|Ψα⟩ = α−1
MCM|Ψα⟩. The third

derivative was also contextualized by the MCM reference to the theory of advanced

and retarded EM potentials in [30]. This context predated the GR application, i.e.:

the Abraham-Lorentz force

FAL = m(ẍ− τ ...x ) , (1.10.49)

for radiation damping (Section 16) brought in a third time derivative a year before

Einstein’s equation was obtained. Finally, when it was observed that Laithwaite had

suggested the time derivative of acceleration—another third derivative—as a possible

cause for the anti-gravity effects observed in spinning discs [98, 99], this writer was

inspired to explore the ansatz for M̂3 ∝ ∂3t , and Einstein’s equation was derived

forthwith [3].

Another unanswered question regards the number-theoretical assignments for the

ontological basis. The best that can be said is that the {êA, êH, êΩ} set of basis vectors,
like the proposal to use the ∂3t operator, was already entertained independently for

reasons unrelated to quantum gravity [30]. Only later were the ontological numbers

found to output Einstein’s equation [3].
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When the dimensionless coefficient 8π familiar from 8πTµν=Gµν+gµνΛ appeared,

it appeared on the heels of another famous dimensionless constant: αMCM [3, 30].

Furthermore, the emergence of Einstein’s equation as a formal restatement of the

|t⋆⟩ = |t+⟩ + |t−⟩ idea at the heart of the MCM was too much to be assigned as

mere coincidence, in the eyes of this writer. Writing M̂CM|bounce⟩= |t+⟩ + |t−⟩ as
Einstein’s equation makes the tantalizing suggestion that the MCM requirement for

global conservation of cosmological momentum is a restatement of the law already

recorded in GR. 8π following so closely after αMCM may be written off as mere coinci-

dence by third parties, but, as the personal pet project of this writer, the coincidence

hypothesis is rejected on the basis of too much coincidence. To argue that the reader

should also see more coincidence than should be ignored, we will briefly resummarize

the evolution of ideas.

The Theory of Negative Time A thermodynamic paradox arises in closed universe

models when singularities at past and future timelike infinity are identical. The second

law of thermodynamics requires that the state at future timelike infinity should have

much higher entropy than the state at past timelike infinity. This is resolved by

the introduction of two universes coevolving simultaneously with opposite arrows

of time [31]. The total entropy of both universes is a constant when the entropic

increase of one is offset by the decrease in the other. As the logarithm of the number

of microstates, the entropy should not be affected by any scale factor. Later, it

was determined that a universe with a reversed time arrow is also required to fix a

problem of non-conserved momentum in big bang models [40]. Namely, a big bang

should decay to a superposition of positive and negative time modes:

M̂CM
∣∣bounce〉 = ∣∣t+〉+ ∣∣t−〉 . (1.10.50)

A Context for Retrocausality Transport of an observer’s inertial frame though the

bounce requires that the present moment should also be resolved in positive and neg-

ative time modes. In other words, if an observer in the big bang sees a superposition

of two opposite time arrow states converging on his position, then he should see that

at any other time as well. Hence, we arrive at

M̂CM
∣∣t⋆〉 = ∣∣t+〉+ ∣∣t−〉 . (1.10.51)

Fixation on the bounce as a novel moment in [31] was supplanted by the present

being taken as the novel moment of greatest interest [40]. This paved the way for the

connection to quantum mechanical Hilbert spaces of states at the present time.
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(1.10.51) suggests equal places for causality and retrocausality. The main venue

for such mechanisms in physics is the theory of the advanced and retarded electro-

magnetic potentials. The third time derivative in this theory is almost unique in

physics. The idea that the MCM might use such a derivative was first considered

in the context of the Abraham–Lorentz law with no regard for αMCM or gravitation.

This use case for the third derivative predated the similar requirement derived from

the analytical form of αMCM [30].

The Ontological Basis A labeling basis

π̂ ≡ êH , 2̂ ≡ êA , Φ̂ ≡ êΩ , and î ≡ ê∅ , (1.10.52)

was introduced to associate the usual |ψ⟩ analytical formalism with the {t⋆, t+, t−, bounce}
language: ∣∣ψ; π̂〉 = ψ(xi, x0)∣∣ψ; 2̂〉 = ψ(xi−, x

0
−) (1.10.53)∣∣ψ; Φ̂〉 = ψ(xi+, x
0
+)∣∣ψ; î〉 = ψ(xi∅, x
0
∅) .

This form of the êµ basis was called the ontological basis in reference to an intention

to explain certain natural quantities with unique number-theoretical assignments.

Future work may explore an alternative convention for τ̂ with τ=2π.

The Fine Structure Constant It was determined that the numbers in the chosen

basis can be used to construct the dimensionless quantum electrodynamic coupling

constant to within about 0.4% [30]:

α−1
MCM = 2π +

(
Φπ
)3

. (1.10.54)

While some will cite the notion that αQED is known to an accuracy far exceeding the

0.4% discrepancy with αMCM, we have demonstrated in Section 1.9.4 that such preci-

sion does not rule out αMCM. The cubed term in αMCM was noted for its consistency

with a hypothetical ∂3t operator invoked through the context for retrocausality.

Mechanical Precession of Spinning Discs An independent but contemporaneous in-

quiry into the physics of spinning discs quickly led to Laithwaite’s suggestion that the

time derivative of acceleration might be used to explain the anomalous anti-gravity
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effects observed in spinning discs [98, 99]. After already seeing this rare derivative

twice, calculations were made to determine what might result if M̂3∝∂3t .

Einstein’s Equation Following the novel result regarding αMCM, the triply supported

∂3 form for M̂3 yielded a second novel numerical result: the dimensionless constant

8π well known from Einstein’s equation

8πTµν = Gµν + gµνΛ . (1.10.55)

The third derivative had already been under consideration, as had the number-

theoretical basis {π̂, î, Φ̂} by which this equation was derived in [3]. There was no

intention beforehand to show anything related to GR. As this was the second famous

dimensionless constant derived with ∂3 and the ontological numbers, and because

it appeared while examining unrelated theoretical processes, more significance was

assigned to the result than would have been assigned to a similar result appearing

in isolation. The appearance of one such number is easily written off as meaningless

coincidence. Two physically significant, dimensionless numbers are written off less

easily.

The Ontological Resolution of the Identity Following the initial derivation of Ein-

stein’s equation, a third famous dimensionless coupling constant appeared with the

addition of ê∅=2̂:1

1̂ =
1

4π
π̂ − φ

4
Φ̂ +

1

8
2̂− i

4
î . (1.10.56)

In certain natural units, 4π is the dimensionless constant attached to the Poisson

equations for Newtonian gravity and classical electromagnetism:

ρ =
1

4π
∇2ϕ , and Jµ =

1

4π
ηµν∂ν∂λA

λ . (1.10.57)

It is hoped that the ontological resolution of the identity will have vast applications

toward unifying disparate forces of physics. Here, ontology refers to the theory that

the number-theoretical properties of {π̂, î, Φ̂, 2̂} should pertain to fundamental quan-

tities observed in nature.
1Following the introduction of 2̂, the respective assignments of î and 2̂ to the A- and ∅-branes were swapped.
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1.11 Elliptic Curves and the Total Evolution Operator

In this section, we will examine a few properties and iterations of the expected total

evolution operator [3, 30]

Υ̂ = Û + M̂3 . (1.11.1)

We will emphasize an equation for joint chronological and chirological evolutions such

that ∣∣ψ, t0; π̂0
〉
−→

∣∣ψ, t1; π̂1
〉
. (1.11.2)

Then we will show that the cumulative body of MCM material suggests elliptic curves

as the solutions to the evolution equation for M̂3 and Υ̂. In the absence of a definite

equation for Υ̂ or M̂3, however, that which can be said about them is limited. Much

of this section will discuss what does not work before we suggest in Section 1.11.5

that the missing equation is an elliptic curve, or like an elliptic curve.

1.11.1 The Original Proposal for Υ̂

The context for M̂3 in the previous sections has been motivated by the three steps

of H→ Ω→A→H inherent to the unit cell, and the original motivation for M̂3

(Appendix A) was that some operator should return the cubed term in α−1
MCM. Υ̂

was formulated in [3, 30] to return α−1
MCM as the sum of M̂3 with another operator

appearing in its first power. The Φπ term was expected to be associated with some

new mechanism since Φ does not usually appear in QM, and the only reasonable

choice for the linear derivative returning 2π was ∂x. This is the momentum operator

divided by a constant, but that operator lacks the complexity required for a new

role in physics. Namely, Υ̂ was envisioned as an evolution operator returning α−1

as the characteristic value of some ontological evolution in the way that the unitary

evolution operator Û returns e−iEt/ℏ when Ĥ does not depend on t. The value for α

should be universal because the evolution generated by Υ̂ will reflect some universal

structure underlying time evolution. The 2D spacetime box first proposed for that

structure has been deprecated,1 but the modern thinking remains the same: α should

characterize the unit cell.

Rather than choosing the ∂x derivative directly, we selected Û . The idea was that

Û is proportional to ∂x as

Û(t, t0) = exp

{
−iĤ

(
t− t0

)
ℏ

}
, with Ĥ =

−ℏ2

2m
∂2x + V̂ , (1.11.3)

1Schrödinger’s original derivation of his equation from the stationary action principle [81] has been deprecated
even while the underlying equation remains the same. Presently, the invariant equation is α−1

MCM=2π + (Φπ)3.
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and M̂3 should be a complementary operator proportional to the time derivative.

This was written as

Û ∝ ∂x , and M̂ ∝ ∂t . (1.11.4)

Whatever formalism might have selected ∂x from Ĥ with a square root, as well as

the likelihood that Υ̂ would have returned exp(α−1
MCM), was left to omitted details via

the := relationship. (The relationships in (1.11.4) were originally stated with the :=

symbol meaning “is defined according to” rather than the present ∝ symbol meaning

“is proportional to.”)

The case for using Û was mainly to force an association of the Υ̂ operator with time

evolution, and to frame M̂3 as a new kind of time evolution operator. However, the

reference to Û in early work rather than simply writing Υ̂=∂x+M̂
3 may have clouded

the intended meaning. Heavy reliance on the := formalism to omit less important,

ancillary mathematical details also may have hindered what was intended to be a

rapid communication [3, 30].

1.11.2 Υ̂ Redefined with ∂0 and ∂4

Work subsequent to [3, 30] introduced the χ4 variables which alter the possibilities

for Υ̂. Namely, if Û is the chronological time evolution operator then M̂3 should

complement it as the chirological time evolution operator:

Û ∝ ∂x Û : ∂0New χ4 variables

−−−−−−→ (1.11.5)
M̂3 ∝ ∂3t M̂3 : ∂34 .

It was pointed out in Section 1.9.3 that ∂x can return 2π in a problem of one spatial

dimension, but the more realistic ∇ operator in 3D will return a sum of three terms

incompatible with αMCM. The introduction of ∂4 allows us to avoid this problem.

The spatial derivative does not appear in the new relationships Û : ∂0 and M̂3 : ∂34 .

Removing ∂i from consideration motivates the universality of the returned value α

because we have eliminated non-universal contributions from arbitrary V (x) potential

energy landscapes. The constant width of the unit cell in the abstract coordinates for

any chronological time step between measurements sketches a good reason for why

the total evolution operator should return a constant value in arbitrary systems.

The meaning on the right in (1.11.5) is that ∂0 acts on Û in Schrödinger’s equation

as

iℏ∂0 Û = ĤÛ , (1.11.6)
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and M̂3 is meant to complement that as, for example,

Υ̂ = iℏ∂0 Û + ∂34M̂
3 . (1.11.7)

A first guess for an equation for Υ̂ would be

∂34M̂
3 + iℏ∂0 Û = ĤMCM

(
Û + M̂3

)
. (1.11.8)

In presenting this guess, we demonstrate what was meant when it was written in [3]

that M̂3 should “complement” Û . The reader is also reminded that Schrödinger’s

equation comes “out of the mind of Schrödinger,” as Feynman puts it [100], and

nowhere else. It has not been derived from first principles, and it is not expected

that first principles analysis will conclude with a new total evolution equation for

Υ̂. Rather, (1.11.8) is an example of a new equation for M̂3 which should reduce

to Schrödinger’s equation in the limit vanishing χ4 and vanishing derivatives with

respect to χ4. The vanishing derivative removes M̂3 on the left and vanishing χ4

should remove it on the right. Without those terms, (1.11.8) is the Schrödinger

equation in H.

1.11.3 The Schrödinger Equation for Υ̂

Considering Υ̂ as it was before χ4, Schrödinger’s equation for Û + M̂3 is

iℏ∂0
(
Û + M̂3

)
= Ĥ

(
Û + M̂3

)
. (1.11.9)

If Ĥ is a pre-MCM Hamiltonian, then (1.11.9) is separable as

iℏ∂0 Û = ĤÛ , and iℏ∂0 M̂3 = ĤM̂3 . (1.11.10)

The condition that Ĥ is “pre-MCM” means that iℏ∂0 Û=ĤÛ is valid. If M̂3 depends

on x0, then it is equal to Û . If it does not depend on x0, then ∂0M̂
3=0, and it follows

that M̂3=0 or Ĥ=0. These results are not useful. Under the naive operation of M̂3

as a translation operator, we have

Υ̂
∣∣ψ, t0; π̂0

〉
= Û

∣∣ψ, t0; π̂0
〉
+ M̂3

∣∣ψ, t0; π̂0
〉

(1.11.11)

=
∣∣ψ, t1, π̂0

〉
+ 2πΦ

∣∣ψ, t0; π̂1
〉
.

The orthogonality of MCM plane waves is such that wavefunctions in π̂k cannot

interfere with those in π̂j if k ̸= j. They are linearly independent. If such states did

interfere, then (1.11.11) could, in principle, yield one coherent probability amplitude
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for a state at time t1 on level π̂1. However, the orthogonality of wavefunctions on

different levels of aleph is required for other applications, and we should not suppose

that they might not be orthogonal. Using M̂3 as a translation operator, a coherent

amplitude with the correct t and π̂k specifiers is generated by

Û(t, 0)M̂3
∣∣ψ, 0; π̂0

〉
= 2πΦ

∣∣ψ, t; π̂1
〉
. (1.11.12)

Schrödinger’s equation for ÛM̂3 is

iℏ∂0
∣∣ψ, t; π̂1

〉
= Ĥ

∣∣ψ, t; π̂1
〉

iℏ
2πΦ

∂0 ÛM̂3
∣∣ψ, 0; π̂0

〉
= Ĥ ÛM̂3

∣∣ψ, 0; π̂0
〉

(1.11.13)

iℏ
2πΦ

∂0
(
e−iĤt/ℏM̂3

)
= Ĥ e−iĤt/ℏM̂3 .

If M̂3 does not depend on t, then

M̂3 = exp

{
−iĤ

(
2πΦ− 1

)
t

ℏ

}
. (1.11.14)

This M̂3 combines with Û as

ÛM̂3 = exp

{
−2πiΦĤt

ℏ

}
. (1.11.15)

We have added no physics with this equation. If not for the 2πΦ scale factor, we

would have found M̂3 = 1. M̂3 is still executing some form of equal-time parallel

transport, albeit complemented with the Û operator.

Since the x̂ and p̂ operators don’t commute, (1.11.15) begs that we ask about the

commutation relations of Û and M̂3. If [ Û , M̂3] = 0 as was assumed in (1.11.13),

the chronological time step can be implemented anywhere during the transit of the

unit cell. There would be no difference between landing on Ω or A at t0 or t1. This

is not the desired behavior because it mitigates the dynamical uniqueness which the

intermediate steps at Ω and A were introduced to generate. Clearly, more physics

is required. To the extent that the product ÛM̂3 seems better suited than Û + M̂3

towards total evolutions in the form |ψ, t0, π̂0⟩→|ψ, t1, π̂1⟩, we might consider Υ̂ such

that

e−iΥ̂ = e−iĤt/ℏe−iM̂
3

. (1.11.16)

In this way of writing Υ̂, M̂3 complements Û ’s generator Ĥ rather than Û itself. M̂3
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becomes a new energy term of the sort discussed in Section 1.7.4.

1.11.4 Total Evolution by Υ̂

Toward an evolution equation, the i∂0 part of

α̂ = i
(
∂0 − ∂34

)
, 1 (1.11.17)

is already in Schrödinger’s equation, so

α̂
∣∣ψ〉 = i

(
∂0 − ∂34

)∣∣ψα〉 = ĤMCM

∣∣ψα〉 , (1.11.18)

is a good lead toward an equation for M̂3. It contains a third derivative, and, given

an appropriate ĤMCM, it almost reduces to Schrödinger’s equation in the limit of

vanishing χ4 and ∂4 derivatives. The only disagreement in that limit is the missing

factor of ℏ. On that count, the units of (1.11.17) were not right to begin with. ∂0 has

units of inverse time, but ∂34 probably does have those units. Indeed, the equation

i
(
∂0 − ∂34

)∣∣ψα〉 = [2π +
(
Φπ
)3] ∣∣Ψα

〉
, (1.11.19)

does not return a manifestly dimensionless α−1
MCM. Likewise , the operator on the left

side of (1.11.18) is supposed to be dimensionless, but the returned value on the right

is an energy. Given these problems with physical units, and given that the values

2π and Φπ must be fixed in Ψα when the wavenumber and frequency are usually

allowed to vary in physical states, we might write an equation totally in the abstract

coordinates as

i

[
∂

∂χ0

− ∂3

∂χ3
4

]∣∣Ψ′
α

〉
= −1

2

[
∂2

∂χ2
1

+
∂2

∂χ2
2

+
∂2

∂χ2
3

]∣∣Ψ′
α

〉
. (1.11.20)

This equation in which we have lowered the tensor indices for convenience sets ĤMCM

as the chirological free particle Hamiltonian with ℏ=m=1, and we have replaced Ψα

with

Ψ′
α(χ

0, χi, χ4) = exp
{
−i
(
2πχ0 + Φπχ4 − kiχi

)}
. (1.11.21)

We have not previously referred to the χ0 and χi abstract coordinates. However,

the question about the universality of the returned value for α is well wrapped up

when we suppose a new equation which only involves derivatives with respect to the

abstract coordinates.
1This operator first appeared as (1.9.6).
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1.11.5 Elliptic Curves

Elliptic curves are third order functions of two variables. Those in Figure 17 are of

the form

y2 = x3 + ax+ b . (1.11.22)

The two lower figures show the behavior of the Riemann ζ function near the z=∞
north pole of the Riemann sphere [47,49]. Given a statement of Υ̂ in which we obtain

αMCM by modifying the time part of Schrödinger’s equation as

−i
(
∂34 − ∂0

)
ψ = Ĥψ , (1.11.23)

the remarkable likeness in Figure 17 is quite remarkable. The affine parameter along

a smooth curve through Σ± connecting two H-branes must increase monotonically

between H0 and H1, as must the chronological time. Therefore, we are invited to

parameterize χ4 in terms of x0. Choosing χ4=τx0 allows us to rewrite (1.11.23) as

−i
(
τ 3∂30 − ∂0

)
ψ =

(
−ℏ2

2m
∂2x + V̂

)
ψ . (1.11.24)

By introducing new variables

x = iτ∂0 , a = τ−1 , y =
iℏ√
2m

∂x , and b = −V̂ , (1.11.25)

we obtain (
x3 + ax+ b

)
ψ =

(
y2
)
ψ . (1.11.26)

This equation must be compared to (1.11.22). The ansatz equation (1.11.23) whose

left side contains the α̂ ∼ Υ̂ operator used to return α−1
MCM is almost an identical

elliptic curve. It is a differential equation whose characteristic curves or auxiliary

equations are likely to be elliptic curves in the form of (1.11.22). The likeness of the

two equations mirrors that between the classical dispersion relation and Schrödinger’s

equation:

ω − k2

2m
= 0 , and

(
iℏ∂t +

ℏ2

2m
∇2

)
ψ = 0 , (1.11.27)

under the change of variables

ω → iℏ∂t , and k → iℏ∇ . (1.11.28)

Fundamental physical equations are usually simple representations of classes of
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Figure 17: Above are two elliptic curves. Below are two figures showing the behavior
of the Riemann ζ function around the north pole of the Riemann sphere.
(a) The curve y2 = x3 − x. (b) The curve y2 = x3 − x + 1. (c) This
figure is taken from [49] wherein the negation of the Riemann hypothesis
was laid out in principle. (d) This figure is taken from [47], one of a few
papers in which independent, formal negations of the Riemann hypothesis
are given. The left-right asymmetry of (a) and (b) is qualitatively very
similar to that in (c) and (d).

equations, so it is likely that the equation for M̂3 will be a well-known equation

in elliptic curve analysis. Complicating factors on the path to finding the exact

equation include the singularity ∞̂ appearing in ∅. The elliptic curves in Figure 17

are depicted near the origin, but the MCM curves are depicted near the opposite

pole of the Riemann sphere at z =∞ ̸∈ C (or z = ∞̂ ̸∈ C.) This is likely to induce

new complexity into the problem which may exceed the usual study of elliptic curves.

Namely, the parameterization which allows us to replace ∂4 with ∂0 must go through

a singularity at ∅. However, if we cast the equation with ∂4 and ∂34 , meaning that we

parameterize x0 in terms of χ4 rather than vice versa, we might avoid the physical
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singularity by remaining in the abstract coordinates.1 In that case, the reversal of

time arrows and the multiple dislocated origins for the piecewise χ4
± and χ4

∅ elements

of what is only called χ4 may complicate an assumption that χ4 and x0 monotonically

increase in tandem between two H-branes. This assumption is required for the affine

parameterization of one as a linear expression of the other.

To emphasize that which is most intriguing in Figure 17, and to work toward

dispelling any suggestion that the similar quality in the figure is meaningless in the

way that certain qualia pertaining to M̂3 are said to be meaningless, consider Wiles’

statement regarding the Birch and Swinnerton-Dyer conjecture [101].

“Mathematicians have always been fascinated by the problem of describ-

ing all solutions in whole numbers x, y, z to algebraic equations like

x2 + y2 = z2 . (1.11.29)

Euclid gave the complete solution for that equation, but for more compli-

cated equations this becomes extremely difficult. Indeed, in 1970 Yu. V.

Matiyasevich showed that Hilbert’s tenth problem is unsolvable, i.e., there

is no general method for determining when such equations have a solution in

whole numbers. But in special cases one can hope to say something. When

the solutions are the points of an abelian variety, the Birch and Swinnerton-

Dyer conjecture asserts that the size of the group of rational points is related

to the behavior of an associated zeta function ζ(s) near the point s = 1.

In particular this amazing conjecture asserts that if ζ(1) is equal to 0, then

there are an infinite number of rational points (solutions), and conversely,

if ζ(1) is not equal to 0, then there is only a finite number of such points.”

Considering that that Birch and Swinnerton-Dyer conjecture regards an object

L(C, z) where C is an elliptic curve, it is known that there exists at least one famous

problem of interest relating elliptic curves to ζ functions. Therefore, a condition of

total and/or profound irrelevance that detractors might cite for the correspondence in

Figure 17 is not the true condition. We have sufficient reason to suppose a connection

between the Riemann ζ function and elliptic curves, and a further connection to M̂3.

As to what the true condition of Figure 17 might be, the formal statement of the

Birch and Swinnerton-Dyer conjecture [101] exceeds this writer’s training.

1Recall that χ4
± is taken as the Ricci scalar defining the dS and AdS physical g±µν metrics when Aµ

± =0. Thus,

χ4
±→±∞̂ at ∅ does not necessarily require an abstract singularity at ∅. (In the abstract coordinates, the location of

∅ at a non-arithmatic number is a sufficient topological obstruction between Σ±.)
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Regarding the difficulty of Birch and Swinnerton-Dyer and its relevance to elliptic

curves, Johnson writes the following [102].

“There is no doubt that elliptic curves are amongst the most closely and

widely studied objects in mathematics today. The arithmetic complex-

ity of these particular curves is absolutely astonishing [emphasis

added ], so it isn’t surprising the Birch and Swinnerton-Dyer conjecture has

been honored with a place amongst the Clay Mathematics Institute’s fa-

mous Millennium Prize Problems. Although some great unsolved problems

carry the benefit of simplicity in statement, this conjecture is not one of

them. There even seems to be an aura of ‘hardness’ over the problem that

keeps many from discovering the true beauty of the conjecture. [...] The

Birch and Swinnerton-Dyer conjecture today remains, of course, unsolved

and most mathematicians agree that new ideas will need to be developed

to tackle the great problem. A proof will take a great deal of work and

mathematical power.”

The present problem regarding the elliptic curve application for M̂3’s equation

requires a survey of some large volume of number theory. The work might far exceed

the ordinary scope of a PhD problem.

Part II: Problems in Physics

The thesis problems in Part II are presented with less detail than the problem in Part

I. These problems are mostly applications for the MCM and/or fractional distance

analysis toward open problems in physics.

2 Period Doubling

This problem in mathematical physics is as described in the following excerpt from

[97]. It concerns period doubling behavior in equations such as (2.1).

“The original idea for a second number line such as that which appears in

[the MCM ]—chiros as opposed to the original number line: chronos—came

about in a study of the period doubling cascades that arise in chaotic dy-

namics. For example, consider convective rolls in a finite, bounded volume

of fluid heated from below. [This physical system is described by

...
x + kẋ− x+ 4x3 = A cos(ωt) . (2.1)
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Figure 18: This figure is adapted from Cvitanović [103]. (a) Two stable, laminar
convective rolls in a finite volume of fluid heated from below. (b) The
development of an instability with frequency f0 is shown. Waves will
move along the axis of each cylinder with speed |v⃗|. In the laminar case, a
temperature probe at P will show constant temperature. After the onset
of first instability, the temperature at P will oscillate with frequency f0 as
the wave sweeps back and forth past the probe. (c) The period doubling
cascade for four increasing values of k. As new modes of instability appear,
the temperature at P will become increasingly erratic.

For low temperatures, heat convection in the fluid is laminar, as in Figure

18a.] When the temperature gradient in the cell reaches a first critical value

[the laminar convective] rolls will become unstable. [Waves will ] begin to

move along the rolls’ axial direction with some frequency f0 [as in Figure

18b]. As the heat increases, more waves will appear with frequency f0/2[.]

[As ] heating increases more[,] it will be possible to observe waves with

frequency multiples of f0/4, then f0/8, etc., until period doubling exceeds

the resolution of the experimental apparatus[,] and eventually the onset of

turbulence is complete[, as in Figure 18c.]”

The dissipation parameter k in (2.1) is a mathematical representation of the heat

flow through the fluid. As the heat at the bottom of the fluid volume continues to

increase, a convective roll will acquire an instability moving axially with frequency

f0 (Figure 18b). It will become increasingly unstable in a regular way until full

turbulence eventually sets in. The second instability will be a second axial wave with

frequency f0/2. In the regime of second instability, one understands that two waves
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with different frequencies are superposed on the fluid cylinder. Recalling that period

is inverse frequency, the period doubling cascade ends with the onset of turbulence

associated with f0/2n as n→∞.

As k smoothly increases, the amplitude of existing instabilities increases. The

nature of the present problem regards the transition from zero amplitude to non-zero

amplitude as new modes of instability appear. Calling the amplitude associated with

the nth frequency mode An and using kn to describe the value of k at which the nth

mode appears, we have

lim
k→k+n

An(k) = 0 . (2.2)

One might think of adding k to Figure 18c in the direction perpendicular to the

page so that each An appears as a long ridge terminating on a flat plane. As k is

decreased back toward kn after An has appeared, the amplitude of that instability

must go to zero. An infinite number of ∂
(m)
k An(k) derivatives must also go to zero as

k→k+n because An does not exist for any k<kn. In the estimation of this writer, this

implies discontinuous behavior at kn which cannot be derived by the smooth variation

of k itself. For instance, the frequency peaks in Figure 18c should be described as

Gaussians ϕn which have no zeros on the real line, so it is not clear where one might

insert k into

ϕn(f) = An exp

{(
f − b

)2
2c

}
, (2.3)

to affect

lim
k→k+n

ϕn = 0 . (2.4)

The equation from which An is derived, (2.1), is not piecewise defined, so we should

not attempt to explain the discontinuous behavior in An with any piecewise solu-

tions. Furthermore, there is no parameter in (2.1) other than k to which we might

attribute the sudden onset of a non-zero An, unless there is another hidden parameter

somewhere in the underbelly of mathematics.

By adding a hidden (abstract) parameter χ in a fourth orthogonal direction to the

space of A, f , and k, we may trigger the onset of An ̸=0 where a curve parameterized

in χ intersects the f -k plane. We would introduce conformal infinity functions kλ=

tan(γk + δ) such that a zero of ϕn at kλ = ±∞ is moved to the intersection of k

and χ at kn. The main purpose of the second number line charted in χ will be to

preserve information about the spacing of the kn where conformal kλ allows Gaussians

to go to zero at the onset of new instability modes. In the conformal parameter, k

cannot easily contain information about locations beyond infinity. The χ direction
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is necessarily hidden from the ODE, but this mimics the condition in the unit cell

where quantum states in H know nothing about the bulk. Successive kn should be

like limχ4
± → 0 at successive H-branes. The work of the present period doubling

thesis would seek to embed an equation such as (2.1) in an analogue unit cell such

that the discontinuous onset of new instability modes is triggered by something like

an H-brane where x0 and χ4 intersect, or k and χ in the present case. As we already

have the Schrödinger equation to describe quantum evolution from t1 to t2, but we

have suggested another equation for M̂3, this period doubling thesis might search for

entirely new ways of solving differential equations.

Extensive and mysterious universality in chaos [103] can be taken to suggest a

hidden parameter such as χ. It is not currently known why unrelated systems show

remarkably similar behaviors in their chaotic limits. The ubiquity of constants such

as Feigenbaum’s numbers [104–106] in disparate chaotic systems is evocative of the

universal numerical scheme in the ontological basis that we have used to append the

unit cell to H.

3 Field Line Breaking

Classical electromagnetism does not allow the formation of electromagnetic waves

detached from their sources as propagating flux loops. This is unfortunate because

the formation of such waves is thought to be a real physical process.

EM field lines are the level sets of the E and B fields which satisfy Maxwell’s

equations. These fields cannot have cusps in their level sets, but, for loops of flux to

break off from their sources as propagating waves, a level set must acquire a cusp at

some point: an X-point. The lack of any mechanism for such a process is a grievous

deficiency in classical electromagnetism, and any resolution to this problem will have

far-reaching consequences in almost all areas of physics. As it is, the tangent vector

to a level set of the E field points in the direction of E, and it follows that E would

point in two different directions at an X-point.

Figure 19 shows field lines near an X-point: before and after. One is able to

visualize the intermediate step at which the field lines must cross or reach a cusp,

but that configuration of field lines is not a solution to Maxwell’s equations. As in

the period doubling cascade, here we must appeal to some new method for solving

differential equations. The cusps can be smoothed over with quantum mechanics, but

we would like to develop a method for field lines to break in classical field theory.

Referring to Figure 19, note that field lines break and then reconnect to an exactly

mirrored line. This is similar to what happens at ∅ where χ4
+ terminates on a
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Figure 19: Figures due to McDonald [107] show EM field line configurations near X-
points. The arrows show two cases of loops being formed and one case of
two loops merging.

singularity and then continues along χ4
− on the higher level of aleph. The specular

reflection suggested as a workaround for continuing χ4 beyond ∅ in Section 1.6.6

(and [72]) is suggested by the nearly-reflected field line configurations in Figure 19. So,

the problem of field line breaking is similar to the problem of the forward connection

of Σ+ into Σ−, and is not unlikely they are two sides of the same coin. Even the

transition from topological AdS (the slices of Σ−) to topological dS (the slices of Σ+)

exactly replicates the issue of field line breaking, as in Figure 20. The solutions of

the AdS metric are hyperboloids of two sheets, and the solutions of the dS metric are

hyperboloids of a single sheet. Between these spaces of uniform positive or negative

curvature, the infinitely curved ∅-brane is like another X-point.1 Even the pinching

of the two classes of elliptic curve shown in Figure 17 (Section 1.11) is evocative of

the same mysterious X-point.

Ideas for the utility of fractional distance analysis toward the X-point problem

include the following. The arithmetic of numbers in the neighborhood of infinity may

be related to field line breaking through loss of information about b in the (ℵX +

b)/∞̂=X operation. If we were to incorporate levels of aleph into the solutions of

differential equations, each time step being like anH-brane or something similar, then

two field lines passing through separate points ℵX +a and ℵX +b on one level of aleph

would both pass through point X on the higher level. Most generally, the identity

x/∞=0 for any x∈R0 is a hard constraint on field solutions in the neighborhood of

the origin, but this constraint is relaxed in the neighborhood of infinity where new

behaviors may be possible. Indeed, new behaviors are implied by the new arithmetic

operations [2]. Furthermore, the strength of the E field where field lines cross is

infinite, and ∞̂ is a new tool for dealing with infinite quantities. Similarly, B=0 at X-

1Given a hyperboloid x2 + y2 − z2=ℓ2, we have a circle of radius ℓ in the z=0 plane. Decreasing the hyperboloid
parameter ℓ reduces the radius of the circle, so the infinitely curved ℓ2=0 case corresponds to the cusped intermediate
conical case not pictured in Figure 20.
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Figure 20: Figures due to Walker [108] show hyperboloids of one and two sheets. Anti-
de Sitter space is associated with one of the two surfaces in a hyperboloid
of two sheets (left) while de Sitter space is associated with a hyperboloid of
one sheet. One may visualize an X-point associated with the flat geometry
of H which separates the slices of Σ− from the slices of Σ+.

points, so we may study duality between 0̂ and ∞̂ for applications toward descriptions

of the combined EM field.1 Another idea is to use the big part of ℵX + b as the usual

position variable such that the little part functions as an effective infinitesimal. Such

quasi-infinitesimals may be useful for describing physics near X-points.

4 Curvature in the Neighborhood of Infinity

This problem regards the Ω→ A step of M̂3 as well as the identity and function

of the ∅-brane. If ∅ is a topological singularity, we must determine what separates

it from the regions of non-singular geometric curvature. To wit, fractional distance

analysis [2] has provided the non-arithmatic numbers (Section 1.6.6) such that we may

place ∅ at FX ∈F, but that program has not uniquely determined whether a single

number separates successive RX , or if there exist intervals between them. Figure 21

shows these possibilities. The set of all x∈ F might be totally disconnected, or the

FX could be the midpoints of neighborhoods of non-arithmatics as the ℵX are the

midpoints of the RX neighborhoods. Pertaining to the unit cell, we have not decided

if a single point separates the Ω- and A-branes, if there exists an interval between

1Duality between 0̂ and ∞̂ was detailed most specifically in [2, 47]. Briefly, suppose there exists a Euclidean line
segment AB covered by a chart x ∈ [0,∞) with 0 at A and ∞ at B. (AB is covered except for an endpoint.) For
every n∈N in the neighborhood of the origin, the invariance of AB under permutations of the labels of its endpoints
implies the existence of another number ∞̂ − n in the neighborhood of infinity. Duality between 0̂ and ∞̂ means
there exists a ∞̂ − n for every 0̂ + n∈N. The neighborhood of infinity is populated by the completion of N with the
rationals and irrationals.
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Figure 21: This figure demonstrates an open question in fractional distance analysis.
Should the RX neighborhoods be separated by single non-arithmatic num-
bers FX ∈F (above) or should they be separated by entire neighborhoods
of non-arithmatics labeled FX (below)?

them, or if we might remove them from Σ± to colocate them with ∅ as their union:

a single point separating Σ±.

From A to Ω, the physical curvature of the slices of Σ± at constant χ4
± is given by a

monotonic function R±(χ
4
±).

1 R vanishes in the χ4
±→0 limit associated with H, and

it diverges or has divergent-like behavior at ∅. Although the there is a discontinuity

at H where the scale changes, the Ricci scalar is continuous across H. The topology

changes from two timelike and three spacelike dimensions in Σ− to one and four in

Σ+, but there is only a scale discontinuity in the geometry of the 4D slices.

At the Ω→A step of M̂3, the case is much different. In addition to a discontinuity

in the topology and an implicit scale discontinuity, there is a stark jump discontinuity

from Ω’s non-vanishing positive geometric curvature to A’s non-vanishing negative

geometric curvature. While the discontinuity at H can be associated with the act

of observation or the start and stop points for M̂3, the geometric and topological

discontinuities at ∅ can only be associated with the reversal of the time arrow and

the increased level of aleph. It is not so hard to imagine the level of aleph changing

the scale and metric signature, but the asymmetric geometric discontinuity between

positive curvature in Ω and negative in A is a harder problem. To solve such issues,

it may be required to use the χA∅ coordinates to resolve a space between Ω and A.
On the other hand, if we increase the magnitude of the curvature in Ω and A to

1The subscript on R± reflects a possible convention for increasing the curvature to ±∞ on A and Ω. This would
require two different conformal infinity functions, i.e.: R+(χ4

+)=tan(φπχ4
+/2) and R−(χ4

−)=tan(Φπχ4
−/2). However,

this is not the case if we assume R(χ4
±)=χ4

± such that the Ricci scalar is Φ on Ω and −φ on A. Also, this function

will be written as R±(χ4
±, A

µ
±) most generally, but we ignore the second argument while Aµ

±=0.
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infinity, then the jump discontinuity from positive curvature to negative curvature

is greatly simplified. For example, the problem of joining a singularity of infinite

positive curvature to one of infinite negative curvature seems far simpler than joining

two maximally symmetric spaces with finite Ricci scalars R1 ̸= R2. Something as

simple as a minus sign used to reverse the arrow of time might be used to swap

infinite positive curvature for infinite negative curvature. Indeed, the physics of a

black hole/white hole pair is exactly what is needed to continue a trajectory along χ4

past the singularity at ∅. A state would fall into the black hole along χ4
+ and then

be ejected in reverse time along χ4
−.

Proposals to separate Ω and A by an interval, or to join them, point to the main

problem in this section. Should Ω and A be branes of infinite curvature? Should they

act like an event horizon surrounding ∅? If so, should an interval of χ4
∅ separate χ4

±?

Perhaps A and Ω should mark the onset of curvature in the neighborhood of infinity?

Curvature in the neighborhood of infinity presents a case for new physics in fractional

distance analysis because such curvature would describe a physical singularity but not

a mathematical one.

The Ricci scalar in maximally symmetric d+1 dimensional Lorentzian spacetime1

is

Rd =
d
(
d− 1

)
±ℓ2

. (4.1)

The de Sitter parameter ℓ defines dS or AdS as the induced metric on

−y20 + y21 + y22 + y23 ± y24 = ±ℓ2 , (4.2)

where yA are coordinates of flat 5D space satisfying

ds2 = −dy20 + dy21 + dy22 + dy23 ± dy24 .2 (4.3)

(Even with Aµ± = 0, the 5D MCM metric g±AB = diag(ηµµ, χ
4
±) is not flat in the

fifth coordinate.) We have inserted the ± on ℓ2 for concision in notation, but the

radius of curvature in AdS is a number whose square is a negative number. That

radius is timelike. Timelike or spacelike, the radius is called the de Sitter parameter,

1Lorentzian topology is characterized by one sign different than others in the metric signature. Maximally sym-
metric Lorentzian spacetimes are Minkowski space, de Sitter space, and anti-de Sitter space. These correspond to H
and the respective physical slices of Σ±. Maximal symmetry indicates that the Ricci tensor is completely determined
by the Ricci scalar.

2Allowing for imaginary distances, (4.2) is the equation of a 5D sphere. Together with (4.3), these equations make
clear what is meant when it is said that dS and AdS are spheres of spacelike and timelike radii: AdS4 is a Lorentzian
sphere of timelike radius in a space of two timelike and three spacelike dimensions. The {−+++−} metric signature
in Σ− specifies two timelike dimensions and three spacelike ones, so we have properly identified AdS4 for the slices of
Σ−. Likewise, dS4 is a Lorentzian sphere of spacelike radius in a space of one timelike and four spacelike dimensions,
and it is fitting that the slices of the {−++++} space Σ+ are taken as dS4.
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and its square is inversely proportional to the Ricci scalar, as in (4.1). Minkowski

space has R = 0 which is implied by any de Sitter parameter in the neighborhood

of infinity, but, to get finite R in the neighborhood of infinity, ℓ would have to be

the square root of an infinitesimal number. In other words, the radius would have to

be unphysical. However, the square roots of numbers with non-vanishing fractional

distance with respect to infinity were treated in [2], Section 6.2 therein. The main

result of that treatment was that no real number can be the square root of a number

in the neighborhood of infinity (such roots are complex), and the square root of an

infinitesimal might follow a similar analytical program.

Beyond (4.1), the Ricci scalar is also defined as the contraction of the Ricci tensor,

but it is not immediately obvious what Ricci tensors might contract as scalars in

the neighborhood of infinity. These tensors must be classified, and applications of the

attendant metrics toward the region around ∅ should be studied. Even in the absence

of such connections to the Ricci tensor, we might use the χ4
∅ coordinate to continue

R(χ4
±)=χ

4
± beyond A and Ω. This will allow an independent path for studying R in

the neighborhood of infinity near ∅. In general, R being promoted to a function is a

case of the generalized Brans-Dicke theory which will be briefly mentioned in Section

43. This is a natural framework in which to study curvature in the neighborhood of

infinity.

If the Ω-brane marks the onset of curvature in the neighborhood of infinity, we

must obtain

R3(Φ) = F0 , (4.4)

which is non-standard. If FX ∈ F does not have arithmetic defined (which is why

they are called non-arithmatic numbers), then how might a function of a real number

have such an output? To answer this question, we should identify the F on one level

of aleph with the N on a higher level, as in [2].1 The Ω-brane marks the termination

of Σ+, at which point the level of aleph is expected to increase, so such a solution

is well fitting. Overall, the ∅ region of the unit cell very much remains an unknown

territory on our map.

5 Continuous Particle Creation and Annihilation

In the lab, it is often observed that one particle will decay to two particles. For

instance,

ψ → χ+ ϕ . (5.1)

1The argument that the non-arithmatics on one level of aleph should be interpreted as the naturals on a higher
level of aleph is presented in Remark 7.5.21 of [2].
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However, there is no mechanism within the existing quantum theory by which the ψ(x)

function of one variable might smoothly evolve into the ψ′=χ(y) + ϕ(z) function of

two variables. Quantum theory gives us tools to determine an amplitude for a particle

with kµ to be found later as pair of particles with k′µ and k′′µ, but the question of

how we might get from here to there is not answered. Isham writes the following [69].

“Consider a scattering experiment in which two particles collide and

turn into three particles. Ignoring internal and spin quantum numbers,

the initial and final states could be described by wavefunctions ψ(x1,x2)

and ψ(x1,x2,x3). However, it is by no means obvious what type of time-

dependent Schrödinger equation could allow a function of two variables to

evolve smoothly into a function of three variables.”

The M̂CM operator was invented to affect the decay of the bounce state into two

time arrow eigenstates [40]. The U± universes are charted in the separate coordinates

xµ±, but Isham points out that there does not exist an analytical equation to underpin

and motivate

M̂CM
∣∣t⋆〉 = ∣∣t+〉+ ∣∣t−〉 .1 (5.2)

Fortunately, this is exactly the equation that we have now phrased as a change of

basis operation between chronological and chirological time arrow states (Section

1.10.2). Since the ψ → χ + ϕ process in question deals with the observation of ψ

and subsequently χ and ϕ, we are well motivated to invoke the physics of the MCM

unit cell. The physics of time arrow basis states must be developed with the goal of

solving this important and longstanding problem. Might we arbitrage a function of

two variables from the change of basis and evolution operations on a function of one

variable?

The following speculative mechanism explains how one might achieve the required

dynamical increase of a function’s variables. Beginning with a chronological time

arrow eigenstate ψ in H0, one would represent it as a superposition in the chirological

basis. Since Schrödinger evolution is a simultaneous process with chirological evolu-

tion, we might indicate non-decay with the superposition of chirological states being

converted back to chronological states at t′. Decay would be indicated by the conver-

sion of the states in the superposition back to the chronological basis, at times t′ and

t′′ respectively, such that the resultant expression is a function of two different spatial

variables in H1. From ψ(x) to χ(y) + ϕ(z), y is obtained from the conversion of a

chirological state at t′ and z is obtained from conversion of another chirological state

1One would bestow this universal equality with the causality inherent to decay by the incorporation of Heaviside
functions. Such functions are said to impose time ordering.
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at t′′. If one time basis is spinorial and the other is vectorial, the discrepancy between

state representations in 2D and 3D bases may have applications to this problem.

6 Wavepackets Extending to Infinity

A standing problem in physics is the infinite spatial extent of wavepackets. We would

like to construct analytical wavepackets localized in space, but this is not possible

with standard mathematical tools. One way to summarize this problem is that the

exponential function has no zeros on the real line, so wavepackets constructed from

such functions must extend to ±∞. However, one of the main results to come of

fractional distance analysis is that ex actually does have an infinite number of zeros

in R:
x ∈ R̂ =⇒ e−x = 0 .1 (6.1)

This result should be extended to define a new framework for the analysis of wavepack-

ets. Hypothetically, one would use the big parts of real numbers to model the lab

scale across some spectrum of fractional distance while the wavepackets themselves

would be defined with the small parts of real numbers so as to vanish outside of their

local (comoving) neighborhoods.2

7 Dark Energy

Dark energy refers to a cosmological redshift of deep space supernovae consistent with

an increasingly accelerating rate of cosmological expansion [34–36, 109]. However,

increasing expansion is not consistent with any standard cosmological model. In

standard cosmology, energy constraints are such that E > 0 causes the universe to

expand forever, albeit under a decreasing rate of expansion. If E = 0, the universe

will asymptotically stop expanding but never collapse. If the energy is negative (and

the arrow of time points in the positive t direction), expansion will eventually stop,

and the universe will recondense to a big crunch singularity. As a result, a theoretical

energy called “dark energy” is supplemented to account for the additional expansion

seen in the night sky. In this section, the main problem is to fit empirical dark

energy survey data to a model in which the anomalous optical effect results from an

interaction between two universes on opposite sides of a big bang-like singularity. This

curve fitting exercise may be undertaken immediately without further preliminary

1Recall that R̂ is the union of the maximal neighborhood of infinity with every intermediate neighborhood of
infinity: R̂=R1∪{RX } for X ∈(0, 1), as in Section 1.6.1.

2Recall that Big(ℵX + b)=ℵX and Lit(ℵX + b) = b, as in Section 1.6.1.
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inquiry. Aside from that, this section contains a discussion of the MCM framework

for dark energy. Related investigations are indicated as well.

There are two pictures in which the MCM solution to dark energy may be set. The

original solution [31, 40] is a simplified picture of Newtonian gravitation on cosmo-

logical scales while the second picture is framed in GR [110]. The first picture avoids

the issue of anomalous spatial expansion in a cyclic cosmology model. Periodicity is

imposed along x0 such that each big bang is the aftermath of a big crunch at the end

of a previous cycle of cosmology.1 Such events are called big bounces. On the far side

of the bounce at the end of our present cycle lies another universe with gravitational

mass. If there exists a timelike interval unbounded in the future so that we might

continue to measure proper time through the collapse of all of spacetime in a big

crunch at t1, then every t > t1 labels a hypersurface of constant proper time having

constant mass-energy M . Call the time of the next following bounce t2, and let t′ be

the midpoint of the interval (t1, t2) between two bounces. In a certain simplification,

Gauss’ law allows us to consider Newtonian gravitation across the bounce between

our current hypersurface of constant proper time t0 and the integrated mass M̄ of

an M at every t ∈ (t1, t2) as if M̄ was a point mass located at t′. Figure 22 shows

a Newtonian potential energy landscape in which our hypersurface of the present is

treated as a test mass. The interaction is treated as 1D along the t axis because the

bottleneck at the bounce should wash out any information about spatial distributions

of matter-energy beyond the bounce. Due to the present being deeper into the grav-

itational well of M̄ than supernovae on the past light cone, those images will appear

to recede under acceleration in the rest frame of observers at t0. This recession should

be identical to dark energy.

Since it is not clear what “time integrated mass” is, or what would be the mass-

per-time integrated density, we might consider a potential energy landscape identical

to that in Figure 22 between the singularity at t1 and observers at (x⃗0, t0) rather than

between M̄ at t′ and observers’ entire slice of constant proper time. In that case,

the radial nature of the interaction will be preserved, and dark energy will continue

to depend only on ∆t. We might also appeal to infinite relative scale across levels

of aleph to establish observers in the present as small test masses gravitating with

a larger mass in the future and on a higher level of aleph. However, the original
1The χ4 periodicity across the unit cell is based in part on cyclic cosmology models such as loop quantum cosmology

(LQC). Bojowald, the effective owner of the LQC theory, declared it dead in a 2013 talk. The record of this talk titled
“Loop Quantum Cosmology: A Eulogy” [111] appears to have been deleted from the internet following a citation
in [112] (excerpted here as Appendix C.) It is not clear if LQC died on its merits or if it died for its association with a
pseudo-plagiarism scandal that concluded with Jerry Sandusky’s 2011 child rape indictment (Appendix C). However,
the MCM is not attached to the specifics of the LQC model. Even the requirement for a cyclic cosmology in any
form has been called into question because interaction along χ4 may suffice to support the MCM mechanism for dark
energy without an additional interaction across a big crunch in the distant chronological future.
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Figure 22: This figure depicts the Newtonian mechanism for MCM dark energy,
mostly as it appeared in [31]. tIa is the proper time of a high redshift
supernova in the dark energy survey. Such supernovae live on the past
light cone of an observer with proper time t0. The upcoming bounce lies
at t1. t

′ is the temporal midpoint of the cycle of cosmology beyond the
bounce, and M̄ is a point mass representing the universe in the cycle be-
yond the bounce. The energy curve assumes that every slice of constant
proper time in our present cycle of cosmology has the same mass m, so the
energy between M̄ and the slices of constant proper time at tIa or t0 differs
only in the timelike separation |t′ − t|. Observers in an inertial frame at
t0 will see objects at tIa appear to recede under acceleration because t0 is
deeper into M̄ ’s gravitational well.

mechanism in [40] described interaction across a bounce, Figure 22 essentially, and

we have introduced the integrated mass so that we might treat the mass of a surface

of constant proper time as a test mass in the well of the future cosmology cycle.

Unfortunately, we have avoided a question about the integrated mass in our current

cycle of cosmology. Namely, if objects gravitate toward objects in the distant future,

integrated or not, then they should also gravitate toward objects in the near future.

For instance, a mass at time t experiencing gravitation with anotherm at t+∆t would

also gravitate with m at t + ε. Such effects regard what is called the gravitational

backreaction or self-force. This is one of the most difficult subjects in GR, and

in physics.1 In an ordinary study of GR, geodesics describe the path followed by

a test mass that does not disturb the metric as it moves. Parameterized motion

along a predetermined geodesic does not account for the disturbance in the spacetime

background caused by the changing position of a larger mass. Testifying to the

difficulty of the problem, the full equations of motion by which a mass disturbs its

1The electromagnetic backreaction is given by the
...
x term in the Abraham–Lorentz force FAL =m(ẍ − τ

...
x ), so

a third derivative may be implied in the corresponding gravitational backreaction. This implied derivative puts that
effect squarely within the purview of the MCM, even before its present context in the solution for dark energy.
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local curvature as it moves (self-gravitates) were not found until 1997 [113, 114]. If

dark energy is to be an interaction between a mass in the present and the same mass

in the future, then the MCM solution is a long distance backreaction. The interaction

is self-gravitation by definition.

The Newtonian gravitational potential energy is such that the r in

U(r) =
−Gm1m2

r
, (7.1)

is restricted to xi ⊂ xµ spatial separations, but we will assume for the purposes of

defining a gateway into this problem that this expression holds for r=x0. GR puts

space and time on the same footing, so this hand-waving is not unreasonable. Given

an energy landscape as in Figure 22, type Ia supernovae will be observed from an

inertial frame at t0 to recede under acceleration. Observers are deeper into the grav-

itational well of M̄ (a large mass in the future) than distant supernovae on the past

light cone, so they will experience greater Newtonian gravitation toward it than will

the supernovae. In observers’ inertial rest frame, the difference in acceleration will

be observed as supernovae receding under acceleration which increases as (t0− tIa)
increases. Adding a second energy well associated with an earlier cycle of cosmology

would compound the effect. The mechanism of the Newtonian solution to dark en-

ergy is that time is rarefied as the 1/r2 Newtonian force between universes pulls more

strongly on late times than early times [31]. An observer in the present will accelerate

toward the future more quickly than supernovae far back on his past light cone. The

optical manifestation of this condition should be identical to the one attributed to

dark energy: accelerating redshift which increases with the temporal displacement

of optical images. The expansion of space in conventional dark energy theories is

replaced with expanding time. Work remains to adapt the present Newtonian de-

scription to the language of GR, but it is likely that the simple description will be

sufficient for a first order fit to the empirical data.

The energy landscape in Figure 22 neglects to account for the blueshift of photons

falling into a gravitational well. Furthermore, gravitational time dilation1 is such that

clocks tick slower at lower gravitational potential while it seems like faster time in

the present would be associated with acceleration toward the future. To account for

such effects, one would add to Figure 22 an energy curve associated with an M̄ in the

previous cycle of cosmology and set the cosmological scale for dark energy |tIa − t0|
1Consider the Schwarzschild metric dτ2 ∝ (1 − rS/R)dt2 where rS is the Schwarzschild radius, R is the distance

from the singularity, t is the time on a clock at infinity, and τ is the time on a clock at R. Presently, rS is like |t′− t1|,
and R is like |t′ − t0|. Without a second energy well due to a previous cycle of cosmology, a clock at tIa effectively
measures Schwarzschild t while an observer’s clock measures τ , which is necessarily slower than t.
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to be such that emitters at tIa are at lower energy than observers at t0. As t0 will

accelerate more quickly toward future-directed M̄ than tIa, and likewise for tIa toward

past-directed M̄ , the appearance of recession for observers at t0 will not be disrupted

by the amended energy landscape.

For the second theoretical mechanism for dark energy, we will use the metric in

place of the loose Newtonian approximation. The second picture is like an interac-

tion between H-branes separated by ∅ rather than two universes separated by a big

bounce. A non-gravitational interaction is required because we have set the gravita-

tional interaction between labeled branes to zero in Section 1.6.3. This was done to

avoid gravitational collapse of the cosmological lattice, either by physical distance in

the neighborhood of infinity or Ugrav ̸=Ugrav(χ
4). In Section 1.7.3, it was shown that

the scale factor C between levels of aleph k and j changes the energy as

Ek = C2Ej , (7.2)

and this is well suited to dark energy as a non-gravitational interaction across ∅
rather than, or in addition to, interaction across a big bounce. The lower energy of

redshifted photons can be used to determine a direction for increasing C.
Preliminary metrical analysis predicts an effect like dark energy in the unit cell

without requiring actual gravitation [110].1 The Friedmann–Lemâıtre–Robertson–

Walker (FLRW) line element

ds2FLRW = −dt2 + a2(t)
(
dx2 + dy2 + dz2

)
. (7.3)

describes flat expanding space. a(t) is called the scale factor, and flat space stays flat

as it expands because a(t) is not a function of xi. Borde, Guth, and Vilenkin describe

the relation between a(t) and redshift as follows [57].

“Consider a model in which the metric takes the form

ds2 = dt2 − a2(t)dx2 . (7.4)

[...] From the geodesic equation one finds that a null geodesic in the metric,

with affine parameter λ, obeys the relation

dλ ∝ a(t)dt . (7.5)

Alternatively, we can understand this equation by considering a physical

1After examining the metric, we will ask whether a gravitational-like metric must necessarily imply gravitation.
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wave propagating along the null geodesic. In the short wavelength limit

the wave vector kµ is tangential to the geodesic, and is related to the affine

parameterization of the geodesic by kµ ∝ dxµ/dλ. This allows us to write

dλ∝dt/ω, where ω≡k0 is the physical frequency as measured by a comoving

observer. In an expanding model the frequency is red-shifted as ω∝1/a(t),

so we recover [(7.5)].”

Photons propagate along null geodesics. A redshifted photon has lower frequency,

so ω∝ 1/a(t) requires an accelerating increase in a(t) to accommodate the observed

accelerating increase in redshift. After the general solution for a in FLRW cosmology

is obtained from Einstein’s equation under certain assumptions of homogeneity and

isotropy, the result is that a(t) decreases with time: the opposite of what is determined

from deep space supernovae data [34–36,109].

The MCM metric is

g±AB =

(
g±αβ + χ4

±A
±
αA

±
β χ4

±A
±
α

χ4
±A

±
β χ4

±

)
, (7.6)

from which we obtain an Aα=0 line element

ds2± = −
(
dχ0
)2

+
(
dχ1
)2

+
(
dχ2
)2

+
(
dχ3
)2

+ χ4
±
(
dχ4
)2

. (7.7)

Comparing ds2FLRW and ds2MCM, χ
4
± is a scale factor for the χ4 part of g±AB.

1 Alternating

sign for the scale factor follows from the ± subscripting because χ4
± are oppositely

positive- and negative-definite in the unit cell. Since we have not obtained a separable

scale factor, as when a(t) ̸= a(xi, t) is the scale factor for the xi part of the FLRW

metric (the MCM has a non-separable a(χ4) scale factor acting on the χ4 part),

the behavior of the non-linear scale factor must be investigated. It must be verified

that the sign in the scale factor indicates redshift rather than blueshift. Assuming

redshift is indicated, a(χ4
±)=χ

4
± describes distance in the χ4 direction increasing with

increasing χ4. This effect was implemented along x0 with the Newtonian M̄ energy

landscape, and now χ4 has replaced x0. The effect by which Newtonian gravitation

toward the future rarefied chronological time is replicated with the non-separable

scale factor on (dχ4)2 rarefying chirological time. Furthermore, the increasing scale

for χ4 agrees with the scale we have associated with increasing levels of aleph.

In principle, we have demonstrated that a dark energy effect like gravitation be-

1We have previously commented on the possibility for taking g±44=±|χ4
±|2 to match the quadratic form of ϕ2 in

the KK metric. The present ds2∝a2(t) context for the FLRW scale factor also suggests that g±44=±|χ4
±|2 might be

better than the g±44=χ
4
± appearing in (7.7).
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tween universes may be derived from the MCM metric between H-branes. We have

described this effect with Newtonian gravity and as a non-gravitational metric effect,

but a question is begged whether a metric like gravitation must imply gravitation

itself. In other words, do the MCM branes gravitate after all? If so, it will be re-

quired to develop a mitigation preventing collapse such as Pauli degeneracy pressure

between fermionic branes, for example. Perhaps infinitely increasing scale in the chi-

rological future would imply a freefall-like equilibrium condition of metastable, eternal

collapse-in-progress due to gravitation.

In the Newtonian model, a calculation is required to demonstrate that the energy

term Ugrav(x
0) rarefies rather than compacts x0, or that the given effect produces

redshift rather than blueshift. In other words, it must be verified which of expanding

or contracting time should be associated with cosmological redshift. In the metrical

model, a calculation is required to show that increasing scale along χ4 induces redshift

rather than blueshift. Any disagreements will be remedied with a sign change.

8 Vacuum Energy

In QM, x̂ is the position operator. In QFT, x is an index marking the field oscillator

φ̂(x), and quantum oscillators have a famous zero point energy:

E =
ℏω
2

. (8.1)

Due to the infinite number of points x in any non-zero volume, the energy density of

the vacuum must be infinite. Since it is differences in energy that matter for physics,

this constant vacuum energy is usually ignored. The MCM suggests two possible

methods for dealing with infinite vacuum energy. First, fractional distance analysis

provides the ∞̂ object with which we can choose not to ignore vacuum energy and

track transfinite energy differences with arithmetic axioms [2] such as(
∞̂+ a

)
−
(
∞̂+ b

)
= a− b . (8.2)

However, a mathematical framework for handling infinite energies is disappointing

because any connection to GR would cause the vacuum to collapse to a singular-

ity. A second possible method for dealing with divergent vacuum energy would be

to disassemble the foundations of QFT and reconstruct a theory in which vacuum

oscillators oscillate jointly into Σ±: one oscillation mode with E=ℏω/2 and another

with E=−ℏω/2. Exotic models might be developed in which unequal probabilities

for time arrow fluctuations lead to a non-vanishing but finite vacuum energy.
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9 Spin Angular Momentum

If we associate the arrow of time with the direction of the p0 component of the 4-

momentum, then propagation though the unit cell is such that the direction of p0

alternates between Σ± and H. As linearly independent degrees of freedom, x0 and

χ4
± cannot point in the same direction. Following the picture of a right turn between

halves of the unit cell (Figure 4, Section 1.2.4), the pµ vector must rotate. Thus, we

may infer an angular momentum from L= Iθ̇. One would attempt to associate the

fundamental increment of spin ℏ with the total increment of angular momentum in

the unit cell. The anomalous fractional increment ℏ/2 would be assigned to the Σ±

halves. Furthermore, it is known that torsion is required to conserve spin in GR,

so one would attempt to correlate spin derived from the rotation of the momentum

4-vector with torsion in the g±AB metrics.

10 Spinor Structure from Spacetime

The Pauli matrices are a representation of the quaternions with

1→ 1 , i→ −iσ1 , j→ −iσ2 , k→ −iσ3 , (10.1)

or

1→ 1 , i→ iσ3 , j→ iσ2 , k→ iσ1 . (10.2)

The problem described in this section seeks to associate the Pauli algebra with the

structure of spacetime by replacing the imaginary number in the timelike part of the

Minkowski metric with a quaternion:

x0 = ict −→ x0 = qct , where q ∈ {i, j,k} . (10.3)

Notation for a complex phase between x0 and t was developed in Section 1.2.4, but

here we will briefly remotivate the convention.

The Lorentzian signature of Minkowski space is often taken as equivalent to the

form of the Minkowski metric

gµν =


−c2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 . (10.4)
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Once the metric is defined, the differential element is

ds2 = gµν dx
µ dxν . (10.5)

However, in the underlying theory of differential geometry pioneered by Riemann,

we have a differential line element ds as the fundamental descriptor of curvature on

manifolds. For physics, the quantity ds2 is more useful, but everything needed for the

mathematical construction of 4D manifolds with Riemannian curvature is encoded

on

ds = a0x
0 + a1x

1 + a2x
2 + a3x

3 , with aµ ∈ R . (10.6)

To generate Lorentzian structure at this level, and specifically the Minkowski metric

in (10.4), we set x0 = γct where γ has the property γ2 = −1. Therefore, we may

obtain the correct matrix representation of the gµν tensor if we use either of x0= ict

or x0=qct since i2 = q2 = −1.
If we distinguish Σ± so that the Lorentzian structure of their respective dS and

AdS slices are given by q1 and q2 ̸=q1, the limit of small χ4
± as Σ± approach a shared

boundary at H is also the limit where the individual complex plane analogues will

come into contact with a third embedding dimension. In other words, the quaternions

in Σ± are only indistinguishable from the imaginary number until they come to an

X-point at H or ∅. The algebra of the Pauli matrices is exactly the algebra of the

quaternions, so one would seek to extract the Pauli algebra as a consequence of the

metric in H being defined as a superposition of the χ4
±→0 limits in Σ±. For example,

given

x0+ = jct+ , and x0− = kct− , (10.7)

these two variables would not commute. Instead, they would anti-commute. Depend-

ing on the means by which physics in H is determined from the physics in Σ±, one

might obtain a Hamiltonian containing a product of such non-commuting variables.

In the {+−−−} Lorentzian signature convention calling for

x1+ = jx+ x1− = kx−

x2+ = jy+ and x2− = ky− (10.8)

x3+ = jz+ , x3− = kz− ,

the appearance of a product of non-commuting variables is especially easy to imagine

when defining H through a matching condition on Σ± because the quaternions are

attached to the spatial variables. In QM, a classical Hamiltonian H=xp is quantized
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as

H = xp =
1

2
(xp+ px) −→ Ĥ =

1

2
(x̂p̂+ p̂x̂) . (10.9)

because neither of the x̂p̂ or p̂x̂ products can be favored. A similar lack of distinction

between xi+x
i
− and xi−x

i
+ might be used in the present case to invoke the Pauli matrix

commutator

[σj, σk] = 2iεjklσl . (10.10)

In turn, this commutator algebra might drive the steering by right angles between

successive Σ± which was prescribed earlier for avoiding metric signature discrepancies.

Fundamentally, integer QM spin states have classical counterparts while half-

integer spin states do not. Since we have taken theH-brane as the domain of quantum

mechanics, we are well motivated to attempt to derive the half-integer spin algebra

as the limiting algebra of the coming together of Σ± at H.

11 Antisymmetry for Fermionic Wavefunctions

There is no theoretical motivation for the antisymmetry of fermionic wavefunctions. It

is inserted into the framework of QM artificially to force agreement with experiment.

Therefore, we should seek to motivate this antisymmetry from theory. The relative

phase conventions for real, imaginary, complex, and oppositely signed χ4
± seem well

suited to such a development. The reversed time arrow between Σ±, the association

of î with ∅, the piecewise right turns of χ4
± (Figure 4, Section 1.2.4), and the metric

signature discrepancy between Σ± all provide leads which may have applications

toward motivating fermionic asymmetry from first principles. The particle scheme

in which fundamental fermions are constructed from single spacetime quanta while

fundamental bosons are constructed from pairs may also have applications toward a

theoretical motivation for symmetry and antisymmetry in bosons and fermions.

12 Time Arrow Spinors

In Section 1.10.2, MCM states were given as eigenstates of a time arrow operator:

either the chronological T̂ or the chirological T̂ . The shared eigenvalue spectrum

{+1, 0,−1} indicated chronological {x0+, x0, x0−} or chirological {χ4
+, χ

4
∅, χ

4
−}. If the

time arrow operators are like an Ŝz operator, then we find a pair of spin-1 time states.

In [85], however, time arrow spinors having spin-1/2 were developed as follows.

“Through conservation of momentum we derive two times t± pointing

in opposite directions from the big bang. We obtain the superposition time
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t⋆ from t± via a quantum mechanical argument: the observer is unable to

determine if he is in the universe with forward time or backward time. To

an observer in either universe, time in that universe is forward, and the

other is backward. This is in complete analogy with quantum mechanical

spin: if the quantum observer cannot determine whether a two-state spin

system is in the spin-up or spin-down eigenstate then he must write the

state as a superposition ∣∣ψ±
〉
= c↑

∣∣ ↑ 〉+ c↓
∣∣ ↓ 〉 . (12.1)

Adapting from electron to universe, we write∣∣t⋆〉 = c+
∣∣t+〉+ c−

∣∣t−〉 . (12.2)

with eigenspinors

∣∣t+〉 = (1
0

)
, and

∣∣t−〉 = (0
1

)
.” (12.3)

The observer’s inability to distinguish a positive time universe from a negative time

one was the original motivation for defining time in the present as a superposition of

positive and negative time: ∣∣t⋆〉 = ∣∣t+〉+ ∣∣t−〉 . (12.4)

This was also the main thinking in [40] when writing∣∣bounce〉 = ∣∣t+〉+ ∣∣t−〉 . (12.5)

Both are in analogy with

∣∣Sx; +〉 = 1
√
2

∣∣ ↑ 〉+ 1
√
2

∣∣ ↓ 〉 , or
∣∣Sx;−〉 = − 1

√
2

∣∣ ↑ 〉+ 1
√
2

∣∣ ↓ 〉 , (12.6)

meaning that spin-up and spin-down in the x̂ direction may be expressed as inde-

pendent linear combinations of Ŝz eigenstates. The reason for identifying |t⋆⟩ with
|bounce⟩ was that the bounce should be the state of the present when the bounce

happens. Subsequently, these states have been disassociated as chronological and

chirological states. To motivate the disassociation on the same grounds as the former

association, one would identify |bounce⟩ with t =∞ such that an observer’s finite

proper time in |t⋆⟩ could never be that time. Presently, the spin-1/2 basis is not such
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that there should exist an eigenstate having eigenvalue 0. Time arrow eigenspinors

return ±1 to their respective time operators, so clarification is required whether or

not a complete time arrow basis has two states in it, or three. In Section 13, we will

describe an MCM-specific supersymmetry rotation which might help resolve whether

time states ought to be fermions or bosons, if a simpler resolution cannot be obtained.

The framework for bosonic MCM cosmology states in Section 1.10.2 must be rec-

onciled with the spin-1/2 time arrow spinor states that are the topic of this section.

The new mechanism for quantum gravity in Section 1.10.3 does not require that there

are three states in the completeness relation since we have ignored one by choosing

c⋆= c∅ =0. Neither do (12.4) or (12.5) require a third state with a zero eigenvalue.

Indeed, the representations∣∣x0〉 = ∣∣x0+〉+ ∣∣x0−〉 , and
∣∣χ4

∅
〉
=
∣∣χ4

+

〉
+
∣∣χ4

−
〉
, (12.7)

show that |x0⟩ and |χ4⟩ cannot be eigenstates of the T̂ and T̂ operators if

T̂
∣∣x0±〉 = ±∣∣x0±〉 , and T̂

∣∣χ4
±
〉
= ±

∣∣χ4
±
〉
. (12.8)

Any operator’s eigenstates must be orthogonal, so one can never be expressed as a

linear combination of the others. On the other hand, the expressions∣∣x0〉 = ∣∣χ4
+

〉
+
∣∣χ4

−
〉
, and

∣∣χ4
∅
〉
=
∣∣x0+〉+ ∣∣x0−〉 , (12.9)

say that x0 is a superposition of the adjacent χ4
± times while χ4

∅ is a superposition

of the adjacent x0± times. These expressions do not preclude the existence of a zero

eigenvalue for T̂ or T̂ , and each forms a valid representation of |t⋆⟩= |t+⟩+ |t−⟩.
As an additional cog in the works, consider a c⋆ term added to the right side of

M̂CM
∣∣bounce〉 = c+

∣∣t+〉+ c−
∣∣t−〉 , (12.10)

so that we obtain

M̂CM
∣∣bounce〉 = c+

∣∣t+〉+ c−
∣∣t−〉+ c⋆

∣∣t⋆〉 . (12.11)

This was (1.10.26) in Section 1.10.2. If |t⋆⟩ is combination of |t±⟩, (12.11) reduces

to (12.10) times a constant, we will have obtained obtain nothing new, and a zero

eigenvalue is not suggested. Therefore, work is required to sufficiently parse the

desired time arrow physics in terms of the chronological and chirological time states.

Following the structure of ordinary spin-1/2 states, we might introduce three time
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arrow operators T̂+, T̂0, and T̂− corresponding to measurements of time-up or time-

down in the {x0+, x0, x0−} directions. These would mimic the Ŝi operators as

T̂+
∣∣ψ; Φ̂〉 = ±∣∣ψ; Φ̂〉

T̂0
∣∣ψ; π̂〉 = ±∣∣ψ; π̂〉 (12.12)

T̂−
∣∣ψ; 2̂〉 = ±∣∣ψ; 2̂〉 .

Then we would introduce a similar algebra for T̂i. Following an analogy with Ŝi,

(12.12) begs the question of a T̂ 2 operator commuting with the T̂i such that

[T̂i, T̂j] = εijkγT̂k , and [T̂i, T̂
2] = 0 . (12.13)

If two observable operators commute, the eigenstates of those operators should be

described by two quantum numbers. Perhaps the time arrow operators supposed

in Section 1.10.2 represent respective commuting observables so that simultaneous

eigenstates might have two quantum numbers specifying an arrow of time (with a

given scale) and time-up or time-down with respect to that arrow. Overall, the

language for time arrow eigenstates is one of the most promising problems presented

in this paper due to its high potential for immediate productive work toward a well-

defined conclusion.

Time arrow spinor states are well developed enough that we have obtained a Hamil-

tonian rather than only supposing that one should exist. The MCM Hamiltonian is

based on the physics of the Stern–Gerlach experiment that separates spin superposi-

tions according to their eigenstates (or combines them in its elaborate variants [85].)

It was presumed that spinor-valued time states propagating in the MCM lattice, de-

scribed as a time circuit in [85], would similarly separate and recombine as part of a

general milieu. Spin-1/2 angular momentum states in the Stern–Gerlach experiment

obey the Pauli equation

iℏ
∂

∂t

∣∣ψ±
〉
=

{
1

2m

[(
p̂− qA

)2 − qℏσ ·B]+ qA0

} ∣∣ψ±
〉
, (12.14)

where

Aµ = (A0,A) , B = ∇×A , and ĤSG = − qℏ
2m

σ ·B . (12.15)
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The ĤSG part was adapted to ĤMCM for time arrow spinors in the lattice as

iℏ
∂

∂χ4

∣∣ψ±
〉
=
(
Ĥ − ip0u1 ·ϕu2︸ ︷︷ ︸

ĤMCM

)∣∣ψ±
〉
, (12.16)

where u1 and u2 are two quaternions, and ϕ is the scalar field in the fifth diagonal

position of the KK metric which we have identified with χ4. ĤMCM has replaced

ĤSG, and we have condensed the remainder of the Hamiltonian down to Ĥ to avoid

a question about the analogue of the kinematical momentum.

The steps to obtain this equation for ĤMCM acting on time arrow spinors were as

follows. The |ψ±⟩ momentum spinor was replaced with the |t±⟩ time spinor. We have

rewritten the Pauli matrices with quaternions, as in Section 10. The substitutions

1→ 1 , i→ −iσ1 , j→ −iσ2 , k→ −iσ3 , (12.17)

allow us to write

u = ai+ bj+ ck −→ σ = iu . (12.18)

We have replaced the electric charge q with the energy p0. Opposite energy in the two

universes mimics opposite charge in the Stern–Gerlach apparatus. The energy of a

complete universe is taken as one quantum in line with the electron’s single quantum

of charge. Following the canonical prescription, p0 quantizes as p̂0=−i∂0, which is the

time derivative in Schrödinger’s equation (up to a sign likely associated with metric

signature.)1 To avoid this double use, we have changed the time derivative on the

left of (12.16) to ∂4, but we might have alternatively replaced q with p4 which would

act on ϕ through ϕ2=χ4. These cases for p0 and p4 should be complementary MCM

Schrödinger equations, as was discussed extensively in [85]. Finally, the magnetic

field B is replaced with the KK scalar field upgraded to a vector-like quantity by

multiplication with u2. (The case of B→ϕ2u was also considered in [85].)

The MCM Hamiltonian and its physics require further study. In the case where

the quaternions in ĤMCM acquire non-unit magnitudes as in the ontological basis, first

analysis in [85] shows that the expected energy ratios E−
MCM/E

+
MCM are remarkably

like the ENRR/ERR ratios observed in the negative frequency experiments of Rubino

et al. [43, 45]. The latter ratio is the energy of negative resonant photons divided by

that of resonant photons.

To the knowledge of this writer, exciting new algebraic structures developed in [85]

have not appeared elsewhere in the literature. They are obtained by extension of
1Note that quantization of the p0 component of the 4-momentum as p̂0 = iℏc∂t allows us to write the time-

dependent Schrödinger equation as p̂0|ψ⟩=cĤ|ψ⟩.
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the x0=uct protocol for replacing the imaginary number with quaternions (Section

10). We will replace the imaginary number in the plane wave complex exponential

as eiωt → euωt. Then we will bring those waves into spinors and increase matrix

complexity by converting the quaternions to nested Pauli matrices. Given a two

component spinor wave ∣∣ψ〉 = eikx

(
ψ1

ψ2

)
, (12.19)

a quantum number is added to specify spin-up and -down as

∣∣ψ; +〉 = eikx

(
ψ1

0

)
, and

∣∣ψ;−〉 = eikx

(
0

ψ2

)
. (12.20)

For time spinors, we will use ψ and ξ to specify chronological and chirological eigen-

states: ∣∣ψ〉 = eu1kx

(
ψ1

ψ2

)
, and

∣∣ξ〉 = eu2βχ

(
ξ1

ξ2

)
. (12.21)

To demonstrate what appears to be new matrix structure with an example, assume

u1= j. Ignoring the ψ1 part of |ψ; +⟩ to use

j −→ −iσ2 = −i

(
0 −i

i 0

)
, and 1 −→ 1 =

(
1 0

0 1

)
, (12.22)

we may write

∣∣ψ; +〉 = (ejkx
0

)
=

(
C + jS

0

)
=

(
1C − iσ2S

0

)
=


C −S
S C

0 0

0 0

 . (12.23)

This additional layer of matrix complexity is likely to support new channels for the

flow of quantum information.

An additional system not described in [85] preserves the imaginary number in the

plane wave exponent but allows the ontological labels to specify quaternion phase on

time:

t→ tu =⇒ eiωt → eiωtu. (12.24)

In this latter convention for complementing imaginary phase with quaternion phase,

the program for finding the Pauli algebra in the structure of spacetime (Section 10)
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would revolve around x0= ictu rather than x0=uct. The identities

sin(iθ) = i sinh(θ) , and cos(iθ) = cosh(θ) (12.25)

give another example of new matrix complexity as

eiωtj = cos(iωt) + j sin(iωt) = 1Ch− iσ2
(
iSh
)
=

(
Ch −iSh

iSh Ch

)
, (12.26)

where Ch and Sh are cosh(ωt) and sinh(ωt). This can be further complicated with

the imaginary number replaced as well. For example,

ei(kx−ωtj) = eikxe−ωtij

= eikxe−ωtk

=
(
C(kx) + iS(kx)

)(
C(ωt)− kS(ωt)

)
=
(
1C(kx)− iσ1S(kx)

)(
1C(ωt) + iσ3S(ωt)

)
(12.27)

=

(
C(kx) −iS(kx)

−iS(kx) C(kx)

)(
iC(ωt)S(ωt) 0

0 −iC(ωt)S(ωt)

)

=
1

2
sin(2ωt)

(
i cos(kx) − sin(kx)

sin(kx) −i cos(kx)

)
.

The utility of such structures toward new channels in quantum algebras must be

evaluated.

13 Supersymmetry

The supersymmetric standard model of particle physics is well loved because the

coupling constants of three of the four forces are unified at a certain energy (Figure

14, Section 1.9.4). A model is said to be supersymmetric if fundamental bosons have

fermionic partners and fundamental fermions have bosonic partners. For each particle,

one says there exists a supersymmetric sparticle. Therefore, we should consider the

decompositions of chronological/chirological time arrow eigenstates as superpositions

of chirological/chronological ones in the context of the MCM model of spin spaces

(Section 1.4). This may help clarify the question of a bosonic or fermionic eigenvalue

spectrum, either {+1, 0,−1} or {+1,−1}, for chronological T̂ and chirological T̂ .
Firstly, one considers the notion that if every time arrow eigenstate can be de-
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composed into a superposition of relative positive and negative time states, then one

might construct a symmetric unit cell about whichever time eigenstate was decom-

posed. In essence, we might take any time as the time in an H analogue and treat

the positive and negative parts of that time as χ4
± analogues spanning Σ± analogues.

Considering the case where we take a chirological time as the x0 analogue, we would

establish a system in which the equations for chronological time are like the equa-

tions for chirological time. Obviously, this mimics the usual supersymmetric notion

of equality between equations for force and matter, or bosons and fermions. An in-

tegral concept in supersymmetry is the continuation of an ordinary Lie algebra onto

what is called a super algebra, and that should provide guidance for the structure

suggested here. Furthermore, if x0+ (for example) might be decomposed as some other

variants of χ4
± not present in the unit cell, then we establish a fractal model of infinite

self-similarity.1 Arkani-Hamed has made a comment about how the spin-1 case for

the Higgslike particle requires a “Russian doll” model of nested bosons [21], and the

present suggestion is consistent with that analogy.

Consider a direct symmetry between bosons and fermions in the context of MCM

spin spaces (Section 1.4). Given the space of spin-1/2 states

L2(R3)⊗ C2 ≡ L2(R3)⊗ χ4
+{0} ⊗ χ4

−{0} , (13.1)

the decompositions∣∣χ4
+{0}

〉
= c1

∣∣x0+{0}
〉
+ c2

∣∣x0{0}〉 , and
∣∣χ4

−{0}
〉
= c3

∣∣x0−{0}
〉
+ c4

∣∣x0{0}〉 , (13.2)

suggest

L2(R3)⊗ χ4
+{0} −→ L2(R3)⊗

(
c1x

0
+{0} ⊗ c2x0{0}

)
⊗
(
c3x

0
−{0} ⊗ c4x0{0}

)
. (13.3)

The equations in (13.2) decompose the χ4
± in one unit cell in terms of their adjacent

instances of chronological time. The result in (13.3) may be simplified by the x⊗x=x
property of the tensor product as

L2(R3)⊗ c1x0+{0} ⊗ c5x0{0} ⊗ c3x0−{0} ≡ L2(R3)⊗ C3 . (13.4)

This is the MCM supposition for the structure of the state space of spin-1 particles,

as in Section 1.4. Therefore, one might derive a fundamental symmetry (a supersym-

metry) from the underlying symmetry between representations of abstract quantum

1The structure by which each time arrow decomposition can be resolved on further time arrow decompositions
has been said to make the MCM a fractal model of infinite complexity.
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states in Hilbert space in the eigenbases of the chronological and chirological time

arrow operators.

14 Representations of Quantum Algebras

We have introduced four new objects into quantum theory: the ontological basis

vectors êµ. Cases for the association of these objects and the their dyads with the

four and sixteen generators of the Pauli and Clifford algebras should be explored.

One would examine the utility of the ontological basis toward defining spinor/bispinor

structure, e.g.:

π̂ →


π

0

0

0

 , Φ̂→


0

Φ

0

0

 , 2̂→


0

0

2

0

 , î→


0

0

0

i

 . (14.1)

As the Pauli matrices may be represented with quaternions, we would also explore

cases for non-unit quaternion representations such as

π̂ → πi , Φ̂→ Φj , 2̂→ 2k , î→ i1 , (14.2)

and similar. A convention for non-unit quaternions replacing Pauli matrices was

important in [85] for matching the ratio of energies in Σ± to the energy ratio of

the resonant and negative resonant photons observed by Rubino and McLenaghan et

al. (Section 12) [43]. Additional sign conventions such as

uiui = −1 , and uiuj = εijkuk , (14.3)

may be useful for time arrow conventions. Quaternions (called H) have the additional

property

ijk = −1 , (14.4)

which is not found in C. However, a plane spanned by 1̂ and a unit quaternion û

must be exactly like C in the absence of at least a third embedding dimension to

invoke any algebraic properties not inherent to C.
H offers a geometric picture for thinking about tuples of complex numbers such as

Pauli and Dirac spinors. The product C ⊗ H is a 5D space spanned by {̂i, 1̂, î, ĵ, k̂}
containing what are essentially four complex planes.1 A point in this 5D space is

1We take the overlap of the quaternion and complex identities as the identity, i.e.: 1̂⊗ 1̂=1̂.
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a tuple of four complex numbers when we associate (1,q) with C. Four complex

numbers specify a Dirac spinor, and the product C ⊗ H follows the suggestions for

bestowing time arrow spinors with new matrix complexity in Section 12. C⊗H may

be useful for moving the Dirac equation into the bulk of Σ±. Associating the sixteen

ontological dyads with sixteen distinct Dirac bra-kets in the form ⟨ψ; êµ|ψ; êν⟩, one
would seek to make associations with the Clifford algebra and its sixteen generators.

One notes that associating each ontological basis vector with a Dirac matrix gives

γ5 ≡ γ1γ2γ3γ4 = 2̂π̂îΦ̂ , (14.5)

which, in the limit of Φ̂k→ Φ̂∆k, associates the pervasive γ5 matrix of the Dirac theory

with the pervasive 2πi of complex analysis on a constant level of aleph. This feature

and similar number-theoretical qualities derived from the association of the objects of

standard quantum algebras with the ontological basis vectors should be investigated.

15 Mechanical Precession

Laithwaite has suggested that the anomalous precession of spinning discs [99] might

be explained by the rate of change of the acceleration on the infinitesimal elements

of the disc [98]. This context for the third derivative directly motivated the initial

supposition that M̂3 should be a third derivative. In [3], we supposed that the ap-

parent anti-gravity effects exhibited by spinning discs [99] might be attributed to a

discrepancy between the time derivatives of the force in the past and future written

as a power series in the fine structure constant. Although the EM interaction is un-

related, a potential relevance was inferred for the FSC because α should characterize

the geometry of the unit cells exhibiting the assumed past/future discrepancy. We

wrote the following [3].

“The apparent anti-gravity effects witnessed in Laithwaite’s gyro demon-

stration at the Royal Society [99] can be explained if there is a net force on

Hi due to contributions from the past and future. Using [the time derivative

of centripetal force Ḟ =mrω3,] we may write the following.

Fnetπ̂i :=
∞∑
n=1

αn
(
Ḟ π̂i+n − Ḟ π̂i−n

)
(15.1)

:= mω3

∞∑
n=1

αn∆rn
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If this sum is taken to the continuum limit as an integral over time, the

inclusion of the differential element dt will give the correct units. A 20 kilo-

gram wheel was spun at 2500 revolutions per minute. Precession lifted the

wheel 1.5 meters in 3 seconds. This created a constant linear ẑ-momentum.

Dividing the impulse by the time[,] we see the force of precession was about

3 newtons stronger than the gravitational force. Keeping terms to first

order in α we derive a characteristic length scale for chiros.

F⃗p = mω3α∆rẑ

200 =
(
20
)(
1.8× 107

)
α∆r (15.2)

∆r ≈ 10−4meters

And that looks about right! Far from the nano-scale of quantum mechanics

and far from the macro-scale of ordinary perception.”

The extent to which 10−4 is a special number cannot be overstated. If we had

obtained any n other than −6≤n≤−3, the 10−n result could have been discounted

immediately. Among the infinite possible integers, −4 is the most perfect one for

new effects. The open question of new physics at this scale is discussed in [4, 5], for

example. The calculation of this scale in [3] was the foundation for the arrangement of

the unit cell being such that the metric inH should be obtained by the difference of the

metrics in Σ±, as in Section 0.2. The mechanism for metrical differences followed from

the above calculation in which the disc’s vertical rise is attributed to an asymmetry

between contributions from the past and future. However, the problem of precession

remains to be solved with formal equations of motion. Casting the motion of the disc

as motion along a geodesic is likely to be productive because the expected vertical

rise of the disc is already known.

16 The Advanced Electromagnetic Potential

This problem requires a breakdown and reanalysis of the foundations of the advanced

and retarded potentials in Maxwell’s equations. Eventually, the Maxwellian EM

potential 4-vector must be defined in terms of the Aµ± in the metrics of Σ±:

g±AB =

(
g±µν + f(χ4

±)A
±
µA

±
ν f(χ4

±)A
±
µ

f(χ4
±)A

±
ν f(χ4

±)

)
. (16.1)

The following context for the advanced and retarded potentials appears in [115].
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“In 1909 Walter Ritz and Albert Einstein (former classmates at the

University of Zurich) debated the question of whether there is a fundamen-

tal temporal asymmetry in electrodynamics, and if so, whether Maxwell’s

equations (as they stand) can justify this asymmetry. As mentioned above,

the potential field equation

∂2ϕ

∂x2
+
∂2ϕ

∂y2
+
∂2ϕ

∂z2
− 1

c2
∂2ϕ

∂t2
= −4πρ , (16.2)

is equally well solved with either of two functions

ϕ1 =

∫
ρ(x, y, z, t− r/c)

r
dx dy dz (16.3)

ϕ2 =

∫
ρ(x, y, z, t+ r/c)

r
dx dy dz ,

where ϕ1 is called the retarded potential and ϕ2 the advanced potential. Ritz

believed the exclusion of the advanced potentials represents a physically

significant restriction on the set of possible phenomena, and yet it could not

be justified in the context of Maxwell’s equations. From this he concluded

that Maxwell’s equations were fundamentally flawed, and could not serve

as the basis for a valid theory of electrodynamics. Ironically, Einstein too

did not believe in Maxwell’s equations, at least not when it came to the

micro-structure of electromagnetic radiation, as he had written in his 1905

paper on what later came to be called photons. However, Ritz’s concern

was not related to quantum effects (which he rejected along with special

relativity), it was purely classical, and in the classical context Einstein was

not troubled by the exclusion of the advanced potentials. He countered

Ritz’s argument by pointing out (in his 1909 paper ‘On the Present State

of the Radiation Problem’) that the range of solutions to the field equations

is not reduced by restricting ourselves to the retarded potentials, because

all the same overall force-interactions can be represented equally well in

terms of advanced or retarded potentials (or some combinations of both).

He wrote

‘If ϕ1 and ϕ2 are [retarded and advanced ] solutions of the [po-

tential field ] equation, then ϕ3 = a1ϕ1 + a2ϕ2 is also a solution if

a1 + a2 = 1. But it is not true that the solution ϕ3 is a more

general solution than ϕ1 and that one specializes the theory by
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putting a1 = 1, a2 = 0. Putting ϕ= ϕ1 amounts to calculating the

electromagnetic effect at the point x, y, z from those motions and

configurations of the electric quantities that took place prior to the

instant t. Putting ϕ=ϕ2 we are determining the above electromag-

netic effects from the motions that take place after the instant t. In

the first case the electric field is calculated from the totality of the

processes producing it, and in the second case from the totality of

the processes absorbing it. If the whole process occurs in a (finite)

space bounded on all sides, then it can be represented in the form

ϕ=ϕ1 as well as in the form ϕ=ϕ2. If we consider a field that is

emitted from the finite into the infinite, we can naturally use only

the form ϕ=ϕ1, precisely because the totality of the absorbing pro-

cesses is not taken into consideration. But here we are dealing with

a misleading paradox of the infinite. Both kinds of representations

can always be used, regardless of how distant the absorbing bodies

are imagined to be. Thus one cannot conclude that the solution

ϕ = ϕ1 is more special than the solution ϕ = a1ϕ1 + a2ϕ2 where

a1 + a2=1.’

“Ritz objected to this, pointing out that there is a real observable asym-

metry in the propagation of electromagnetic waves, because such waves in-

variably originate in small regions and expand into larger regions as time in-

creases, whereas we never observe the opposite happening. Einstein replied

that a spherical wave-shell converging on a point is possible in principle, it

is just extremely improbable that a widely separate set of boundary condi-

tions would be sufficiently coordinated to produce a coherent in-going wave.

Essentially the problem is pushed back to one of asymmetric boundary

conditions [emphasis added ].”

Although the unit cell is depicted in a rectangular representation, the picture of

Einstein’s spherical wave converging on a point may be well suited to the MCM. The

dark energy interaction described in Section 7 is radial about ∅, and it was supposed

in Section 1.6.3 that higher levels of aleph might lie within ∅ rather than beyond

it due to physical curvature in the neighborhood of infinity. Either arrangement is

likely to support spherical wave shells in place of the plane waves we have considered

for rectangular representations of the unit cell.

The MCM solution for classical electrogravity (Section 18) follows from an assumed
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condition

Aµ
∣∣
H = c+A

µ
+

∣∣
Ω
+ c−A

µ
−
∣∣
A , (16.4)

where Aµ± are like the ϕ1, ϕ2 in (16.3). The meaning of (16.4), which first appeared

in [7], was that the usual Aµ in H is defined non-locally by Aµ± on the A- and Ω-

branes. However, non-locality is unusual in EM. To that end, Zeh makes a concise

statement in [116] regarding the physics which suggests a revision to (16.4).

“Electromagnetic radiation will here be considered as an example for

wave phenomena in general.1 It may be described in terms of the four-

potential Aµ, which in the Lorenz gauge obeys the wave equation

−∂ν∂νAµ(r, t) = 4πjµ(r, t) , with ∂ν∂ν = −∂2t +∆ , 2 (16.5)

with c=1, where the notations ∂µ :=∂/∂x
µ and ∂µ :=gµν∂ν are used together

with Einstein’s [summation convention]. When an appropriate boundary

condition is imposed, one may write Aµ as a functional of the sources jµ.

For two well-known boundary conditions one obtains the retarded and the

advanced potentials,

Aµret =

∫
jµ(r, t− |r− r′|)

|r− r′|
d3r′ (16.6)

Aµadv =

∫
jµ(r, t+ |r− r′|)

|r− r′|
d3r′ .

These two functionals of jµ(r, t) are related to one another by a reversal

of retardation time |r− r′| [sic]. Their linear combinations are solutions of

[(16.5).]”

We may avoid an implication for non-locality in EM if we replace Aµ+|Ω and Aµ−|A
in (16.4) with integrals as in (16.6). Therefore, we might write

Aµ
∣∣
H = c+A

+
µ

∣∣
Σ+ + c−A

−
µ

∣∣
Σ− . (16.7)

where Aµ±|Σ± are integrated expressions. The second argument of jµ would be adapted

so that the given chronological retardation time describes chirological separation from

H. Considering only χ4
±, we would write

jµ(r, t± |r − r′|) −→ jµ±(χ
4
±, t± |χ4

±|) . (16.8)

1Although the Schrödinger equation is the heat equation rather than the intuitive wave equation, it falls under
the topic of wave phenomena in general.

2∆ is the Laplacian operator: ∆≡∇2≡∇ · ∇. The formula for ∂µ∂ν reflects the convention x0= ict.
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In (16.6), the same jµ appears in both integrals, but we would derive separate jµ±
from separate Aµ± through the formula

□Aµ± =
4π

c
jµ± . (16.9)

Among the many conventions for H and ∅ considered in previous sections, and

for Ω and A, we have not considered that Ω and A might be the limiting branes

of Σ± around H so that the metric in H is defined as a sum (or difference) of the

metrics in Ω,A. To compare this to the case where the metrics at χ4
±→0 contribute

to gµν (Section 0.2), the lack of space between H and Ω,A might be attributed to the

scale of a certain level of aleph. In that case, (16.4) would not imply non-locality, the

metric and the 4-potential in H would both be assembled from the H-adjacent limits

of Σ±, we would obtain a chronological retardation time rather than a chirological

one, and the suggested integrals over jµ would refer to xi± without r being extended

to χ4
±. Therefore, this convention for abutting Ω and A should be added to the other

ones proffered for future inquiry.

It should be noted how this convention highlights duality between H and ∅, or

between |t⋆⟩ and |bounce⟩. We have asked many times whether Ω and A should be

separated by an interval or a point, and we might say that they are separated by a

point at H and an interval at ∅.

17 Kaluza–Klein Theory

A rigorous survey of Kaluza–Klein theory is required, e.g.: material covered in [8–

10, 117–119]. Particularly, the MCM condition that physical branes are defined at

constant values of the fifth coordinate has been supposed to generate KKT’s cylinder

condition in a natural way. This condition requires that 4D physics cannot depend on

the fifth coordinate, but it remains to be shown rigorously that the MCM’s braneworld

scenario is consistent with the requirements. Furthermore, analysis is needed to

separate Kaluza theory from Kaluza–Klein theory in which the fifth dimension is

given a compact topology and small dimension. Methods of Fourier expansion in

the fifth dimension to remove the compact topology condition must be studied and

compared to the unit cell. Overall, KKT is rich and well documented, but the MCM

has merely adopted its metric without making a full analysis. Such analyses must

be carried out. For instance, the MCM should be justified independently under the

Campbell–Magaard theorem1 [120, 121] without appealing the case of that theorem
1The Campbell–Magaard theorem governs cases under which 4D solutions in GR may be embedded in flat 5D

space.
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implicit in KKT.

18 Classical Electrogravity

This problem regards the unification of electromagnetism and gravitation developed

in [7]. The idea revolves around the definition of H as a sum of contributions from

Σ±. The gµν metric in H is taken as the sum (or difference) of the metrics in the

4D slices of Σ± at their respective χ4
±→0 limits, as in Section 0.2. In turn, the EM

potential in H was to be taken as a sum of potentials in Σ±. Thus, one might use

an antenna to impose a certain Aµ in H which would define Aµ± through the sum

relationship. Since Aµ± appear in the 5D metrics whose limits define gµν , one should

be able to steer gµν with an electrical antenna, or an array of them.

The sudden appearance of “hypersonic missiles” in late stage field testing in the

years after the publication of [7] is taken as strong evidence that the MCM mechanism

for electrogravity is sound. The lack of hypersonic missile technology approaching

the late stage testing phase in the preceding years is explained by an important

conceptual breakthrough related to electrogravity in [7].1 Therefore, the work should

be continued so as to obtain equations of motion by which the metric can be controlled

with the EM potential. This problem is not expected to depend on M̂3 and should

not amount to much more than crunching a large system of equations in a sufficient

number of unknowns. This system of equations is laid out in [7], but a number

of trivial deficiencies must be remedied before a physical, determinate system of

equations can be presented.

19 ϕ4 Quantum Field Theory

The MCM answers the fundamental problem of QFT with the spectrum of cosmo-

logical lattice modes (Section 0.3) [6], but the fundamental applied problem of QFT

remains open. Namely, there is no analytical solution to

Z =

∫
Dϕ exp

{
i

∫
d4x
{

1
2

[(
∂ϕ
)2 −m2ϕ2

]
− λ

4!
ϕ4 + Jϕ

}}
, (19.1)

where ϕ = ϕ(xµ), J = J(xµ), and Dϕ is the Feynman path integral measure. It is

called ϕ4 theory due to the presence of the ϕ4 term in Lagrangian needed to permit

interactions between field excitations.
1Cook offers a fascinating account of classified electromagnetic propulsion technologies in [122]. A report of

Alexander produced for NASA [123] contains related material which may be of further interest.
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There are some mathematical problems, in the sense of rigor, with the notation

for the infinite-dimensional integral over Dϕ, but the present problem bears only on

the integral in the exponential. Unresolved mathematical issues with Dϕ (Section 60)

do not impede our ability to make predictions, but the lack of a general solution to

the exponentiated integral is the major outstanding bottleneck on QFT’s predictive

capacity. In the absence of the anharmonic ϕ4 term, the exponentiated integrand

reduces to the Lagrangian density of the harmonic oscillator LHO added to a source

term Jϕ. In that case, integration by parts yields a well-known analytical solution. In

the anharmonic case, the best we can do is the truncation of one or another infinite

series to arbitrary order. The higher order terms become harder to calculate, and

quantum field theorists would prefer an analytical solution in closed form. Since

existing approximations for this integral rely on exponential series decompositions,

one would examine cases for new methods reliant on the big exponential function Ex

(Section 1.6.7) and new arithmetic axioms developed in fractional distance analysis

[2].

Guralnik remarks on the ϕ4 theory in [15].

“The (Euclidean) action is given by:∫
d4x

[
ϕ(x)

(
−□+m2

)
2

ϕ(x) + g
ϕ4(x)

4
− J(x)ϕ(x)

]
. (19.2)

The (Euclidean) Schwinger Action principle:

δ
〈
t1
∣∣t2〉 = 〈t1∣∣δS∣∣t2〉 , (19.3)

results in the equation:(
−□+m2

)
ϕ(x) + gϕ3(x) = J(x) . (19.4)

Defining Z as the matrix element of a state of lowest energy in the presence

of the source at very large positive time measured against the ‘same state’

at very large negative time and again using the Schwinger action principle

leads to:[(
−□+m2

) δ

δJ(x)
+ g

(
δ

δJ(x)

)3

− J(x)

]
Z(J) = 0 . (19.5)

[...] A good way to make sense of this equation is examine it on a space

time lattice with N space time points. This approach can be regarded as
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the original definition of a quantum field theory which is realized only in

the limit of vanishing lattice spacing. On a hyper-cubic lattice:

□ϕn =
∑
k

(
ϕn+êk + ϕn−êk − 2ϕn

)
, (19.6)

where êµ is a unit vector pointing along the k direction, and, for convenience,

the lattice spacing is set to 1. Since functional derivatives become ordinary

derivatives at a lattice point the equation for Z on the lattice is:[
−
∑
k

(
ϕn+êk + ϕn−êk − 2ϕn

)
+m2 d

dJn
+ g

(
d

dJn

)3

− Jn

]
Z[J1, J2, ...] = 0 .

(19.7)

The space-time derivatives have served to make this an equation involv-

ing three lattice points with the functional derivatives becoming normal

derivatives acting on the variable at the central lattice point.”

This result suggests an appropriately structured variant of the discretized ϕ4 prob-

lem using A,H,Ω as the three lattice points where the functional derivatives reduce

to ordinary derivatives. Guralnik continues as follows [15].

“Zero space-time dimension means that only one point exists and thus

the lattice equation becomes:

g
d3Z
dJ3

+m2dZ
dJ

= ZJ . (19.8)

While loosing any space-time structure and thus the possibility of under-

standing all the interesting structure that occurs in the continuum limit, the

above still maintains the non-linear nature of quantum field theory and the

associated multiple solutions. Calculating solutions is now straightforward.

While the finite dimensional case potentially has an infinite number of so-

lutions before accounting for the collapse of the solution set, the current

equation, representing ‘zero dimensional QFT’ only has three independent

solutions. The solutions can be found easily by using series methods.”

Zero dimensional QFT is quantum mechanics. The reduction of the ϕ4 QFT

problem to that limiting case yields a third order equation similar to the MCM’s

expected equation for ∂3 + ∂. Therefore, the easily obtained solutions referenced by

Guralnik must be carefully studied.

178



Jonathan W. Tooker

20 Stimulated Emission from the Vacuum

This problem regards the anomalous amplification reported by Rubino et al. in

“Soliton-Induced Relativistic-Scattering and Amplification” [45], which was a follow

up to Rubino and McLenaghan et al.’s earlier paper “Negative Frequency Resonant

Radiation” [43]. The following appeared in [45] (most citations removed).

“If compared to the well-developed field of traditional light scattering in

which the medium is at rest, little attention has been devoted to the physics

of scattering from a moving medium, in particular from a relativistically

moving medium. Here we consider the remarkable ability of solitons to

generate a co-propagating refractive index inhomogeneity that propagates

at relativistic speeds. The basics of scattering from a time-changing bound-

ary were discussed in detail by Mendonça and co-workers (see e.g. [124] and

references therein). Examples of such ‘time refraction’ have been predicted

and observed from a moving plasma front and in waveguide structures.

Recently, the nonlinear Kerr effect, i.e. the local increase of the medium

refractive index induced by an intense laser pulse, was proposed to induce

a moving refractive index inhomogeneity within a dispersive medium such

as an optical fibre. The laser pulse induced relativistic inhomogeneity (RI)

was then described in terms of a flowing medium in which the analogue

of an event horizon may form and applications such a optical transistors

have been proposed. Intense laser pulses are also known to scatter from the

self-induced travelling RI: this self-scattering process leads to the resonant

transfer of energy from the laser pulse to a significantly blue-shifted peak,

often referred to as resonant radiation (RR) or ‘optical Cherenkov’ radia-

tion. A recent discovery highlighted an additional scattered mode, further

blue-shifted with respect to the RR, identified as a mode excited on the

negative frequency branch of the medium dispersion relation and therefore

named ‘negative resonant radiation’ (NRR).”

Firstly, the present author’s area is not experimental quantum optics. Secondly,

this writer has undertaken only a cursory survey of the results in [43,45]. That being

said, with frequency being the inverse of time, and with the negative frequency result

following so closely on the heels of the MCM result regarding negative time, it is sug-

gested that NRR is an MCM corollary result. Effects cited by Rubino et al. including

time refraction, the analogue of an event horizon, and self-induced traveling relativis-
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tic inhomogeneities seem to make qualitative allusions to the following.1

� Dark energy as time refraction (described as time rarefaction in Section 7).

� The event horizon surrounding ∅ between Σ±.

� TheH-brane as a relativistic inhomogeneity disrupting the uniformity of RAB=0

in Σ±.

Even the title of Mendonça’s book, Theory of Photon Acceleration [124], makes a

qualitative allusion to the boosted photons cited by Particle Data Group as making

an allowance for the Higgslike particle to have spin-1 (Section 0.1) [27, 125, 126]. In

general, the NRR result must be dissected and meticulously understood.

Before undertaking such a comprehensive study, an underlying mechanism has

been supposed as the cause of the amplification reported in [45]. Lasers are monochro-

matic and in phase, so it is possible to create surfaces of phase lock within crossed

laser beams. A surface of |E|=0 would necessarily be solitonic because it represents

the absence of the E field. It would be a relativistic inhomogeneity in the crossed

lasers due to the |E| = 0 condition juxtaposed with the broader |E| ̸= 0 laser field.

The velocity of the |E| = 0 surface should be relativistic on the order of the beam

group velocity. Vanishing E is the boundary condition defining the surface of a piece

of metal in classical EM, so the surface of phase lock might act as a virtual 2D metal

foil in the path of the beam. We conjecture that the anomalous amplification in the

negative frequency mode is the analogue of the photoelectric effect on the virtual

foil. As a 2D surface, it is equipped with two oppositely signed normal vectors, one

which is available to cancel the minus sign associated with negative frequency so that

physical negative resonant photons might be observed with positive energy in the

lab frame. One would attempt to describe this process as stimulated emission

from the vacuum: a second quantized version of stimulated atomic emission in first

quantization. Supporting such a mechanism, Rubino et al. write the following in [45]

and [43] respectively.

“We have shown that a [relativistic inhomogeneity ] amplifies and scatters

light to higher frequencies. Likewise, if the probe pulse were to be reduced

to the level of quantum fluctuations, we may expect to see the RI excite the

vacuum states.”

“A process such as that highlighted here, that mixes positive and nega-

tive frequencies will therefore change the number of photons, leading to
1It is not suggested that the authors of [43, 45] allude to the MCM’s elements. Rather, it is suggested that the

physical context for negative resonant radiation overlaps with the MCM’s physical context.
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amplification or even particle creation from the quantum vacuum.”

It must be investigated whether a theoretical mechanism for stimulated emission

from the vacuum might be useful for describing such processes. If so, this should have

direct application toward the construction of overunity electrical devices powered by

vacuum energy.

21 The Dual Tangent Space

The dual tangent space was heavily emphasized in a previous MCM review [1]. The

expected utility for this space is to facilitate smooth propagation from Σ+ into Σ−

without being blocked by a singularity at ∅. As an example of a desirable mecha-

nism, the interaction cross section between two large but oppositely signed momentum

states is low even when the spatial overlap of the states is high. We might seek to

develop a third representation beyond the position and momentum spaces in which

the interaction cross section between a state transiting the unit cell and the singu-

larity at ∅ is also low. One “goes into the tangent space” from position space by

taking the Fourier transform to obtain a momentum space representation. The usual

framework of the Fourier transform and its inverse do not suggest a third represen-

tation beyond position/momentum space, but one would seek to associate some dual

tangent representation with the χ4 direction. In a familiar way, the binormal vector

is perpendicular to the tangent space, and we might introduce another Fourier-like

transform to abstract space as a third case beyond position or momentum space.

This case would be associated with the dual tangent space as momentum space is

associated with the tangent space. While such descriptions are not usual in physics,

the additional derivative in the expected ∂3 operator suggests structure beyond what

is usually derived from the ṗ=mẍ relationship.

22 Reverse Time in Quantum Field Theory

The early goal in treating the universe as a quantum particle1 was to resolve an

important question left unanswered by the standard model of particle physics: why

does matter dominate over anti-matter in the universe? This question is called the

mystery of the matter asymmetry [64]. The MCM solution is that a momentum-

conserving pair of universes U± are dominated by matter and anti-matter respectively

so that there is no global excess. In essence, one universe is a particle, and the

other is an anti-particle. The pair is said to come into existence at a fluctuation
1This refers to work in [31] which predates the MCM model of particles in [6] by about three years.
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Figure 23: (a) A Feynman diagram for electron-positron annihilation is such that time
increases to the right. It is labeled for comparison to the arrangement of
time arrows in the unit cell. The reversed arrow on the U− legs indicates
that U− is an anti-particle. If one pair of U± labels were swapped and
time was to point in the vertical direction, this annihilation diagram would
become a scattering diagram whose time arrows are still evocative of the
structure of the unit cell. (b) This figure demonstrates that the restriction
to positive- or negative-definiteness for χ4

± ∈ Σ± may be inherited from
two unbounded intervals of χ4

± which exceed what is contained within the
unit cell. By inserting another instance of the unit cell into the second
and fourth quadrants, one exactly replicates the structure of the Feynman
diagram.

called a big bang or big bounce. The problem described in this section calls for an

investigation to determine the extent to which QFT’s interpretation for particles and

anti-particles moving oppositely through time might be useful for describing MCM

cosmology states.

The model of electrons and positrons interacting by coming together along oppo-

site motions through time should be well suited to two oppositely timed universes

U± coming together at a big bounce and then separating, as in Figure 23a. They

annihilate to a photon-like bounce and then emerge from a null interval-analogue via

a process like γ→e+p. Ignoring the pre-bounce epoch, a pair of universes with oppo-

site time arrows coming into existence is like the process for pair creation by vacuum

fluctuations. The disjoint representation of the unit cell in Figure 23b enables an

easy visualization of the particle scattering diagram as a cosmology process. For one

transit of the unit cell, we have a universe coming into the null interval analogue, H,
from A and then going back out toward Ω. Since the arrow of time points oppositely

in χ4
±, this process should be associated with the left or right side of the scattering
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diagram: half the path of U+ and half that of U−. The continuation of χ4
± beyond

their respective positive and negative subsets in Σ± (Figure 23b) describes the con-

tinued paths for U±. A choice to represent the unit cell with Σ± joined on H or ∅
corresponds to another choice between assembling U± from one side of the Feynman

diagram, or from opposite corners. In one case, U± are separated by nothing, and

in the other they are separated by the null interval. Indeed, the Feynman diagram

suggests that we might complete the likeness by squeezing a second instance of the

unit cell into the second and fourth quadrants of Figure 23b. We have previously

made implicit reference to these quadrants when discussing (M̂3)† and φ̂ in Sections

1.2.4 and 1.2.5.

The MCM bouncing mechanism and unit cell are strikingly like the most famous

Feynman diagram. To move forward with this correspondence, it must be determined

which QFT processes are best suited to the modified model of cosmology. Feynman

diagrams represent amplitudes, but it is not immediately obvious in what way an

amplitude might describe our present universe in progress. However, the AdS/CFT

correspondence is famously exciting despite the absence of any direct utility for it.

Such correspondences are exciting in physics because they are believed to be impor-

tant.

23 Absorber Theory

The Wheeler–Feynman absorber theory of classical electrodynamics [127–129] sup-

posed the physical existence of advanced and retarded solutions to Maxwell’s equa-

tions. By doing so, they were able to accurately describe physics at almost all length

scales under the assumption that particles do not self-interact. This is the opposite

of the Abraham–Lorentz force in which the radiation damping term
...
x is a pure

self-interaction. Despite the absorber theory’s enormous successes, it was eventually

rejected on its failure at small length scales. It was acknowledged that there is no

good reason why an electron might not emit a photon and then later absorb that

same photon. However, early thinking which did not pan out was the foundation for

later methods in QED where particle self-interactions are of the utmost importance,

and where the context for advanced and retarded times survives, as in Section 22.

Considering that the absorber theory was supplanted by the Abraham–Lorentz law

which is known to have several issues of its own, such as a reliance on a questionable

period-averaging procedure, one would reexamine the fundamentals of the absorber

model to determine whether or not new MCM physics might bridge the gap where it

is said to have failed.
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In the opinion of this writer, the triple-C cosmic censorship conjecture against the

existence of naked singularities has euphemistic overtones referencing censorship in

the advanced black hole physics literature. In that vein, one wonders if Feynman

truly rejected the absorber theory which had similar interesting things to say about

the nature of time. Perhaps censorship in the “national security” apparatus required

that he disavow a valid theory? The present problem requires a full reevaluation

of the absorber model which nearly worked, but is said to have ultimately failed.

Rather than taking the word of those who have looked at it previously, the validity

or invalidity of the theory must be independently certified.

24 Renormalization and Regularization

Methods of renormalization and regularization in QFT are pathological to the extent

that they could be included in the MCM’s list of targeted issues in quantum theory

(Section 1.1.3). Both methods pertain to problematic infinities that arise when com-

puting amplitudes, so both are well suited to reanalysis in the MCM and its fractional

distance framework.

To sketch a path of investigation, the method of iterative updates to calculations-

on-the-fly called renormalization is very much like what we have called translation of

the observer’s reference frame onto a higher of level of aleph. If we don’t re-normalize

to the scale of the higher level of aleph, we expect M̂3 to output numbers in the

neighborhood of infinity that are not useful for comparison to physical quantities ob-

served in H-branes. Quantum theory will be much improved if unnatural techniques

of renormalization are solidified in the context of changing scale from one level of

aleph to another. Regularization in QFT, on the other hand, is introduced to avoid

undefined quantities such as∞−∞, but such expressions are defined with ∞̂ in frac-

tional distance analysis. Even the regularization cutoff scales imposed by regulators

might be better implemented when the RX local neighborhoods of fractional distance

provide inherent, sub-infinite cutoffs. An extensive survey of such methods should

be conducted with the intention to regularize or normalize what are currently two

irregular and abnormal methods in physics.

Testifying to the pathology of such methods, Dirac is quoted by Kragh as follows

[130].

“Most physicists are very satisfied with the situation. They say: ‘Quan-

tum electrodynamics is a good theory and we do not have to worry about it

any more.’ I must say that I am very dissatisfied with the situation because
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this so-called ’good theory’ does involve neglecting infinities which appear

in its equations, ignoring them in an arbitrary way. This is just not sensible

mathematics. Sensible mathematics involves disregarding a quantity when

it is small—not neglecting it just because it is infinitely great and you do

not want it!”

Similarly, Feynman wrote the following [87].

“The shell game that we play is technically called ‘renormalization’. But

no matter how clever the word, it is still what I would call a dippy process!

Having to resort to such hocus-pocus has prevented us from proving that the

theory of quantum electrodynamics is mathematically self-consistent. It’s

surprising that the theory still hasn’t been proved self-consistent one way

or the other by now; I suspect that renormalization is not mathematically

legitimate.”

25 AdS/CFT Correspondence and Holographic Duality

A key new insight in the MCM is concisely expressed in terms of holographic duality.

The solution to electrogravity (Section 18) [7] is a direct application of holographic

bulk-boundary correspondence. This principle, broadly called AdS/CFT correspon-

dence due to a famous context discovered by Maldacena [59], allows one to describe

physics in an N dimensional bulk as a theory on a boundary surface in N − 1 dimen-

sions. The AdS/CFT correspondence is specifically such that physics in 5D anti-de

Sitter space is determined by a conformal field theory (CFT) whose domain is only

the boundary of AdS5. The usual program in bulk-boundary correspondence is that

the holographic surface is taken as the exterior of one bulk, but the new idea in the

MCM is to put the holographic surface between two bulks: 4D H between 5D Σ±.

Therefore, one would make a survey of the primary applications of the extensively

treated AdS/CFT problem posed by Maldacena as well as the broader contexts for

holographic symmetries in physics. One would attempt to continue the duality of one

bulk and one surface to two bulks and a surface, or two bulks and two surfaces (H
and ∅) with the goal to make non-trivial advancements in understanding holographic

correspondence and its (missing) use cases in physics.

26 Numerical Analysis

Among the 66 theses in this paper, this problem is likely to be the most productive.

A multitude of unanswered questions about the exact analytical structure of MCM
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mechanisms will be brightly illuminated when the ideas are implemented as an exer-

cise in the numerical analysis of arrays. The analysis of numerical solutions and their

visualizations with computer graphics is likely to be more efficient and less cumber-

some than a long slog through the analytical underpinning of everything (which will

be necessary and delightful.)

A computational environment for simulating physics in the MCM unit cell must

be developed. One would begin with numerically integrated wave equations in flat 5D

spacetime. One would generalize to 5D wave equations in the {−+++±} signatures
and study the conditions for their smooth transmissiblities. The array structure of

numerical analysis on grids is likely to provide immediate and keen insights regarding

what is required for controlling transmission and reflection coefficients at the interfaces

between Σ±. One would graduate to simulations of waves in curved space [131,

132]. Having implemented the wave equation in curved spacetime, one would employ

optimization to find the RAB=0 bulk solutions allowed by KKT. One would explore

gravitational waves and scalar EM waves, at least one of which is consistent with

a vanishing Ricci tensor. One would make extensions to the heat equation. This

long exercise in numerical analysis is likely to answer many open questions regarding

the structure of the unit cell and the equation for M̂3. The visual representation of

simulated time evolutions will be an invaluable aid.

27 The Location of the Observer

The usual space of wavefunctions in the position representation is L2, the space of

square integrable functions:

L2(R) ∋ ψ : R→ C =⇒
∫ ∞

−∞
dx
∣∣ψ(x)∣∣2 <∞ . (27.1)

The physics of the L2 condition is that the wavefunction must support the probabil-

ity interpretation. Being less than infinity, the integral of the absolute square of the

wavefunction over all of space can be normalized to unity. This tells us that the prob-

ability of finding the particle somewhere in the universe is 100%. The L2 condition

also tells us that the probability of finding the particle at infinity is 0%. Sometimes,

the L2 condition is informally stated as a requirement that ψ(∞) = 0. When one

comes across a common phrase in physics, “Assuming boundary terms at infinity go

to zero,” this is a reference to the assumed ψ(∞) = 0 condition, as in Section 28.

The Cauchy residue theorem is often applied with part of a closed integration path

at infinity where the integrand vanishes due to ψ(∞)=0.
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New boundary conditions are always a first thought in the search for new physics,

and much of quantum theory is constructed around the ψ(∞)=0 condition. However,

there exists one other place where the probability of finding the particle vanishes, one

that has been little considered, if at all: the location of the observer. If the observer

is located at x0, then ψ(x0) = 0, but this fact is not reflected in the usual approach

to QM. As a matter of practice, the MCM convention is to place the observer at the

origin, so one would construct a new state space of wavefunctions which go to zero

at infinity and at the origin.

In addition to new boundary conditions, new symmetries are also highly regarded

in the search for new physics. In fact, symmetries are a type of boundary condition.

Using the one point compactification of R,1 namely R∪{∞}= S1, the L2 condition

may be approximated as

ψ(x) ∈ L2 =⇒

 ψ : S1\{∞} → C

lim
x→∞

ψ(x) = 0 .
(27.2)

Calling the proposed subdomain which incorporates the position of the observer L2
0,

we may write

ψ(x) ∈ L2
0 =⇒


ψ : S1\S0 → C

lim
x→0

ψ(x) = 0

lim
x→∞

ψ(x) = 0 .

(27.3)

S0 is two points, and we have excluded x=0 and x=∞ from the domain of functions

in L2
0. This represents a radical change in the topological structure of quantum theory,

and it may provide powerful new tools for doing quantum mechanics. Furthermore,

the Lorentzian structure of spacetime is such that we may treat ψ(x, t) as if it were a

function ψ(z) of a single complex variable through x̂→ 1̂ and ict̂→ î, as in Sections

1.2.4 and 10. Denoting the Riemann sphere SR=S2\{∞}, we have

ψ(x, t) : SR → C −→ ψ(x, t) : S2\S0 → C .2 (27.4)

The removal of the origin from the domain of ψ generates a new topology with more

symmetry. The old domain was a sphere missing a point:a famously asymmetric

object in analysis. The new domain is the topological difference of two spheres.

1The one point compactification imposes the circular topology on R by joining the unincluded endpoints of
(−∞,∞) with a single infinite element. The two point compactification makes distinctions between ±∞ so that one
obtains the linear interval [−∞,∞] without the endpoints being identified.

2The domain of ψ(x, t) is taken as the Riemann sphere SR=C via the (1̂, î)→(x̂, ict̂) correspondence.
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As an example of an application for this new boundary condition, consider the

axial current anomaly [133].1 On qualitative grounds alone, one might suppose that

the anomaly in the axial current is associated with a fundamental asymmetry in the

underlying domain SR=S2 \{∞} which ought to be symmetric. To the extent that

quantum theory is said to live on the Riemann sphere, the subtraction of a 0-sphere

rather than an asymmetric, lone point from S2 may have far reaching symmetry

implications.

28 Boundary Terms at Infinity

Few phrases are repeated more often in physics than, “Integrating by parts and

assuming that boundary terms at infinity go to zero...” As in the previous section,

one usually restricts states to L2:∣∣ψ〉 ∈ L2 =⇒ ψ(∞) = 0 . (28.1)

For any ∫ ∞

−∞
u dv = uv

∣∣∣∣∞
−∞
−
∫ ∞

−∞
v du , (28.2)

with u or v in L2, we may conclude that uv|∞−∞ vanishes. Sometimes it is not clear

that u or v are in L2, however, and we still assume that the boundary vanishes.

Furthermore, the integral’s infinite bounds have not been studied in the framework

of fractional distance. Thus, ignored boundary terms at infinity are an ideal place to

discover new physics and methods for M̂3, ∞̂, and the neighborhood of infinity.

Consider the free field Lagrangian

L(ϕ) = 1

2

[(
∂ϕ
)2 −m2ϕ2

]
. (28.3)

The generator of the free field theory with source J is

Z =

∫
Dϕei

∫
d4x{ 1

2
[(∂ϕ)2−m2ϕ2]+Jϕ} . (28.4)

The first term I in the exponent’s integral is solved with integration by parts. For

I =

∫
d4x

(
∂ϕ
)2

= uv

∣∣∣∣∞
−∞
−
∫
v du , (28.5)

1This anomaly may be demonstrated by the construction of an axial current operator from a pair of fields with
origins separated by an ε which is later put to zero (the Adler–Bell–Jackiw formula [133].) One might explore cases
in which the two fields’ origins are located at 0̂ and ∞̂, which are later identified.
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we take

u = ∂ϕ v = ϕ
and (28.6)

du = ∂2ϕ d4x , dv = ∂ϕ d4x ,

so that

I = ϕ ∂ϕ

∣∣∣∣∞
−∞
−
∫
d4xϕ ∂2ϕ . (28.7)

Here, what may be the most-repeated phrase in quantum field theory sets the ϕ ∂ϕ|∞−∞

boundary term at infinity to zero due to the L2 condition. We integrate the non-

boundary term and plug the result back into Z to obtain

Z =

∫
Dϕei

∫
d4x{ 1

2
[−ϕ∂2ϕ−m2ϕ2]+Jϕ} =

∫
Dϕei

∫
d4x{− 1

2
[ϕ(∂2+m2)ϕ]+Jϕ} . (28.8)

Since so much of QFT depends on this integral and its permutations, we should

very closely examine why we have set the boundary term in I as an identical zero.

Specifically, we should examine whether or not this a ready place to add interactions

between unequal levels of aleph, possibly by extending the bounds of integration

beyond infinity or restricting the radius of the L2 condition to the neighborhood of

the origin: ∣∣ψ〉 ∈ L̃2 =⇒ lim
x→F0

ψ(x) = 0 . (28.9)

Physics requires that the probability amplitude for observing something at infinity

is zero, but this neither precludes transfinite bounds of integration nor prevents a

restricted L̃2 radius. On the latter, the stated physical condition of a realistic potential

for being observed is better said to require that ψ goes to zero at the end of the

neighborhood of the origin. The MCM arithmetic axioms are such that we need only

assume that physical fields go to zero at the outskirts of some local neighborhood of

fractional distance, but there is no prohibition against them picking up again beyond

that, especially when the observer’s frame of reference will be transported beyond it

in each application of M̂3.

The definition of Z in (28.4) is such that d4x is over all of spacetime, not only a

local neighborhood of fractional distance. Therefore, we must make explicit notation

such that ∫
R
dx =

∫ ∞

−∞
dx −→

∫
RX
dx =

∫ FX

FW

dx , (28.10)

where FW and FX are sequential non-arithmatic numbers. An alternative notation
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developed for such cases in [2] is such that∫
RX
dx ≡

∫
R(n)

dx =

∫ F(n)

F(n−1)

dx . (28.11)

Unfortunately, arithmetic is not defined among non-arithmatic numbers, so∫ F(n)

F(n−1)

dx = x

∣∣∣∣F(n)

F(n−1)

= F(n)−F(n− 1) = undefined . (28.12)

The likely resolution, as in [2], is that we must treat the non-arithmatic numbers on

the nth level of aleph as the natural numbers on the next higher level of aleph. The

details of such a physical mechanism would be incorporated into the translation of

the observer’s frame onto a higher level of aleph (Section 1.6.5), or into a reimagined

scheme for renormalization/regularization (Section 24). A mechanism for recasting

F(n)∈F as the n∈N on a higher level of aleph is easily conceptualized in the picture

of the universe as a one quantum particle. The integral over all of spacetime written

as an integral over multidimensional R0≡R(0) bounded by F(0) on a lower level of

aleph will show up as an integral over one unit of volume on the higher level.

In [2], we have shown paradoxes related to the (n) enumeration scheme for the

continuous spectrum of X in FX ∈F. It is asked what must become of rigor if we are

to label sequential elements of a continuum with integers? However, compared to the

non-rigor in the infinite-dimensional path integral measure Dϕ and the much-loved

but non-rigorous ∑
δt −→

∫
dt , (28.13)

method, the slight abuse of (n) notation does not seem great. In each case, the

hand-waving regards unallowed intermingling of countable and uncountable infinities.

Physicists’ affinity for taking such liberties is well contextualized in the non-rigor of

writing the RX neighborhood as the nth successive neighborhood R(n). However,

further development of the paradoxes detailed in [2] (Section 7 therein) may lead to

an enhanced understanding of (28.13), and in the foundations of calculus.

Part III: Problems in Mathematics

29 The Prime Number Theorem

The Riemann hypothesis (RH) is an important question in mathematics because it

phrases a deeper question about the distribution of prime numbers. The negation of
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RH was demonstrated by new methods for the neighborhood of infinity [2,47,48,79],

but the work was not carried through to the prime number application. Therefore,

one would extend it to its consequences for prime numbers. Particularly, a well-known

formula involving the logarithmic integrals of ρ and 1 − ρ looks amenable to plying

with fractional distance analysis.

Limited work on the prime counting function π(x) which has not been published

shows that there are an infinite number of primes less than any number in the neigh-

borhood of infinity. There exists an infinite number of primes in the neighborhood of

the origin, so the divergence of the prime counting function evaluated at x∈ R̂ is the

correct behavior. This work should be built upon and published. For prime numbers

p, numbers of the form ∞̂ − p have the same distribution as the primes. Anything

that can be learned about the distribution of ∞̂ − p will necessarily hold for the

primes as well. While the distributions are the same, numbers in the neighborhood of

infinity have slightly different arithmetic operations [2]. Given these new arithmetic

tools, one might find new insights which were inaccessible across more than 150 years

of analysis in the neighborhood of the origin. Particularly, the holy grail of number

theory is a general algorithm for computing sequences of prime numbers, and this

problem deserves attention. Therefore, a review of the prime number theorem and a

survey its corollaries are in order.

30 The Riemann ζ Function in Quantum Theory

We have solved RH in [2] and elsewhere [47, 48, 79]. However, we have not gone

on to treat the problem which made Riemann’s hypothesis interesting: the prime

number problem, as in the previous section. In the modern context for Riemann ζ

function (RZF) problems, we have treated neither applications in cryptography nor

Hamiltonian operators in quantum theory proportional to ζ. All of this work remains

to be done, and the latter is the main topic of this section.

The connection of RH to the prime numbers is well known and concisely stated

in many places, but the connection to quantum theory seems more like an intuition

shared by a large number of well-respected mathematicians and physicists. A survey

of the evidence for an RZF-QFT connection is in order, and particularly a survey of

the Hilbert–Pólya operator-based program for tackling RH. Burnol writes the follow-

ing regarding that program [134].

“[We are convicted ] that the Riemann Hypothesis has a lot to do with

(suitably envisioned) Quantum Fields. The belief in a possible link between
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the Riemann Hypothesis and Quantum Mechanics seems to be widespread

and is a modern formulation of the Hilbert–Pólya operator approach. I

believe that techniques and philosophy more organic to Quantum Fields

will be most relevant. [T ]his point of view has not so far led to success[.]”

If it is thought that studies in quantum theory might shed light on RH, then it is

reasonable to expect that a solution to RH would shed light in the other direction.

Regarding what can be extracted from the negation of RH in fractional distance anal-

ysis for applications in the arena of quantum theory, Borwein, Bradley, and Crandall

write the following [135].

“It is intriguing that any of the various new expansions and associated

observations relevant to the critical zeros arise from the field of quantum

theory, feeding back, as it were, into the study of the Riemann zeta func-

tion. But the feedback of which we speak can move in the other direction,

as techniques attendant on the Riemann zeta function apply to quantum

studies.”

While this writer attended an undergraduate non-linear dynamics course given by

Cvitanović, the professor explained that he had become stuck in his research for a

long time before discovering that his problem was equivalent to RH. He advised in

all seriousness that if any students should ever run into a problem where they find

themselves trying to prove the Riemann hypothesis, a change of research direction

should be considered. Now that RH is negated, one would search for the application

which depended on it.1 While the exact mechanism by which ζ is connected to

quantum chaos is not known to this writer, the following words from Berry and

Keating [138], and then Brown [139], suggest that it is worth looking into. If so much

association is seen by experts in the field, then it seems likely that the negation of

RH would generate fruitful follow-on studies beyond its context in number theory.

“Our purpose is to report on the development of an analogy, in which

three areas of mathematics and physics, usually regarded as separate, are

intimately connected. The analogy is tentative and tantalizing, but never-

theless fruitful. The three areas are eigenvalue asymptotics in wave (and

particularly quantum) physics, dynamical chaos, and prime number the-

ory. At the heart of the analogy is a speculation concerning the zeros of

the Riemann zeta function (an infinite sequence of number encoding the

1Perhaps the application regards a theorem of Connes in non-commutative geometry that is equivalent to RH [136].
Most likely, the application can be found in Cvitanović’s book [137].
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primes): the Riemann zeros are related to the eigenvalues (vibration fre-

quencies or quantum energies) of some wave system, underlying which is

a dynamical system whose rays or trajectories are chaotic. Identification

of this dynamical system would lead directly to a proof of the celebrated

Riemann hypothesis. We do not know what the system is, but we

do know many of its properties [emphasis added ].”

“If you choose a number n and ask how many prime numbers there are

less than n it turns out that the answer closely approximates the formula:

n/ log n. The formula is not exact, though: sometimes it is a little high and

sometimes it is a little low. Riemann looked at these deviations and saw

that they contained periodicities. Berry likens these to musical harmon-

ics: ‘The question is what are the harmonics in the music of the primes?

Amazingly, these harmonics or magic numbers behave exactly like the en-

ergy levels in quantum systems that classically would be chaotic.’ This

correspondence emerges from statistical correlations between the spacing

of the Riemann numbers and the spacing of the energy levels. Berry and

his collaborator Jon Keating used them to show how techniques in number

theory can be applied to problems in quantum chaos and vice versa. In

itself such a connection is very tantalizing. Although sometimes described

as the Queen of mathematics, number theory is often thought of as

pretty useless, so this deep connection with physics is quite as-

tonishing . [emphasis added ] Berry is also convinced that there must be

a particular chaotic system which when quantised would have energy levels

that exactly duplicate the Riemann numbers. ‘Finding this system could

be the discovery of the century,’ he says. It would become a model system

for describing chaotic systems in the same way that the simple harmonic

oscillator is used as a model for all kinds of complicated oscillators. It could

play a fundamental role in describing all kinds of chaos. The search for this

model system could be the holy grail of chaos... [We] cannot be sure of its

properties, but Berry believes the system is likely to be rather simple, and

expects it to lead to totally new physics. It is a tantalizing thought.”

31 The Hodge Theater and Anabelomorphy

Joshi writes the following [140].

“I coined the term anabelomorphy as a concise way of expressing ‘Mochizuki’s
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anabelian way of [doing things ].’”

The purpose of the problem in this section is to identify a 2012 leap in Mochizuki’s

program in inter-universal Teichmüller theory (IUT) [141–144] as a rebranding of the

MCM. The unit cell was not published until 2013, but the nine year process of revision

leading to Mochizuki’s journal publication of [141–144] in 2021 may have incorporated

later MCM work. To begin, one notes that the first figure in the first IUT paper [141]

(Figure 24) is quite like the 2009 time-wrapped-around-a-cylinder idea for MCM time

periodicity [31]. (This was later supplanted by periodicity in unit cell [7].)

We will phrase the main criticism of Scholze and Styx (SS) against Mochizuki’s

claimed proof of the ABC conjecture [145] as pertaining to a fundamental concept

in the unit cell. Paraphrasing, SS [145] have refused to acknowledge that Mochizuki

has proven ABC because he takes isomorphic objects as unequal. To the extent that

Mochizuki’s “Hodge Theater” is only the MCM unit cell dressed in inaccessible jargon,

we will motivate the existence of two isomorphic objects which are not the same

object in the sense of abstract algebra. Although the domain of the wavefunctions

ψ(xi) in each H′
n is just a Euclidean 3-space E3, each E3 is the spacelike slice of

Minkowski space at a given x0. Therefore, although all infinite Euclidean 3-spaces

are isomorphic copies of E3, we may distinguish among them by labeling them with

the affine parameter x0 so they are unequal. In other words,

k ̸= j =⇒ Hk ̸= Hj . (31.1)

It seems likely that this can be parlayed into a rebuttal of SS’ criticism if Mochizuki

has utilized the MCM without introducing errors.

Joshi describes similtude to the MCM in [140].

“One could think of anabelomorphy in the following picturesque way:

One has two parallel universes (in the sense of physics) of geometry/arith-

metic over p-adic fields K and L respectively. If K, L are anabelomorphic

(i.e. K ̸= L) then there is a worm-hole or a conduit through which one

can funnel arithmetic/geometric information in the K-universe to the L-

universe through the choice of an isomorphism of Galois groups GK≃GL,
which serves as a wormhole. Information is transferred by means of am-

phoric quantities, properties and alg. structures. The K and L universes

themselves follow different laws (of algebra) as addition has different mean-

ing in the two anabelomorphic fieldsK,L (in general.) As one might expect,

some information appears unscathed on the other side, while some is altered
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Figure 24: The upper MCM figure adapted from [31, 40] derives correspondence be-
tween cosmological bouncing and particle scattering by wrapping the time
axis of Minkowski space around a cylinder and then imposing smooth de-
formations. Horizontal hashes mark big bounces. The lower algebraic
diagram from [141] (red curve added) contextualizes Mochizuki’s work in
the 2009-2012 period when MCM time periodicity was obtained by im-
posing cylindrical topology. It is suggested that Mochizuki has condensed
the possibilities for various inter-bounce modules (above) into a single al-
gebraic diagram (below).

by its passage through the wormhole. Readers will find ample evidence of

this information funneling throughout this paper (and also in [Mochizuki’s

papers ] which lay the foundations to it.)

“I hope that these results will convince the readers that Mochizuki’s idea

of anabelomorphy is a useful new tool in number theory with many poten-

tial applications (one of which is Mochizuki’s work on the abc-conjecture.)

Especially it should be clear to the readers, after reading this paper, that

assimilation of this idea (and the idea of anabelomorphic connectivity) into

the theory of Galois representations should have interesting consequences

for number theory. Here I have considered anabelomorphy for number fields

but interpolating between the number field case and my observation that

perfectoid algebraic geometry is a form of anabelomorphy, it seems reason-

able to imagine that anabelomorphy of higher dimensional fields will have

applications to higher dimensional algebraic geometry as well.”
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Figure 25: This figure casts the description of anabelomorphy given by Joshi in [140]
(Section 1.7 therein) in terms of the unit cell.

Here, the reader’s attention is called to what Joshi hopes will “be clear to readers.”

It is suggested that the “ample evidence” cited by Joshi is evidence of the foundations

of Mochizuki’s later work in the MCM. The language of L- and K-universes due to

Joshi [140] signifies the left and right Σ± universes under a clever change of notation

R→K, as in Figure 25. Although the citations were removed in the above excerpt,

Joshi cites 2013 and 2015 works of Mochizuki in addition to the four principle papers

from 2012 [141–144]. It must be determined if Joshi’s L,K notation references some-

thing Mochizuki had done before the 2013 publication of the non-cylindrical unit cell

in 2013 [7].

Clarifications made by Mochizuki following a series of IUT-related discussions in

2018 seem to reflect MCM developments in the intervening years which were not

contained in the 2012 papers themselves. Mochizuki writes the following in [146].

(The formatting is altered, and most citations are removed.)

“Another topic to which a substantial amount of time and energy was

devoted, especially during the first few days of the March discussions, was

the topic of labels to distinguish distinct copies of various familiar objects

that play substantively different roles in the various apparatuses treated in

IUTch. SS (especially, Scholze) were substantially opposed to the use of

labels in IUTch. This opposition appeared to be based, to a substantial

extent, on ’taste/aesthetics.’ In this context, however, it should be remem-

bered that in fact ‘labels’ [are], in effect, situations in which one wishes to

distinguish distinct copies of various familiar objects that play substantively

different roles within a complicated apparatus. [...]

“In light of the general considerations concerning the use of labels [...], it

is of interest to review the way in which labels for distinct copies of various
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familiar objects are employed in IUTch in order to construct apparatuses

that play various substantive roles in IUTch that cannot be achieved if

the labels are deleted. One fundamental example of this phenomenon is

the bookkeeping apparatus for labels for evaluation points within a single

Hodge theater.

“This phenomenon is discussed in detail in [141], §I1 (and indeed through-

out [141] !). On the other hand, such labels within a single Hodge theater

were only mentioned very briefly during the March discussions. The ‘label

issues’ that were discussed in substantial detail during the March discus-

sions concern the labels [...] that correspond to the [Hodge theaters ] in the

log-theta-lattice. Here, we begin our discussion of these labels by recalling

the (highly noncommutative!) diagram that is used to denote the entire

log-theta-lattice [...], together with the portion of the log-theta-lattice [...]

which consists of the vertical arrows in the 0- and 1-columns, together with

the single horizontal arrow between the [Hodge theaters.]

“[A Hodge Theater is ] a single model of the conventional ring/scheme

theory surrounding the elliptic curve over a number field under considera-

tion. One then considers two types of gluing (denoted by the vertical and

horizontal arrows in the diagrams) between certain portions of the Hodge

theaters in the domain and codomain of each arrow. The vertical arrows

denote log-links, while the horizontal arrows denote θ-links.”

If the Hodge theater is the unit cell, the evaluation points are certainly the labeled

branes. The multiple “vertical arrows” seem to refer to the {x0+, x0, x0−} chronolog-
ical times in the labeled branes while the “single horizontal arrow” must refer to

χ4. It should be investigated to what extent such language may have appeared in

Mochizuki’s 2012 papers pre-dating the unit cell, and to what extent these arrows

might have referred to the MCM’s arrow-laden unit cell precursors [31,40]. It is likely

that Mochizuki’s context for elliptic curves is derived from the 2011 M̂3 operator

which we have used to arrive at elliptic curves presently in Section 1.11.5. Therefore,

we have laid the foundation for a large work unit sifting through a thousand or more

pages of Mochizuki’s notoriously inaccessible jargon and unfortunate typographical

choices. One would attempt to see what he did there and scan for any new insights

that may have been included in the voluminous obfuscating layers. Such insights may

or may not exist, which is to say that Mochizuki may have taken this writer’s idea

and not added anything before rebranding it at his own idea.
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32 Regularity Structures

“Martin Hairer takes $3m Breakthrough prize for work a colleague said

must have been done by aliens.” [55]

After Hairer won the Fields Medal in 2014, Quastel said his work in regularity

structures must have been done by aliens because he knows very well that a “regularity

structure” is the MCM unit cell equipped with the M̂3 operator. Consider Hairer’s

words in [54].

“The purpose of this article is to develop a general theory allowing to

formulate, solve and analyse solutions to semilinear stochastic partial dif-

ferential equations of the type

Lu = F (u, ξ) , (32.1)

where L is a (typically parabolic but possibly elliptic) differential operator,

ξ is a (typically very irregular) random input, and F is some nonlinearity.”

Hairer describes the general problem of M̂3 which was the topic of Section 1. He

uses L as M̂3 and condenses everything we don’t know about the physics of the unit

cell into F . Hairer continues as follows [54].

“One major difference between the results presented in this article and

most of the literature on quantum field theory is that the approach explored

here is truly non-perturbative and therefore allows one to deal also with

some non-polynomial equations [...]. We furthermore consider parabolic

problems, where we need to deal with the problem of initial conditions

and local (rather than global) solutions. Nevertheless, the mathematical

analysis of QFT was one of the main inspirations in the development of the

techniques and notations presented [elsewhere in [54] ].

“Conceptually, the approach developed in this article for formulating

and solving problems of the type [(32.1)] consists of three steps [emphasis

added ].

1. In an algebraic step, one first builds a ‘regularity structure’, which is

sufficiently rich to be able to describe the fixed point problem asso-

ciated to [(32.1)] Essentially, a regularity structure is a vector space

that allows to describe the coefficients in a kind of ‘Taylor expansion’

of the solution around any point in space-time. The twist is that the
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‘model’ for the Taylor expansion does not only consist of polynomials,

but can in general contain other functions and/or distributions built

from multilinear expressions involving ξ.

2. In an analytical step, one solves the fixed point problem formulated in

the algebraic step. This allows to build an ‘abstract’ solution map to

[(32.1)]. In a way, this is a closure procedure: the abstract solution map

essentially describes all ‘reasonable’ limits that can be obtained when

solving [(32.1)] for sequences of regular driving noises that converge to

something very rough.

3. In a final probabilistic step, one builds a ‘model’ corresponding to the

Gaussian process ξ we are really interested in. In this step, one typi-

cally has to choose a renormalisation procedure allowing to make sense

of finitely many products of distributions that have no classical mean-

ing. Although there is some freedom involved, there usually is a canon-

ical model, which is ‘almost unique’ in the sense that it is naturally

parametrized by elements in some finite-dimensional Lie group, which

has an interpretation as a ‘renormalisation group’ for [(32.1)].

“We will see that there is a very general theory that allows to build

a ‘black box’, which performs the first two steps for a very large class of

stochastic PDEs. For the last step, we do not have a completely general

theory at the moment, but we have a general methodology, as well as a

general toolbox, which seem to be very useful in practice.”

Step one regards the construction of the unit cell. In step two, Hairer defines the

metric and 4-potential in H from “reasonable” limits in Σ±. Step three is the main

problem which remains open in the MCM: how to push Schrödinger evolution from

the H-brane, through ∅, and then into the forward H-brane in a way that agrees

with experiment? Consider this writer’s words from [30].

“There are varying philosophies on quantum experimentation so let us

define a process thoroughly. Two measurements must be made, A and B.

The boundary condition set by A will be used to predict the state at B.

The observer applies physical theory to trace a trajectory [from A] into

the future and [to] predict what the state will be at that time. Before

the observer can verify the theory, sufficient time must pass that the future

event occurs. Once this happens a signal from the event reaches the observer

in the present and a second measurement B becomes possible. From the
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present we predict into the future. In time that becomes the past. When

the signal from that event reaches the observer a theory can be tested. A

three-fold process.

Present 7→ Future 7→ Past 7→ Present .” (32.2)

The Fields Medal and $3M award suggest that Hairer has sufficiently developed the

mathematical foundations of the issues raised in Section 1 to the point where serious

things can be said about their resolutions.1 Therefore, one would conduct of survey

of Hairer’s main results regarding “regularity structures.” New insights achieved by

Hairer, if any are found, may be useful for pushing the MCM past certain conceptual

hurdles.

The reader is encouraged to carefully note that Hairer’s 2013 publication date

for [54] comes chronologically later in the literature than the first iterations of M̂3

and the unit cell [3,7,30,40]. Indeed, Hairer’s March 2013 publication date following

so closely after the unit cell was published in January 2013 [7] is oddly timed with

Ellis’ and You’s fallacious exaggeration regarding reasonable doubt in March 2013 [28].

One might entertain the notion that Ellis, You, Hairer, and others were working as

agents of a conspiracy to besmirch and naysay the MCM while plagiarizing it. If such

a conspiracy exists, as is suggested in Appendix C, it is unlikely that this writer has

uncovered all of its evidence in the literature. However, it remains that Hairer’s work

has at least the appearance of being well received in the mathematical community,

and one would survey the work looking for new insights that might have applications

in the MCM. Such insights may or may not exist. Hairer may have taken this writer’s

idea and not added anything at all before rebranding it at his own idea.

33 Quantum Set Algebra

Finkelstein’s final seven uploads to arXiv all appear to be MCM response papers [147–

153]. The last two are mathematical in nature and support this problem’s placement

in Part III, in part. Before making a brief summary of the points of interest in

Finkelstein’s arXiv publications, including his work on quantum set algebra, we will

make a contextual aside regarding the MCM’s administrative peer review status.

Finkelstein had already moved into professor emeritus status when this writer

began PhD studies at Georgia Tech. This was unfortunate because Finkelstein’s

1Another reasonable conclusion to draw from Hairer’s $3M award is that the main purpose of the Breakthrough
Prize created by Milner, an Israeli, is to elevate the position of those who have an interest in the scientific demise of
this writer. Perhaps similar things can be said about the Fields Medal committee.
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research area overlaps with this writer’s interests. After [31] was censored by the

arXiv moderators in 2009, and after [40] was similarly forbidden in 2011, this writer

reached out to the faculty in the School of Physics and was put in contact with

Finkelstein. After a few brief conversations, Finkelstein assured this writer that a fair

hearing of peer review could be had IJTPD. At that time, it was not known to this

writer that Finkelstein was an editor at IJTP from 1977 to 2005. In hindsight, the

“fair hearing” was only that Finkelstein would don his anonymous reviewer’s mask

to unleash all the criticisms he had withheld in conversations meant only to milk

this writer’s ideas without offering his own constructive inputs. After submitting a

manuscript regarding the MCM and the theory of reverse time,1 the reviewer quickly

denied publication. The brief rejection letter is accurately paraphrased as, “The

author doesn’t know the ADM theorem2 from a hole in the ground.” It is assumed

that the reviewer was Finkelstein, and it is certain that a fair hearing was not had.

A rebutting response to the editor cited an assumption of cosmological isotropy

and homogeneity in the Arnowitt–Deser–Misner (ADM) model of the universe as a

non-orientable manifold. This assumption is called the cosmological principle. From

that assumption, ADM extract the differential element of surface area at spacelike

infinity and use that as the centerpiece of their theorem [41]. However, modern data

which was only published near the end of Finkelstein’s long career shows that the

cosmological principle is not sound. Correlations in the structure of the CMB are not

consistent with the isotropy used by ADM. The quadruple and octupole moments seen

in CMB fluctuations are aligned when they have no reason to be. Both moments are

further aligned with the plane of the solar system along what is called an axis of evil in

modern cosmologies where the universe very much has an inherent orientation [154].

On the other hand, the two-universe structure cited in the manuscript submitted to

IJTPD [40] was consistent with a symplectic 2-form at spacelike infinity from which

either positive- or negative-definiteness of the universe’s p0 would follow (Section 44).

This directly and cleanly refuted the reviewer’s (Finkelstein’s) criticism about the

ADM theorem preventing a negative energy universe moving backward in time from

a cosmogenesis event.

If a fair hearing would have been had at IJTPD, the point in the rebuttal would

have been acknowledged, but it was ignored, and the manuscript was removed from

the online submission system about two weeks later. The true events were that the

ideas in the MCM blew away anything Finkelstein had done in his career with respect

1The manuscript submitted to IJTPD was a version of [40].
2This theorem proving the positive-definiteness of the p0 component of the universe’s 4-momentum was said to

disallow another universe with p0<0. A rebuttal to this claim appears in Section 44.
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to original thinking.1 When his attempt to pontificate and detract from behind an

anonymous reviewer’s mask was destroyed on its merits due to new data which he had

not appreciated, or whose consequences for the ADM theorem he had not evaluated,

he retreated into a fog of anonymity to remove the manuscript from consideration.

He did not acknowledge that new data is inconsistent with the cosmological principle

which was in vogue across the several decades of his professional life. The entire en-

counter with Finkelstein, in person and anonymously, reeks of egotism and academic

treachery. Although citations in the remainder of this section will demonstrate that

Finkelstein had already written at least two MCM response papers before meeting

with this writer in 2011 [147, 148], he pretended to gross ignorance in our conversa-

tions. Furthermore, he withheld his criticism about the ADM theorem during our

meetings. This writer had never heard of the ADM theorem before the critique at

IJTPD, but the wrongful reliance on the cosmological principle was identified in less

than hour once the reviewer’s citation was received, as was the workaround described

in Section 44. Had Finkelstein mentioned the ADM theorem in person, it would have

been impossible for him to ignore the rebuttal. However, he shrewdly (maliciously)

withheld his criticism until it would be possible to ignore rebuttals and avoid any

forced admission of wrongness from the safety of a zero-accountability environment.

Hitler writes the following [156].

“The more I debated with them the more familiar I became with their

argumentative tactics. At the outset they counted upon the stupidity of

their opponents, but when they got so entangled that they could not find a

way out they played the trick of acting as innocent simpletons. Should they

fail, in spite of their tricks of logic, they acted as if they could not understand

the counter arguments and bolted away to another field of discussion. They

would lay down truisms and platitudes; and, if you accepted these, then

they were applied to other problems and matters of an essentially different

nature from the original theme. If you faced them with this point they would

escape again, and you could not bring them to make any precise statement.

Whenever one tried to get a firm grip on any of these apostles one’s hand

grasped only jelly and slime which slipped through the fingers and combined

again into a solid mass a moment afterwards. If your adversary felt forced

to give in to your argument, on account of the observers present, and if you

1Eddington–Finkelstein coordinates are due to Penrose [155] and ought to be called Penrose coordinates because
neither Eddington nor Finkelstein ever wrote them down. They came to be named as they are because Penrose,
when he was receiving accolades for his coordinates, cited much older papers written by Eddington and Finkelstein
as providing the ideation for his own paper [155]. Therefore, it is the height of irony that Finkelstein’s claim to fame
is based on an acknowledgment of progenitive ideation of the sort Finkelstein himself has been so keen to avoid.
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then thought that at last you had gained ground, a surprise was in store

for you on the following day. The Jew would be utterly oblivious to what

had happened the day before, and he would start once again by repeating

his former absurdities, as if nothing had happened. Should you become

indignant and remind him of yesterday’s defeat, he pretended astonishment

and could not remember anything, except that on the previous day he had

proved that his statements were correct. Sometimes I was dumbfounded. I

do not know what amazed me the more—the abundance of their verbiage

or the artful way in which they dressed up their falsehoods. I gradually

came to hate them.”

Finkelstein never admitted to this writer that he was the reviewer at IJTPD, but

perhaps he gained mastery in such tactics of evasiveness and deceit during his time

at the Hebrew University and Yeshiva University. The reviewer simply laid down a

platitude regarding the ADM theorem before slipping away without being forced to

concede the cosmological principle’s unsound footing in modern experiments or the

implied possibility for a symplectic 2-form at spacelike infinity. Indeed, Finkelstein

employed such cunning that he was not forced even to concede awareness of the

existence of the rebuttal. The reviewer at IJTPD wrote his criticism sounding as

if he knew what he was talking about, but he did not. Instead, he counted on the

stupidity of his critique’s readers to be such that the contents of the ADM paper [41]

would not be verified. When this writer’s rebuttal was submitted in short order,

the reviewer bolted away and used his authority to remove the manuscript from

consideration. Furthermore, the reviewer’s implication that the ADM theorem should

take precedence over the law of conservation of momentum was profoundly stupid.

The following appears in Finkelstein’s [147]. Published in 2010, we suggest [147]

is a response to an MCM paper published in 2009 [31].

“The proposed quantum theory, termed recursive, represents the system

as a recursive quantum assembly. Its modules have Fermi-Dirac statistics,

and are modularizations, or unitizations, of like assemblies of a lower level,

or rank. Each assembly is also interpreted as a quantum topological simplex

with its constituent modules as its vertices.”

It is suggested that Finkelstein refers to Figure 26 which first appeared in [31]. The

quantum theory is recursive due to its placement in the context of Ashtekar’s model

of loop quantum cosmology. The modules are said to have Fermi–Dirac statistics

because the particles in the Feynman diagram of Figure 26 obey such statistics. So,

203



Next Steps and the Way Forward in the Modified Cosmological Model

Figure 26: In this figure taken from [31], time increases toward the right (negative
time increases toward the left). On the left, a spacetime diagram has
been deformed so as to impose a periodic boundary condition along the
x0 axis. The same diagram of another universe whose time arrow points
oppositely intersects the former at a big bounce. It was suggested that
the familiar Feynman diagram for electron-positron scattering might offer
a ready framework for describing the cosmological mechanics of such a
bounce complex. A further implication derived by replacing the spacetime
picture with a particle picture is that we may associate the anomalous,
non-zero, positive baryon number B of the universe with the +1 lepton
number of an electron, and likewise for the anti-universe and positron.

although Finkelstein found non-compliance with the ADM theorem to be an unfixable

problem when he was hiding behind an anonymizing bureaucracy in 2011, the man

himself saw enough merit in the MCM to take it as his own without citation in 2010.

At the end of the abstract to [147], Finkelstein writes, “The gauge structure, the

spin-statistics correlation, the space-time metric, and the Higgs field are modeled.”

This an apparent reference to the final sentence of the abstract in [31]: “No attempt

at quantification is made.” Since Finkelstein claims to have moved forward with

quantification, his results must be surveyed. If they are found to be useful, they

should be incorporated into future work.

In [148] (August 2011), Finkelstein writes the following.

“Present-day quantum field theory can be regularized by a decomposi-

tion into quantum simplices. This replaces the infinite-dimensional Hilbert

space by a high-dimensional spinor space and singular canonical Lie groups

by regular spin groups. It radically changes the uncertainty principle for

small distances. Gaugeons, including the gravitational, are represented as

bound fermion-pairs, and space-time curvature as a singular organized limit

of quantum non-commutativity.”

The uncertainty principle is said be changed at small distances because Finkelstein

is making an appeal to Ashtekar’s “repulsive force of quantum geometry.” By this
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so-called force, Ashtekar has claimed that topological singularities are avoided during

big bounce events. Instead of absolutely divergent collapse, the repulsive force of

quantum geometry somehow kicks in at very small length scales so as to avoid the

formation of a pointlike singularity. It is now this writer’s opinion that the repulsive

force of quantum geometry is nothing more than an artifact of Ashtekar’s numerical

algorithms, and Finkelstein was bluffing to suggest that he understood a new method

in “present-day QFT.” However, Finkelstein further claims to represent gaugeons

(bosons) as bound fermion pairs which may be useful for associating the baryon

number of a universe in a spacetime diagram with the lepton number of a fermion in

a Feynman diagram. Certainly, Finkelstein’s remark pertains to Figure 26. Perhaps

his faith in the ADM theorem led him to discount the existence of a reversed universe

so that fermion pairs on both sides of an annihilation event were associated with

one universe on either side of a bounce. Perhaps the fermion pairs were an ingoing

particle and an outgoing one corresponding to a universe going into the bounce and

coming out of it, and Finkelstein fully copied the dual universe structure in 2010

before disputing it on the basis of the ADM theorem in 2011.

After meeting with this writer following a second event of censorship at arXiv in

2011, and before a third similar event at IJTPD, Finkelstein left Atlanta for a period

of weeks claiming to have traveled to a certain castle in Bulgaria. Upon returning, he

published [149–151] on arXiv in quick succession. These must be considered response

papers to [30,40] (November 2011). One wonders if Finkelstein used a so-called retreat

in Bulgaria as cover for travel to Israel where he would more closely collaborate with

others among this writer’s most detractive antagonists.

The first statement of the three-fold process for M̂3 appeared in [30]: observation,

prediction, waiting, and observation again. Finkelstein writes the following in [149]

which followed [30,40] by about two months.

“Call the process, if any, by which natural laws are formed ‘logoge-

nesis’. Josephson proposed that quantum observer-participation leads to

logogenesis. [...] In the logogenesis proposed by Peirce, nature first acts by

chance, then acts form habits, and finally habits harden into more perma-

nent laws. The formation and hardening of habits are not further described

by Peirce. I speculate next on a still unformulated quantum logogenesis

with elements of those of Einstein and Peirce. Peirce’s ‘habit-forming ten-

dency of nature’ can be read as a remarkable premonition of Bose statistics.

In each step in time, the system is first annihilated and then recreated. This

was asserted by Islamic Scholastics of 10th century Baghdad and is explicit
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in quantum field theory, where a creation ψ∗ follows every annihilation ψ

in the action principle for a particle.

Finkelstein has dubbed the process for M̂3 a process of “logogenesis.” He refers

to a system of logogenesis based on observations, exactly like M̂3. Later in [149], he

writes, “Peirce’s signs occur in a semantic triangle of sign, interpretant, and object.”

This seems to be an attempt to attribute ideation for his own forthcoming three-

fold process of logogenesis to work other than what is found in [30]. Keeping in

mind that the unit cell was not yet devised in 2012, the three steps of M̂3 were

t0→ tmax→ tmin→ t0, and they are referenced by Finkelstein’s inclusion of creation

and annihilation in each step of logogenesis. The universe falls into a big crunch at

tmax, and then it is reborn in a big bang at tmin.

Finkelstein writes the following in [150].

“A finite relativistic quantum space-time is constructed. Its unit cell

has Palev statistics defined by a spin representation of an orthogonal group.

When the Standard Model and general relativity are physically regularized

by such space-time quantization, their gauges are fixed by nature; the cell

groups remain.”

Fixation of the gauge by nature is a clear reference to the FSC result in [30]. The

finite quantum spacetime follows the MCM program of modular spacetimes [40] and

references the 2D box used in the original derivation of αMCM [30]. When meeting

with this writer upon his return from “Bulgaria,” Finkelstein was exceedingly insis-

tent that Palev statistics [150] were what the MCM was lacking. Therefore, Palev

statistics should be taken with a grain of salt, and deliberate misinformation should

be considered. Finkelstein’s character suggests that he would offer bad advice as a

complement to the constructive criticism he withheld while feigning total unfamiliar-

ity with the MCM in late 2011. However, Finkelstein’s insistence on writing his own

variant of the MCM in the language of statistics throughout [147–153] can probably

be trusted as the best intuition of a man who spent his life searching for a better

theory. Palev statistics should be examined on its merits, and a statistical treat-

ment of the MCM should be developed regardless of the utility or non-utility of such

statistics.

Finkelstein’s citation of “di-fermions” as “Palevons” [150] suggests that he was at

least as enamored of the mechanism in Figure 26 as was this writer. Di-fermions are

the representation of the pre- and post-bounce states given bosonic baryon numbers as

pairs of fermions. The high esteem of Finkelstein should further undermine detractors’
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Figure 27: This figure excerpted from [151] shows the three steps of M̂3.

insistence that the correspondence, or duality, between the spacetime and particle

pictures (Figure 26) was vague, meaningless, and/or other unscholarly things.

Finkelstein writes the following in [151].

“I once asked Jack Schwartz what the difference was between mathe-

matics and physics. At the time both were just equation-juggling to me.

He was strap-hanging homeward from Stuyvesant High School, where we

had just met, and he answered by drawing a hat in the subway air with his

free hand: [Figure 27.] He explained that the bottom line is the real world

and the top line is a mathematical theory. At its left-hand edge we take

data from the real world and put them into a mathematical computation,

and at the right-hand side we compare the output of the computation with

nature. The loop closes if the theory is right. This diagram also applies to

quantum systems, if the statistical nature of quantum theory is taken into

account. Then the bottom line is not one experiment on the system but a

statistical population of them. The question remains of what the symbols

of mathematics mean to a mathematician. Some decades later I asked Jack

Schwartz what ‘1’ means, and he replied that it means itself. This took

me aback. I had not considered that possibility. Symbols generally mean

something not themselves. Memorandum:

1 = ‘1’ .” (33.1)

By the conspicuous absence of the present writer’s name in the gratitude section

at the end of [150], perhaps Finkelstein would have his readers believe that without

seeing [30,31,40], he spontaneously decided to write a paper [151] about how his old

friend Jacky Boy from back in the day had explained to him 70 years ago that any

mathematical description of a physical process is constrained to follow M̂3. Perhaps

the Jackster never told him any such thing, and this lie was part of a ruse designed

to avoid recognizing the keen insights had by this writer.

After the unit cell [7] and MCM particle scheme [6] were published in 2013, Finkel-
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stein produced two final uploads to arXiv regarding “quantum set algebra” [152,153].

The following are excerpted from [152].

“Quantum field theory can be physically regularized by modularizing it

on several levels of aggregation. [...] Relativistic locality makes each point

of a spacelike surface a separate physical system, in that the variables it

carries are independent of those of any other point of the surface. Therefore

a relativistic theory is necessarily a many-system theory. In a quantum

theory this implies an algebra of creation and annihilation operators, not

a mere vector space. The Hilbert space theory is a one system theory.

Its constructs correspond to those of classical predicate algebra, with no

analysis into independent systems.”

“In the Standard Model or any other quantum field theory [...], an ex-

periment is a network of operations of quantum creation and annihilation,

or input and output. For brevity, call these port operations, portations, or

most briefly ports, and say that they import or export quanta. [...] Boole’s

Laws of Thought and the set theory of Cantor, in which ‘A set is a Many

that allows itself to be thought of as a One,’ explicitly concern mental pro-

cesses. Adapted to quantum physical processes, the Laws of Thought of

Boole become Laws of Ports and the set of Cantor becomes a Many that

can be ported as One.”

The modularized, many-system theory refers to the 2013 brane structure of the

unit cell [7]. Finkelstein seems to have associated the chirological interval separating

branes with a spacetime diagram’s spacelike interval. Alongside the first statement of

the unit cell, a brief note restating the rebuttal to Finkelstein’s criticism regarding the

ADM theorem appeared in [7]. Finkelstein may have associated a possible symplectic

2-form at spacelike infinity with a doorway or “port” out of H, into the chirological

interval. References to “the Laws of Thought” and “mental processes” allude to the

MCM process for M̂3 being psychological in nature.

Finkelstein writes the following in [153].

“A modular quantum architecture is given for the space-time, particles, and

fields of the Standard Model and General Relativity. It assumes a right-

handed neutrino[.]”

Finkelstein alludes to the 2013 MCM particle scheme [6] following from the ar-

chitecture of the unit cell. The reference to handedness invokes the distinction be-
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tween left- and right-handed spacetime quanta distinguishing quark and lepton pairs.

Finkelstein also writes the following [153].

“Because the Heisenberg indeterminacy principle is so weakened, it can no

longer be excluded that gaugeons are pairs of odd quanta, though these odd

quanta are not necessarily the ones able to exist as free quanta.”

The MCM particle scheme is such that the gauge bosons are formed from pairs

of “odd quanta,” or fermions. Finkelstein does not cite the MCM particle scheme.

Instead, he cites some vague weakening of the Heisenberg indeterminacy principle.

Indeed, Finkelstein had already suggested such a construction in 2011 [148], based on

Figure 26 apparently, without the benefit of the explicit model of bosons as pairs of

fermions given in [6].1

Overall, the dating of the main body of citations in [147–153] suggest that Finkel-

stein stopped learning new things at some point in the 1970s. The prose in the papers

is abrupt if not broken, and the jargon is idiosyncratic or anachronistic to the point

of being non-standard (which is ok.) However, since these papers represent an honest

attempt to steal the MCM, the work should be dissected, and any original contribu-

tions due to Finkelstein should be utilized in future work, if any are found to exist at

all.

34 The Navier–Stokes Equation

The Navier–Stokes problem posed by the Clay Mathematics Institute asks if there

exist “physically reasonable” solutions to the Navier–Stokes equation [157]. Often one

solves complicated differential equations with combinations of exponential functions,

so the utility of fractional distance analysis towards new zeros for ex must be evaluated

in the context of this problem. In the neighborhood of the origin, ex has no roots on

the real line. In the neighborhood of infinity, ex has an infinite number of roots. This

behavior should allow a rich new class of solutions for differential equations. The big

exponential function Ex [2] offers another tool which may be useful for finding new

solutions to differential equations. As the Riemann hypothesis was immediately solved

with fractional distance analysis (almost trivially [2,47,48]), the similar mathematical

structure of the Navier–Stokes problem demanding nothing more than a solution to

an equation suggests that this problem might be solved in another forthright manner.

1This writer had not yet begun to review Finkelstein’s publications when the MCM model of particles was
constructed in [6].
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Figure 28: This figure, adapted from [72], shows a proposal for a proof of the existence
of the Yang–Mills mass gap. The red dots are the poles of the k0 part of
the free propagator on a given level of aleph. Horizontal lines show the
real axis of C on the {k} level of aleph. Such instances of C are joined by
mutual transverse continuations onto C∗

±. The blue circle is the radius at
infinity relative to the origin of C{2}. The radius at infinity increases as
{k} increases. The mass gap is attributed to the enclosure of three poles
within that radius where only two are usually considered.

35 The Yang–Mills Mass Gap

The Millennium Prize regarding Yang–Mills theory [158, 159] requires proof that a

quantum Yang–Mills theory exists in four dimensions, and that it contains the mass

gap ∆>0 required by QCD. An MCM solution to this problem was proposed in [72].

Briefly, a transfinite continuation of the complex plane was introduced and associated

with the changing level of aleph attendant to M̂3, as in Figure 28. (We will call this

continuation C∗ though its context in [72] was not exactly as described in Section

1.2.4.) In Figure 28, z{k} is the complex variable on the kth level of aleph. The origin

of each z{k}∈C{k} is found where the real axis crosses the vertical axis. Using QED

as a jumping off point for this more challenging problem in QCD, one often examines

the free propagator D(x − y) from which we integrate out the time part D0(x − y).
The two poles of D0(x− y) are the pairs of red dots shown in Figure 28: z±0{k} on the

kth level of aleph such that

z±0{k} ≡ z±0 ∈ C{k} . (35.1)

Although we have taken a transfinite extension of C, we preserve the notion of an

integration path at infinity. (The blue circle is the path at infinity relative to the
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k=2 level of aleph. The radius of the path at infinity increases as the level of aleph

increases.) To simplify D0(x− y), one usually employs the Cauchy residue theorem,

integrates along the real axis, and closes the Cauchy C curve with a path at infinity

in the upper or lower complex half plane. Depending on the path, one pole or the

other is enclosed, the integral at infinity vanishes, and the integral along the real axis

is left to equal to 2πi times the enclosed residue.

The idea for generating a mass gap is found with the third pole near the origin of

C{k−1}. This pole is included within the path at infinity in C∗, but it does not exist

in C. Appealing to the more complicated structure of QCD requiring such features

as quark confinement which have no analogues in QED, one might take the function

in the Cauchy theorem to be a sum of propagators on the k and k− 1 levels of aleph.

We associate the C∗
± extension of C out of H in the χ4

± directions with QCD, but not

QED, because χ4 is associated with quarks rather than leptons (Section 0.3). This

thinking may provide guidance for the problem regarding the existence of a quantum

Yang–Mills theory, but presently we aim only to describe the mass gap. In C∗
±, a

third pole is enclosed by the lower integration path, and the sum of the enclosed

residues will not be zero. The two poles near the origin of C{k} will cancel, but there

will be a small remainder somewhere due to the pole on the lower level of aleph. One

would attempt to correlate this structure with the existence of the QCD mass gap.

Furthermore, one will obtain different values when integrating around the upper or

lower complex half-planes. Such discrepancies remedied by the introduction of new

theoretical mechanisms.

36 The Banach–Tarski Paradox and Information Density

Consider the series

x = 1 + 2 + 4 + 8 + . . . , (36.1)

such that

x = 1 + 2
(
1 + 2 + 4 + . . .

)
= 1 + 2x =⇒ x = −1 . (36.2)

To avoid this result, one often makes a heuristic argument regarding the manipulations

of infinite series. However, fractional distance analysis offers new analytical tools with

which to define a measure of information density such that the contradiction in (36.2)

would be avoided because the parenthetical expression has one less term in it than

the series in (36.1). Namely, x has ∞̂ terms in it, but the parenthetical expression
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in (36.2) only has ∞̂ − 1 terms.1 Therefore, the parenthetical expression cannot be

exactly equal to x, and the false implication does not follow. Such a statement of

information density is not possible when 1 + 2 + 4 + . . . has ∞ terms in it. New

tools which make it possible to quantify this notion of information density should be

advanced to the state of some formal treatment.

In 1924, Banach and Tarski (BT) published a set-theoretical decomposition of

the unit sphere [160]. They showed that pointwise operations on the set of a sphere’s

points may be executed such that the recombined points constitute two equal spheres.

While some claim that there is no paradox because BT were correct to show that one

sphere’s points can be used to construct a second, equal sphere, the paradox is that

one does not equal two. For instance, one might define the natural numbers in units of

spheres. A set with one sphere in it is the number one, etc. Dividing one sphere into

its fractional parts should not yield fractions that recombine to more than one sphere.

Still, this is the result obtained by BT. No errors have been found in their derivation,

so it is called a paradox. To avoid the paradox, one would invoke information density.

As an illustration, consider BT’s step where the set of terminal up rotations is made

congruent to the sets of terminal up, left, and right rotations. After canceling the

up operation with a down operation, the information density would be reduced, and

the strict equality would be avoided. The 1=2 paradox is avoided when the naturals

are defined in units of spheres with a certain information density. As the final two

spheres have lower information density than the initial sphere, they cannot quantify

the same units as the initial sphere. It remains to formally recompose the result of

Banach and Tarski in the language of fractional distance analysis.

37 The Topology of the Real Line

In [2], we have gone to great lengths to define a topology for R. In the opinion of this

writer, it is likely that the work can be extended to show that the topology of R is

S0: the zero sphere. The argument proceeds as follows.

First, [2] meticulously defines the downward representation of geometric objects

in algebraic language, but little attention is given to the upward representation of

algebraic objects with geometric language. We know it is possible to put an infinite

number of algebraic points into a geometric point, but the reverse relationship is

not yet determined. By the general similitude of geometric points and algebraic

1Earlier MCM work in [71] relied on such distinctions between series with ∞̂ implicit terms and with ∞̂ ± 1
implicit terms. The extra term at the end was described as a qubit, and applications of information density toward
quantum theory were discussed. Mainly, the inner products of infinite series with odd or even numbers of terms were
shown to have “qubit” remainders.
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points (numbers), one expects that algebraic points may contain an infinite number

of geometric points. If this reciprocity is proven or axiomized, it should be possible to

prove that R has the S0 topology. In other words, Rmay be represented as two points.1

Treating only the non-negative branch of R for simplicity, one would use the result

of [2] that geometric points may contain algebraic intervals to resolve geometric points

A and B as the algebraic neighborhood of the origin and the maximal neighborhood

of infinity respectively:

A ≡ [0,F0) , and B ≡ [F∞̂−1,∞) . (37.1)

Recall that FX ∈F is the supremum of the RX neighborhood of fractional distance.

One would convert the intervals to geometric line segments as

[0,F0) ≡ AA′ , and [FXmax ,∞) ≡ B′B , (37.2)

and then proceed to iteratively construct the intermediate algebraic neighborhoods of

infinity from A′ and B′. It must be examined whether the limit of infinite iterations

can be used to show that R has the 0-sphere topology.

38 The Twin Primes Conjecture

The program described here is highly speculative relative to the work described in

other sections. That being stated, one might endeavor to prove the twin primes

conjecture as follows. (This approach was first suggested in [161].) Require that the

orthogonality of plane waves on different levels of aleph ultimately follows the small

box normalization convention (Section 1.7.3) in which the chirological wavenumber β

is quantized:

ψn(x, t, χ
4) = exp

{
i
(
kx− ωt+ βnχ

4
)}

, (38.1)

Place A and Ω on the k ± 1 levels of aleph relative to Hk. Assume the chirological

wavenumber in Hk ̸=H0 is the difference of contributions from A and Ω:

βk+1 − βk−1 = βk . (38.2)

Develop a framework in which βk increases by Φ on successive levels of aleph so that

βk±n = Φ±nβk . (38.3)

1A 2-sphere is a hollow ball in 3D space, a 1-sphere is a circle in the plane, and a 0-sphere is two points in a line.
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Substituting (38.3) into (38.2) yields

Φβk − φβk = βk =⇒ Φ = 1 + φ . (38.4)

This must be true when βk=Φkβ0, so we obtain a general relationship

Φk+1 = Φk + Φk−1 . (38.5)

This is known to be satisfied by the golden ratio Φ. One would find an example in

which k ± 1 are twin primes, as would be the case for H4. It is a general idea in the

MCM that certain non-classical effects in Hk should be attributed to contributions

from other levels of aleph, e.g.: anti-gravity in mechanical precession (Section 15),

and we will attempt to prove the twin primes conjecture by the invariance of Hk

under k → k′. Such a proof might proceed by induction, but we will give a more

specific procedure.

Following a logical program like the sieve of Eratosthenes, one would develop a re-

quirement that contributions from all non-prime levels of aleph are totally attenuated

in the bulk lattice; only contributions from prime levels of aleph may contribute to

physics in Hk. One appeals to the fundamental theorem of arithmetic for an appro-

priate mechanism. Likewise, the Euler product form of the RZF sketches a path by

which one is able to eliminate non-prime numbers. Under the given conditions, one

would invoke the translational invariance of Hk for any k to conclude that there must

exist an infinite number of twin primes. In other words, if the nodes of a rectangular

progression in the golden ratio are associated with a pair of twin primes, then the

infinite continuation of the golden spiral will imply an infinite number of such primes

because Φk+1 =Φk + Φk−1 for any k. As this pertains to the chirological wavenum-

ber, one would find that there must exist infinite twin primes because physics in Hk

cannot depend on the absolute value of k.

39 The Limits of Sine and Cosine at Infinity

The results

lim
x→∞

sin(x) = 0 , and lim
x→∞

cos(x) = 1 , (39.1)

derived in [162] rely on ∞̂ having multiplicative absorption but not additive absorp-

tion. This has several undesirable implications for basic arithmetic and does not

reflect the conventions of the by-now mature framework for fractional distance anal-

ysis in R [2]. Therefore, the result should be revisited under the arithmetic axioms
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which remove both of the additive and multiplicative absorptive properties from ∞̂ [2].

It is expected that the result will hold up when the immeasurable, non-arithmatic

numbers x∈F serve as some regularized boundary condition along R such that the

behavior of sine and cosine on approach to ∞̂ along R+ is the mirror image of the

behavior on egress from the origin. However, further analysis is required to determine

whether the result will hold up under the general arithmetic axioms in [2].

If the result will survive, applications toward integrals with infinite bounds and

similar problems should be developed. For instance, the Dirac δ function has an

integral definition

δ(x) =
1

2π

∫ ∞̂

−∞̂
dk eikx =

1

2πix
eikx
∣∣∣∣∞̂
−∞̂

=
1

πx

eix∞̂ − e−ix∞̂

2i
=

1

πx
sin(ℵx) . (39.2)

By the assumed translational invariance of trigonometry functions among neighbor-

hoods of fractional distance, sin(ℵx)=0 because sin(0)=0. If sine is equal to zero at

the center of one neighborhood of fractional distance, it should be equal to zero in

the center of all of them. Note the agreement of the assumed sin(ℵx)=0 with

sin(ℵx) =
eix∞̂ − e−ix∞̂

2i
=

(
ei∞̂
)x − (e−i∞̂)x

2i
=

1− 1

2i
= 0 , (39.3)

where e±i∞̂=1 follows from (39.1). If we do not invoke

lim
x→0±

1

x
−→ ±∞̂ , (39.4)

then the final step of (39.2) is undefined for x=0. This blow up leads to the δ(0)=∞
property. To use (39.4), we should examine the product of (πx)−1 with the series

decomposition of sine:

lim
x→0

1

πx
sin(ℵx) = lim

x→0

1

πx

∞∑
n=0

cnℵ2n+1
x

= lim
x→0

1

π

∞∑
n=0

cnℵ2nx
ℵx
x

(39.5)

= lim
x→0

1

π

∞∑
n=0

cnℵ2nx ℵ1 .

The x→ 0 limit of ℵx requires deeper analysis in the ε–δ framework, as in Section

1.6.9. We have defined ℵ0 =0 in [2], but ℵε is greater than any natural number for
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any real ε>0. This suggests we might take

lim
x→0
ℵx = F0 , (39.6)

where F0 is the least positive non-arithmatic number. Since F0>1, (39.5) will agree

with δ(0)=∞:

lim
x→0

1

π

∞∑
n=0

cnℵ2nx ℵ1 =
1

π

∞∑
n=0

cnℵF2n
0
≈ ∞ . (39.7)

On the other hand, if the limit is zero, the resulting expression contains 0×ℵ1=ℵ0=0,

and we do not immediately obtain the correct behavior for δ(x) at x=0. Such nuance

remains to be analyzed. A vast ocean of similar problems will be opened up to new

analysis by proof of the limits of sine and cosine at infinity under the axioms of

fractional distance analysis.

40 The Cauchy Residue Theorem

The coefficient of the Cauchy residue theorem∮
C

dz f(z) = 2πi
∑

Resf(z) , (40.1)

contains three of the four ontological numbers. One would attempt to make an

extension of complex analysis to C∗
± in the form∮

C

dz f(z) = 2πiΦ∆k
∑

Resf(z) , (40.2)

where k refers to a level of aleph and C acquires a winding number so that it can

begin on one level of aleph and end on another. ∆k is the change in the level of aleph

between the start and endpoints of C, so ∆k = 0 gives the usual formula. While it

remains to be determined why the exponent on Φ should be different than those on 2,

π, and i, one understands that Φ̂ is unique for pointing in the direction which allows

us to separate the start and end points of C on successive H-branes. In that case, we

slightly abuse the
∮
closed path integral notation.

The neighborhood of infinity provides rich new structure around poles. One might

envision the poles of a function piercing an infinite number of complex planes such

that each intermediate neighborhood of infinity crossed on the approach to the pole

is resolved on C{k}: the complex plane on the kth level of aleph.
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41 Intermediate Numerical Scale

Although fractional distance analysis is strictly a subset of real analysis, this problem

calls for a survey of alternatives to R such as the surreals [163] and hyperreals [164].

In either system, division by an infinite quantity can yield an infinitesimal but never

a finite number. Fractional distance was conceived in part to fill this intermediate

scale gap with numbers in the neighborhood of infinity such that

ℵX
∞

= X . (41.1)

For X ∈ (0, 1), numbers such as ℵX occupy an intermediate numerical scale between

infinites and the naturals such that

n ∈ N =⇒ n

∞
= 0 . (41.2)

Intermediate scale was relied upon heavily in the architecture for a negation of the

Riemann hypothesis in [49]. Briefly, an infinitesimal neighborhood around a point

and a smaller, nested hypercomplexly infinitesimal neighborhood were associated with

adjacent odd and even levels of aleph with respect to finite numbers on a third

adjacent even level. By scale invariance under shifting levels of aleph, the requirement

for two tiers of infinitesimals was found to imply two tiers of finites: numbers in the

neighborhood of the origin and those in the neighborhood of infinity. Namely, the

scale progression

finite −→ infinitesimal −→ hypercomplexly infinitesimal , (41.3)

was found to imply a similar progression

infinite −→ intermediate −→ finite , (41.4)

under a shift of the level of aleph by two. Aside from [49], another discussion of

this requirement may be found in [165]. Given the absence of an intermediate scale

in popular extensions of R containing infinitesimals, one would survey those models

attempting to bridge the gap to fractional distance analysis.

Part IV: More Problems in Physics

Many problems in Part IV are concisely presented as surveys of others’ work with

an eye toward MCM connections. Miscellaneous topics in cosmology appear here as
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well.

42 Randall–Sundrum Models

This writer became aware of Randall–Sundrum (RS) models in the years after devel-

oping the unit cell. The likeness of these models to the MCM is striking. The main

purpose of the work described here will be to cast the MCM unit cell, to the extent

that it may be possible, as a third type of RS model beyond the primary RS1 and

RS2 models [166,167].1

The following is excerpted from [168].

“Randall–Sundrum models (also called 5-dimensional warped geometry

theory) are models that describe the world in terms of a warped-geometry

higher-dimensional universe, or more concretely as a 5-dimensional anti-

de Sitter space where the elementary particles (except the graviton) are

localized on a (3+1)-dimensional brane or branes. The two models were

proposed in two articles in 1999 by Lisa Randall and Raman Sundrum

because they were dissatisfied with the universal extra-dimensional models

then in vogue. Such models require two fine tunings; one for the value of

the bulk cosmological constant and the other for the brane tensions. Later,

while studying RS models in the context of the anti-de Sitter/conformal

field theory (AdS/CFT) correspondence, they showed how it can be dual

to technicolor models. The first of the two models, called RS1, has a finite

size for the extra dimension with two branes, one at each end. [166] The

second, RS2, is similar to the first, but one brane has been placed infinitely

far away, so that there is only one brane left in the model. [167].

“The model is a braneworld theory developed while trying to solve

the hierarchy problem of the Standard Model. It involves a finite five-

dimensional bulk that is extremely warped and contains two branes: the

Planckbrane (where gravity is a relatively strong force; also called ‘Gravi-

tybrane’) and the Tevbrane (our home with the Standard Model particles;

also called ‘Weakbrane’). In this model, the two branes are separated in the

not-necessarily large fifth dimension by approximately 16 units (the units

based on the brane and bulk energies). The Planckbrane has positive brane

energy, and the Tevbrane has negative brane energy. These energies are the
1The first citation of Sundrum and Randall in [166] is to a paper of Arkani-Hamed and Dvali [5] regarding new

dimensions near one millimeter. This paper was cited here in Sections 0.1 and 15 as agreeing with and supporting the
characteristic scale for new MCM physics at 10−4m. RS state that their own work is similar to the model presented
in [5].
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cause of the extremely warped spacetime. In this warped spacetime that is

only warped along the fifth dimension, the graviton’s probability function is

extremely high at the Planckbrane, but it drops exponentially as it moves

closer towards the Tevbrane. In this, gravity would be much weaker on the

Tevbrane than on the Planckbrane.”

RS1 is AdS5 bounded by two branes separated by a finite distance across which

spacetime is warped in the fifth dimension only. RS warp factor is identical to MCM

scale factor, so this is very similar to the MCM scheme for increasing scale along χ4.

However, the warp factor is not like the continuum of increasingly curved, maximally

symmetric MCM branes because the RS warp factor acts uniformly on the entire 4D

part of the metric. In RS models, the warping is said to be caused by the energies of

the branes, but the MCM approach defines scale as a property of a quantum operator

algebra whose analytical underpinnings have not yet been determined. The MCM

construction leaves energetic considerations to follow as a consequence when the usual

program in physics is that everything should follow from the energy landscape. The

alternative, usual view in RS models may be useful for answering questions left open

when energy is said to result in the MCM rather than to cause.

Randall and Sundrum (RS) write the following in [166].

“We propose that the metric is not factorizable but rather the four-

dimensional metric is multiplied by a ‘warp factor’ which is a rapidly chang-

ing function of an additional dimension. The dramatic consequences for

the hierarchy problem that we identify [...] follow from the particular non-

factorizable metric,

ds2 = e−2krcϕηµνdx
µdxν + r2cdϕ

2 , (42.1)

where k is a scale of order the Planck scale, xµ are the coordinates for the

familiar four dimensions, while 0 ≤ ϕ ≤ π is the coordinate for an extra

dimension, which is a finite interval whose size is set by rc.”

RS put the warp factor directly into the metric, but MCM scale factor is associated

with renormalization of the observer’s reference frame onto the level of aleph of a given

brane. After non-unitary evolution by M̂3, unitarity is restored by the scale factor in

the brane at the end. The example in Section 0.2 defined unit scale in the H-brane
by an equation in the form

gµν = Φg+µν − φg−µν , (42.2)
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where Φ and −φ play the role of the RS warp factor e−2krcϕ on the branes where

we take g±µν . RS achieve unit scale where ϕ=0 (the Planckbrane), and later in their

paper they add an absolute value so the warp factor becomes e−2krc|ϕ|. This is said

to cause “the graviton wavefunction” to fall off exponentially quickly away from the

Planckbrane, which RS call the hidden brane. The hierarchy problem is said to result

because the graviton wavefunction has fallen off so greatly by the time it reaches the

visible Tevbrane at ϕ=±π. The absolute value on |ϕ| makes RS physics symmetric

about the Planckbrane, but scale is not symmetric around MCM branes. This is an

important distinguishing feature among RS and MCM models. The main difference

between them is that the metric warp factor is the kernel of RS physics, but we have

used the KK metric to impose unification of EM and gravitation while putting a warp

factor-analogue into the non-unitarity of M̂3. Kaluza–Klein theory is the kernel of the

metric part of the MCM, and a complete metrical analysis remains to be carried out.

Namely, the relative merits of taking g±µν in (42.2) as the 4D parts of g±AB in the low

χ4
± limits or in the Ω- and A-branes must be fully evaluated. The detailed metrical

analyses in [166,167] provide a template of important cases and considerations.

The method by which rc sets the scale of RS’ ϕ ∈ [0, π] parameter (actually

ϕ∈ [−π, π]) is the same one by which an arbitrary chronological time between mea-

surements is normalized around χ4 ∈ [−φ,Φ]. Where rc is a constant in RS theory,

however, the MCM rc equivalent will take a unique value in each unit cell because

the time interval between measurements may be irregular. In the limit of vanishing

Aµ±, the MCM metric

gMCM
AB =

(
gαβ + χ4AαAβ χ4Aα

χ4Aβ χ4

)
, (42.3)

has line element

ds2MCM = gαβdχ
αdχβ + χ4

(
dχ4
)2

, (42.4)

where gαβ = ηµν is implicit for comparison with (42.1). An overall scale factor is

implicit as well. The MCM metric reduces to the KK metric through χ4 = ϕ2 for a

scalar field ϕ. In (42.1), constant r2c replaces the KK scalar field.

RS continue as follows [166].

“Because our spacetime does not fill out all of five dimensions, we need

to specify boundary conditions, which we take to be periodicity in ϕ, the

angular coordinate parameterizing the fifth dimension, supplemented with

the identification of (x, ϕ) with (x,−ϕ) [...]. We take the range of ϕ to be
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from −π to π; however the metric is completely specified by the values in

the range 0 ≤ ϕ ≤ π. The orbifold fixed points at ϕ = 0, π will be taken

as the locations of two 3-branes, extending in the xµ directions, so that

they are the boundaries of the five-dimensional spacetime. The 3-branes

can support (3+1)-dimensional field theories. Both couple to the purely

four-dimensional components of the bulk metric:

gvisµν (x
µ) ≡ Gµν(x

µ, ϕ = π) , ghidµν (x
µ) ≡ Gµν(x

µ, ϕ = 0) , (42.5)

where GMN , M,N = µ, ϕ is the five-dimensional metric. This set-up is in

fact similar to the scenario of [Arkani-Hamed et al. when laying out the case

for new dimensions near 10−3m in [5].]”

RS introduce a 5D metric GMN whose µ, ν∈{0, 1, 2, 3} submetrics Gµν correspond

to 4D metrics on the bounding branes of the 5D space: the hidden Planckbrane and

the visible Tevbrane. Similarly, we have the g±AB metrics for 5D abstract coordinates

in Σ± and 4D physical metrics g±αβ on the bounding branes. gvisµν is like the metric

on H (the Tevbrane) and ghidµν is like the metric on a hidden A-, Ω-, or ∅-brane. RS

assign unit scale factor (warp factor) to the hidden brane whereas we associate unit

scale with quantum mechanical unitarity and, thus, the visibleH-brane. However, RS
will go on to explain that their model works with either of the Tev- or Planckbranes

placed at ϕ=0.

RS’ identification of their boundaries in 5-space as 3-branes shows that they are

not considering the timelike part of their AdS5 space as part of the bulk enclosed by

the boundaries. This is another significant departure from the MCM even while it

contextualizes what is meant when eachHk-brane corresponds to a measurement at an

observer’s proper chronological time tk. tk identifies a 3-brane within Hk, but we will

only say that the observer’s proper time was tk when he was in Hk without reducing

the dimensionality of the boundary. Furthermore, RS only consider {−++++} 5-
space while we consider the {−+++±} topologies such that complexity is introduced

when 3-branes in Euclidean signature {+++} can be time evolved in more than one

way. One envisions modularized dynamical MCM process in which the time evolutions

of spacelike 3-branes are alternatingly chronological and chirological, and wherein we

might achieve arbitrage of information around time loops. Processes like t→ −it
Wick rotation might be used to reorient MCM 3-branes with respect to x0 or χ4 such

that lower case Latin metric counting indices are shifted from {0, 1, 2, 3} to {1, 2, 3, 4}
resulting in non-factorizable mechanisms beyond those considered by RS.

RS continue as follows [166].
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“Until this point, we have viewedM≈MPl as the fundamental scale, and

the TeV scale as a derived scale as a consequence of the exponential factor

appearing in the metric. However, one could equally well have regarded the

TeV scale as fundamental, and the Planck scale of 1019 GeV as the derived

scale. That is, the ratio is the physical dimensionless quantity. From this

viewpoint, which is the one naturally taken by a four-dimensional observer

residing on the visible brane, the large Planck scale (the weakness of gravity)

arises because of the small overlap of the graviton wave function in the fifth

dimension (which is the warp factor) with our brane. In fact, this is the

only small number produced. All other scales are set by the TeV scale.”

Here, RS point out that the warp factor is such that either of the Planckbrane or

the Tevbrane may be taken as the fundamental brane. Likewise, we may represent

the unit cell centered on H or ∅. The MCM scale progression in Φk suggests that any

brane can be taken as the fundamental one with unit scale by a change of variables

k→k′. The RS branes’ locations at ϕ=0 and ϕ=±π—two opposite poles of a circle—

imply that we should be able to continue the RS 5-space past the Tev- or Planckbrane,

depending on which is placed at ϕ=0, by unwrapping ϕ from around a cylinder. In

RS1 however, the behavior by which the absolute value in (42.6) causes the graviton

wavefunction to fall of exponentially quickly away from the Planckbrane cannot be

preserved if the Tevbrane is taken as the fundamental scale and the fifth coordinate

is still continued beyond the Planckbrane. For instance, consider a rescaling rcϕ→y

so that (42.1) becomes

ds2 = e−2k|y|ηµνdx
µdxν + dy2 , with y ∈ R0 . (42.6)

If the Tevbrane is placed at y=0 and y is continued beyond y=±rcπ, then what RS

call the graviton no longer falls off exponentially quickly away from the Planckbrane.

To cast the MCM as an RS model, it is required to continue y as stated so as to impose

an asymmetric scale factor around branes, but this adversely affects the freedom to

take the Tevbrane as the fundamental brane. In turn, this should affect MCM freedom

to center the unit cell on H or ∅. By allowing the fifth coordinate y to extend beyond

the ϕ=±π bounding branes, RS1 can be stepped toward congruence with the MCM,

but this breaks another desirable correspondence elsewhere in the model. The extent

to which this latter correspondence may be important or required for casting the unit

cell as an RS model must be examined. Since symmetry in the ϕ=±π boundaries

appears hard-coded in RS models, one might consider two different ϕ-symmetric RS

braneworlds and then seek to construct an MCM unit cell as their piecewise union.
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The following is excerpted from [168].

“The RS2 model uses the same geometry as RS1, but there is no TeV

brane. The particles of the standard model are presumed to be on the

Planck brane. This model was originally of interest because it represented

an infinite 5-dimensional model, which, in many respects, behaved as a 4-

dimensional model. This setup may also be of interest for studies of the

AdS/CFT conjecture. [...] In 1998/99 Merab Gogberashvili published on

arXiv a number of articles on a very similar theme [169–171].”

The Tevbrane (H) is absent in the RS2 model. Sometimes it is said that it is

moved to infinity whereas the Tevbrane is separated from the Planckbrane by a finite

distance in RS1. Considering that the MCM introduces two semi-infinite 5-spaces to

induce 4D physics on the boundary between them, one would join two RS2 models

as Σ± such that both models’ Tevbranes at infinity become a shared MCM H-brane
(which is not included in either of Σ±.) In another union of RS models, one would

simply concatenate H to one of Σ± so that one 5D space has two bounding branes

(RS1), and the other has only one (RS2). The one where H lies at infinity would

be said to reside on a higher or lower level of aleph. The RS1/RS2 union is also

interesting because it matches the globally open and closed 4D topologies in the

slices of Σ± despite RS1 and RS2 each using the {−++++} 5D topology. Since the

RS branes are only 3-branes, RS models of both types may be amenable to embedding

in the pseudo-Lorentzian {−+++−} topology of Σ−.

The following is excerpted from [172].

“The Randall–Sundrum model [166, 167] is a class of string theory in-

spired models in combined cosmology and particle physics, which assume

that the observable universe constitutes the asymptotic boundary of an

ambient anti de Sitter spacetime: the force of gravity would pertain to

the full anti de sitter ‘bulk’ spacetime, but the gauge fields and fermion

matter fields would be constrained to reside on that boundary, as would

hence be all observations made via electromagnetic radiation by observers

inside this cosmology. Hence the extra bulk dimensions in these models

need not be small (technically: the fiber spaces need not be compact topo-

logical spaces with tiny Riemannian volume) in order to be unobservable

for observers. This is in contrast to the (historically much older) Kaluza–

Klein compactification models for physics with extra dimensions. Therefore

Randall–Sundrum-like models are also referred to as large extra dimension

models.”
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RS make a similar comment in [167] about their model differing from comparable

models by not requiring compactification of dimensions greater than four. Since the

MCM scale increases with increasing levels of aleph, it will be prudent to compare it

to existing models of large extra dimensions.

43 Brans–Dicke Theory

Scalar-tensor theories are ones in which gravitation is controlled by a rank-2 metric

tensor and also a varying scalar field. Brans–Dicke theory [173, 174] is the most

prominent example of such a theory. The MCM’s KK metric contains a scalar field

ϕ, so the body of literature on such scalar-tensor connections should be surveyed.

Brans’ review of scalar fields in physics [175] is likely to contain various insights

and tools useful for describing the MCM’s 5D abstract and 4D physical metrics, and

the connections between them. Particularly, the generalized Brans–Dicke theory is

obtained by converting the Ricci scalar R to a generalized function [176], and this is

similar to what we have done by identifying the Ricci scalar R∝(ℓ2±)
−1 with the KK

scalar field via R=ϕ2=f(χ4
±).

44 The Arnowitt–Deser–Misner Theorem

A 1960 theorem of Arnowitt, Deser, and Misner (ADM) proves that the p0 component

of the universe’s 4-momentum is positive-definite [41]. This result forbids a second

universe with p0< 0 such that the total energy of two universes with opposite time

arrows sums to zero. However, this is required for conservation of momentum in cos-

mogenesis, so the MCM requires modifications in the underpinnings of this theorem.

In [41], ADM suppose that the universe is rotationally and translationally invariant

(gik is isotropic). Then their theorem proceeds in the analysis of non-orientable

manifolds. However, modern astrophysical experiments show anomalous multipole

correlations in the temperature fluctuations of the cosmic microwave background

(CMB). Furthermore, the CMB appears warmer to the north of the plane of the solar

system and cooler to the south, and the already mutually correlated CMB quadrupole

and octupole moments are further aligned with the axis of this heat distribution.

Krauss said the following [177].

“The new results are either telling us that all of science is wrong and we’re

the center of the universe, or maybe the data is simply incorrect, or maybe

it’s telling us there’s something weird about the microwave background
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results and that maybe, maybe there’s something wrong with our theories

on the larger scales.”

In an obvious way, if the distance from an observer to a surface is the same in any

spatial direction, the CMB at about 14Gcy for example, then the surface is a sphere,

and the observer is at its center. This fact places the Earth at the center of the

universe. Data from experiments such as WMAP [178] and Planck [179] suggest this

arrangement. Such data runs contrary to ADM’s assumption that the universe should

be translationally and rotationally invariant on large scales. Land and Magueijo have

called this structure the “axis of evil” because it greatly confounds longstanding and

well-loved models of cosmology such as the one used in the ADM theorem. Therefore,

we have reason to discount the isotropic gij assumption in the original ADM theorem.

Many subsequent, alternative derivations of the ADM theorem have appeared in the

intervening decades, and a survey of such work is required to show that any theorem

which forbids p0<0 necessarily fails in the general case.

A possible workaround for avoiding the theorem’s implication proceeds as follows.

ADM assign a differential element of area to the surface at spacelike infinity in the

form [41]

dSi =
1

2
εijkdx

jdxk . (44.1)

However, orientable manifolds may be equipped with symplectic forms on their bound-

aries. The consequence of ADM’s work may be avoided if one rejects (44.1) in favor

of

dSi =
1

2
εijkdx

j ∧ dxk . (44.2)

The dxj∧dxk=−dxk∧dxj property of the wedge product nullifies the ADM theorem

when the opposite sign carries through to allow positive- or negative-definite energy.

Although the Levi–Civita symbol reverses the sign with permutations of j and k,

it cannot be determined if the positively signed case in (44.1) should correspond to

dxj∧dxk or dxk∧dxj.
Since the universe H connects to Σ± via some exotic geometry, one would exam-

ine the cases for symplectic 2-forms at spacelike infinity. If it can be demonstrated

absolutely that (44.2) is the proper surface element, then the implication following

from (44.1) will be avoided, as is required.
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45 The Borde–Guth–Vilenkin Theorem

The Borde–Guth–Vilenkin (BGV) theorem is said to rule out any model of cosmology

in which time extends infinitely far into the past. In [57], BGV give a simple argument

proving that a past spacetime boundary must exist for expanding spacetimes with

metric

ds2 = dt2 − a(t)dx2 . (45.1)

After proving the case of a toy model, they proceed to prove the general case similarly.

The proof for the toy model begins with the differential element of the null interval

in the space described by (45.1):

dλ ∝ a(t)dt . (45.2)

This may be normalized as

dλ ∝ a(t)

a(tf )
dt , (45.3)

for some reference time tf . Using the standard definition of the Hubble parameter

H =
ȧ

a
, (45.4)

the authors integrate H from an early time to tf :∫ λ(tf )

λ(ti)

H(λ)dλ =

∫ tf

ti

ȧ(λ)

a(λ)
dλ

=

∫ tf

ti

ȧ(t)

a(t)

a(t)

a(tf )
dt

=

∫ tf

ti

d

dt

a(t)

a(tf )
dt (45.5)

=

∫ a(tf )

a(ti)

da

a(tf )

=

(
1− a(ti)

a(tf )

)
≤ 1 .

The authors then define an average Hubble parameter Hav over the affine parameter

λ:

Hav =
1

λ(tf )− λ(ti)

∫ λ(tf )

λ(ti)

H(λ)dλ ≤ 1

λ(tf )− λ(ti)
(45.6)
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According to the metric in (45.1), the universe has always been expanding, and it

follows that Hav>0. Since (45.6) shows that the average has to be less than or equal

to the given fraction, the affine parameter is constrained to some finite length. Hav is

greater than zero, but the fraction goes to zero as λ(ti)→−∞. Thus, Hav>0 requires

that the time interval parameterized by λ cannot extend infinitely far into the past.

The BGV theorem does not cover the case of χ4 extending infinitely far into the

chirological past, so the theorem does not disrupt the presumed infinite extent of

the MCM cosmological lattice. While the MCM does not necessarily depend, at

this point, on a cyclic cosmology model in which timelike chronological geodesics

must extend infinitely far into the past, the introduction of a reversed time arrow

at the past spacetime boundary implied by (45.6) may provide a workaround for the

implication of the BGV theorem. Rather than forcing past incompleteness, the BGV

theorem might be shown to force sign-alternating piecewise structure onto the affine

parameterization of geodesics longer than some scale.

46 The Ehrenfest Paradox

The Ehrenfest paradox [180] pertains to a spinning disc whose outer edge moves at

relativistic speeds. The radius of the disc is always perpendicular to the motion of the

disc’s elements and should not be affected by special relativistic length contraction.

The circumference of the disc, however, is parallel to the tangential velocity of the

disc’s elements and must be affected by length contraction. As a consequence, the

ratio π between the non-spinning disc’s radius R0 and circumference C0 cannot be

the ratio of R0 to the spinning disc’s circumference C. An extensive analysis of

this problem appears in [181] wherein Grøn emphasizes a historical preoccupation

with the elastic properties of a hypothetical disc as well as the feasibility of making

properly comoving measurements to observe the ratio C/R ̸=2π. Without regard to

the material properties of a physical disc or the possibility of any specific experiment,

the Ehrenfest paradox is a fascinating problem in pure geometry.

Framing this process in the MCM, one would examine the case in which π is

factored out of Lorentz contraction in a rotating reference frame as∣∣ψ; π̂〉 −→
∣∣ψ〉︸︷︷︸

relativistic

× π̂︸︷︷︸
abstract

. (46.1)

This possibility is directly falsifiable. If the mechanism is not immediately determined

to be infeasible, one would compare any results to known gravitational anomalies such
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as the Pioneer anomaly [182].1 Small deviations from the predicted orbit might be

assigned to a non-relativistic π̂.

47 The Ford Paradox

In [184], Locklin writes the following about the Ford paradox [185,186].

“If quantum mechanics is the ultimate theory of the universe: where do

the long strings of random bits come from in a classically chaotic system?

Since people believe that QM is the ultimate law of the universe, somehow

we must be able to recover all of classical physics from quantum mechan-

ics. This includes information generating systems like the paths of chaotic

orbits. If we can’t derive such chaotic orbits from a QM model, that indi-

cates that QM might not be the ultimate law of nature. Either that, or our

understanding of QM is incomplete. Is there a point where the fuzzy QM

picture turns into the classical bit generating picture? If so, what does it

look like in the transition?

“I’ve had physicists tell me that this is ‘trivial,’ and that the ‘corre-

spondence principle’ handles this case. The problem is, classically chaotic

systems egregiously violate the correspondence principle. Classically chaotic

systems generate information over time. Quantum mechanical systems are

completely defined by stationary periodic orbits. To say the ‘correspondence

principle handles this’ is to merely assert that we’ll always get the correct

answer, when, in fact, there are two different answers. The Ford paradox

is asking the question: if QM is the ultimate theory of nature, where do

the long bit strings in a classically chaotic dynamical system come from?

How is the classical chaotic manifold constructed from quantum mechanical

fundamentals?”

While the above pertains to the chaotic double pendulum, one might ask where

large scale turbulence in the universe comes from if the big bang was a quantum

nucleation event. If quantum mechanics was the supreme law in the evolution of

the universe, it would follow that the universe could have only become a perfectly

symmetric crystal devoid of the information needed to characterize turbulent macro-

scale structures. Since QM is an information-conserving theory, the universe at late

times would not contain more information than was in the initial qubit.

1The current reliance on finite element analysis to diagnose the Pioneer anomaly as a heat issue [183] is unsatisfying
to this writer. The small effect obtained in this analysis is as likely to be an artifact of the choice of finite elements
as it is to be a real effect, in the opinion of this writer.
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Locklin also writes the following [184].

“This may seem subtle, but according to quantum mechanics, the ‘mo-

tion’ is completely defined by periodic orbits. There are no chaotic orbits in

quantum mechanics. In other words, you have a small set of periodic orbits

which completely define the quantum system. If the orbits are all periodic,

there is less information content than orbits which are chaotic. If this sort

of thing is true in general, it indicates that classical physics could be a more

fundamental theory than quantum mechanics.”

While the Ford paradox is little regarded by the physics orthodoxy, it was instru-

mental in this writer’s thinking during the formation of the MCM. Fundamentally, the

increase of entropy in real systems requires that total information is not conserved.

This is not possible in the framework of quantum mechanics. The introduction of

irrational numbers to the scale factor associated with non-unitary M̂3 is proposed in

part to generate the anomalous (but required) long strings of random bits needed to

describe simple experiments and, eventually, large scale turbulence in the universe,

e.g.: crashing ocean waves, terrestrial clouds, astrophysical nebulae, etc. As an exam-

ple, new information might enter a theory when the arguments of sines and cosines

periodic in 2π are rescaled as nπx→nπΦx′. Cases of this paradox must be surveyed

and analyzed in the modified framework of quantum mechanics dependent on M̂3.

48 Intrinsic Periodicity

A program of Dolce, e.g.: [187–190], pertains to the periodicity intrinsic to quantum

states through the de Broglie wavelength. Dolce endeavors to associate this man-

ifestation of wave-particle duality with more fundamental periodicities in time and

space. Given the MCM particle scheme in which fundamental particles are themselves

quanta of spacetime more so than they are the “isolated energy parcels” described

by de Broglie [191], a survey of Dolce’s program is likely to yield results, methods,

and language appropriate for use in the MCM. Particularly, Dolce has considered

the case of a virtual extra dimension in [189]. The MCM’s fifth abstract dimension

may be more appropriately classified as a canonically virtual dimension than a real

spacelike or timelike one. The distinctions of such dimensions must be analyzed and

incorporated into the MCM to the extent that they are useful.
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49 Non-Local Hidden Variables

Bell’s theorem is said to preclude the existence of local hidden variables in quantum

theory. ’T Hooft states Bell’s theorem as follows [192].

“No physical theory of local hidden variables can ever reproduce all of the

predictions of quantum mechanics.”

A hypothetical MCM workaround for this theorem was meant to allow χ4 as a

local hidden variable [193]. However, the mechanism relies on several unresolved if

statements, and subsequent analysis shows that χ4 may be better described as a non-

local hidden variable than a local one.1 Therefore, it is required to establish χ4 as a

non-local variable or to manufacture a rigorous refutation of Bell’s theorem.

50 ΛCDM Cosmology

Energy equations are rarely sufficient to determine unique solutions in cosmology. In

general, equations of state are required before one may form a system of N cosmology

equations in N unknowns. In this research program, we have not considered pressures

and densities at all. We have only loosely alluded to the associations of AdS and dS

with positive and negative cosmological constants, but those constants are intimately

linked to the thermodynamic state of a universe. ΛCDM models cover all standard

thermodynamic cosmology states, so these models must be canvased for the additional

constraint equations required in a mature model of cosmology, e.g.: Chapter 27 in

[194] or Chapter 8 in [195].

51 The Landau–Yang Theorem

Although Particle Data Group reports each year that it has not yet been determined

if the Higgslike particle decays to two photons, e.g.: [17, 27, 125, 126], it is said that

spin-1 is ruled out for that particle by the Landau–Yang theorem because the particle

has been observed to decay to two photons. In either case, a review of this theorem

[196,197] and its foundation in spin-statistics is in order. If it is eventually determined

that the Higgslike particle decays to two photons, might there be a workaround for

the implication of the Landau–Yang theorem that spin-1 is consequently forbidden?

The foundations of this theorem must be analyzed to determine whether or not new

principles inherent to the MCM might introduce corner cases which have not been

previously considered.
1The information and correlations of local variables are limited by the speed of light.
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52 A Clopen Universe

While it is an open question whether or not the physical universe is topologically flat,

all data indicates that the deviation from topological flatness on cosmological scales

is very small if it exists at all. However, the 4D de Sitter and anti-de Sitter slices of

the MCM unit cell have positive and negative curvature respectively corresponding

to topological open- and closedness. The H-brane can smoothly sew together the

geometries of the low curvature limits of the slices of Σ±, but the topology of H
cannot smoothly merge these incompatible topologies. An eccentric topology beyond

closed and open is the clopen topology. Something is said to be clopen if it is both

open and closed. One would conduct a survey of the properties of clopen spaces with

the goal of better understanding connections between Σ±. One would seek to develop

cosmological observables related to topological clopenness in the H-brane.

53 The Galactic Rotation Anomaly

To a hammer, every problem looks like a nail. This is the main reason why parti-

cle physicists insist on solving the galactic rotation anomaly with particles despite

a mountain of non-confirming evidence. So many experiments have failed to detect

even the slightest hint of dark matter that modern dark matter models are hopelessly

contrived and unrealistic. At the heart of this active research area is a large federal

budget for grants related to dark matter investigations. Without that, most reason-

able scientists would have given up on the particle theory of dark matter by now.

Dozens or hundreds of experiments have failed to find any evidence.

Underlying a hypothetical, undetectable or nearly undetectable, novel form of

matter called dark matter is the galactic rotation anomaly. The tangential velocities

of stars on the outer rims of spiral galaxies are too large for those stars to be held

within their galaxies by the gravity of the visible matter. Thus, it was originally

speculated that there must be some additional, invisible matter called dark matter

responsible for the gravitational binding of the fast-moving stars on the rim. In

analogy, if one pours sand on a dinner plate and begins to spin the plate, the sand

will begin to fly off from the outer edge of the plate once the velocity exceeds what

can be offset by the sand’s friction force on the plate. Likewise, certain stars should

be thrown out of their galaxies, but that is not what is observed. The anomaly by

which stars remain on the spinning plate is very real, but, in light of overwhelming

experimental evidence, there is little to no good reason to suppose that a new form

of particulate dark matter generates the required gravitation. As stated above, it is

231



Next Steps and the Way Forward in the Modified Cosmological Model

this writer’s opinion that all or nearly all interest in such models pertains to a large

pool of funding for what is effectively a dead research area. Such research is kept

alive because there is always a risk that funds will be diverted to sociology rather

than other problems in physics.

As an alternative to a novel, dark form of matter, one would attempt to account for

the anomalous gravitation by exploring galactic geometries other than the simplest

ones which can be extracted from 2D astronomical data recorded by telescopes. For

instance, one would explore the gravitational energy of 4D galactic geometries rather

than only 3D geometries. The MCM suggests dark energy as a cosmological effect

when the universe gravitates toward another universe (or itself) in the future (Section

7), and one would also explore localized galactic manifestations of such effects. Might

the mass of the galaxy in the future gravitate with visible matter on our past light

cone? Might other, more exotic galactic configurations be consistent with 2D astro-

nomical data and also able to account for the anomalous gravitation? Matter hidden

from our telescopes by exotic geometries might be labeled “dark” without reference

to new particles absent from the standard model.

An anomalous correlation of supermassive black hole masses with the masses of

their host galaxies is further evidence that one ought to explore alternative models of

galactic physics. Present models predict that a black hole in the center of a galaxy

should not know anything about the mass of the galaxy itself, but observations show

that heavier galaxies tend to host heavier supermassive black holes [198,199]. Rather

than posing dark matter for one anomaly and another theory for the other, one would

seek a new model of galactic physics in which to resolve both issues.

54 Neutrino Helicity

The standard model predicts that all neutrinos should exist in left-handed helicity

states. However, observed neutrino flavor oscillations [200–202] require that neutrinos

must exist in left- and right-handed helicities. This major deficiency of the standard

model’s wrong prediction should be examined in the context of the MCM particle

scheme. Relative to conserved parity for strong and EM interactions, one would seek

to identify a mechanism in the structure of the unit cell for parity non-conservation in

weak interactions. One would develop MCM cases for Dirac and Majorana neutrinos

and study the standard model case in which right-helical Dirac neutrinos cannot

interact via the weak interaction. One would attempt to attribute the standard

model prediction to inherent directionality in M̂3.

In one further portion of neutrino physics, one might revisit the MCM particle
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scheme (Section 0.2) in which neutrinos are differentiated from their charged lepton

partners by the handedness of a {x0, xi, χ4} coordinate system. As mentioned in

Section 1.9.1, the subsequent introduction of ∞̂ may allow us to distinguish charged

lepton/neutrino pairs between coordinate triads located at either of 0̂ of ∞̂ rather

than between right- and left-handed ones. Such an arrangement might lend itself to

the large mass ratios among charged and neutral leptons, and to a longstanding pre-

diction for massless neutrinos which was ultimately rejected on the basis of neutrino

oscillations. In an intuitive way, one would associate zero mass with 0̂ or ∞̂, and

then develop an allowance for a small non-zero mass pertaining to the neighborhood

of infinity. To avoid similar mass ratios among generations of quarks paired according

to 0̂ and ∞̂, one would appeal to the piecewise structure of χ4 relative to x0.

55 Local Gauge Symmetry

Consider the standard model of particle physics’ group theoretical structure SU(3)×
SU(2)×U(1). While there are variations on the standard model which are allowed,

this algebraic structure seems to be enforced at the experimental level. The U(1) part

describes, loosely, the oscillations of the EM field. From one point in spacetime to

another, the EM field has a U(1) symmetry such that E is determined by θ∈ [0, 2π)
and B is determined consequently by overall relativistic invariance. Every possible

value of the EM field at a point can be obtained by applying a U(1) rotation to the

value of θ at any other point. Therefore, we say that the EM field has a U(1) phase

at each point. In quantum mechanics, the U(1) gauge symmetry allows us to make

changes like ψ→eiλψ as long we make corresponding gauge transformations elsewhere

in the theory. In this case, the U(1) circle group describes the 2π radian periodicity

in the function eiλ= eiλ+2π. The SU(2) weak theory is slightly more complicated. It

adds a 2-sphere of coordinate freedom to each point in spacetime and the U(1) part

of the SU(2)×U(1) electroweak theory pertains to hypercharge rather than electric

charge. The SU(3) strong force adds a 3-sphere to each point. The strong force at

any point can be obtained by rotating three QCD angles defined at any other point.

These degrees of freedom assigned to the points of spacetime are called local gauge

symmetries.

Following the MCM particle scheme in which gravitational manifolds are like el-

ementary particles, one would link the dynamical quantum metric defined with four

degrees of freedom to a new local QFT gauge symmetry. In other words, the internal

coordinates associated with the gauge symmetries at a point on one level of aleph

would be like the coordinates of a gravitational manifold on another level of aleph.
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This description of metrical degrees of freedom as local gauge symmetries may be use-

ful in MCM quantum gravity which resolves quantum states as metric tensors. For

example, the necessary slow variation of xµ Cartesian coordinates in spacetime rela-

tive to an SU(4) representation of those coordinates as four angles may be germane

to the hierarchy problem.

56 The Amplituhedron

In late 2013, several months after the first publication of the unit cell in [7], Arkani-

Hamed and Trnka published a famously received paper describing an “amplituhe-

dron.” They write the following in [203].

“Perturbative scattering amplitudes in gauge theories have remarkable

simplicity and hidden infinite dimensional symmetries that are completely

obscured in the conventional formulation of field theory using Feynman

diagrams. This suggests the existence of a new understanding for scattering

amplitudes where locality and unitarity do not play a central role but are

derived consequences from a different starting point. In this note we provide

such an understanding forN=4 [supersymmetric Yang–Mills theory (SYM)]

scattering amplitudes in the planar limit, which we identify as ‘the volume’

of a new mathematical object—the Amplituhedron.”

“[T ]here must be a different formulation of the physics, where locality

and unitarity do not play a central role, but emerge as derived features

from a different starting point. A program to find a reformulation along

these lines was initiated in [two omitted Arkani-Hamed papers ], and in the

context of a planar N=4 SYM was pursued in [three other omitted Arkani-

Hamed papers ], leading to a new physical and mathematical understanding

of scattering amplitudes [in another omitted Arkani-Hamed paper ].”

The new object with volume is the authors’ version of the unit cell. Following the

program of Ashtekar [50, 58], Finkelstein [147–153], and others, Arkani-Hamed and

Trnka appear to suggest that they were barking up the same tree as this writer, at

the same time, and without delivering any hard new results of their own, at that

time or subsequently.1 As Finkelstein was so enchanted by the idea to model the big

bang with a Feynman diagram (Figure 29), the 2013 comment of Arkani-Hamed and

Trnka regarding post-Feynmanian understanding of scattering amplitudes suggests
1To the contrary, this writer has parlayed early thinking into the negation of the Riemann hypothesis [2, 47, 48],

a formidable result of hard matériel, and made numerous other technical advances.
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Figure 29: This figure is adapted from [40]. The original caption read, “A duality
transformation between the geometric and particle pictures.”

Figure 30: This figure is due to Arkani-Hamed and Trnka [203]. We suggest that this
figure is intended to invoke the likeness of the MCM unit cell. The “4”
written to the left apparently refers to the dimensionality of the MCM’s
labeled branes, and k refers to an unspecified number of embedding di-
mensions: the MCM’s χ4

± (and χ4
∅.)

that they were enamored of the idea as well, and rightly so. The reader is reminded

that a modestly similar likeness demonstrated by Maldacena became the most cited

paper in the high energy particle physics literature [59] despite Maldacena not having

demonstrated what new physics or precise new understanding might be gained by

the AdS/CFT correspondence. The likeness between the anti-de Sitter space and a

conformal field theory in one less dimension speaks for itself. Masterful scholars infer

from the likeness alone that it should be important for something. Indeed, it is likely

that far more physicists were excited by the MCM particle-spacetime duality than

were this writer, Arkani-Hamed, and Finkelstein, c.f.: Appendix C.

Arkani-Hamed and Trnka continue as follows.

“[W ]e can now give the full definition of the amplituhedron[.] [...] The

amplituhedron lives in G(k, k + 4;L): the space of k planes Y in (k + 4)

dimensions, together with L 2-planes Li in the 4 dimensional complement
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of Y , [as in Figure 30.] [...] The amplituhedron An,k,L(Z) is the subspace of

G(k, k+4;L) consisting of all Y ’s which are a positive linear combination of

the external data[.] [...] The notion of cells, cell decomposition and canonical

form can be extended to the full amplituhedron. A cell Γ is associated

with a set of positive coordinates αΓ=(αΓ
1 , . . . , α

Γ
4(k+L)), rational in the C,

such that for α’s positive, C(α) = (D(i)(α), C(α)) is in G+(k, n;L). A cell

decomposition is a collection T of non-intersecting cells Γ whose images

under Y=C · Z cover the entire amplituhedron.”

In the opinion of this writer, Arkani-Hamed examined the unit cell and envisioned

Figure 30 as his own alternative ideation. After that, all of the language about,

“generalizing the notion of the inside of a triangle in a plane,” [203] (not excerpted)

was reverse engineered to develop a context for Figure 30 without being forced to

acknowledge the MCM or ideation from this writer. Indeed, Arkani-Hamed and Trnka

appear to go much farther than their peers in generating a paper trail to suggest their

own parallel ideation. To wit, after sufficiently generalizing the inside of a triangle,

Arkani-Hamed and Trnka state the above in which a decomposable Γ takes the place

of Σ+∪Σ−. The “entire amplituhedron” is presumably the analogue of the MCM

bulk cosmological lattice. The authors’ following claim (below) to be motivated by

the idea of the area of dual polygon is more evidence that the main goal of their paper

was to rephrase the MCM’s dual Σ± structure in the context of their own legitimate

research, and a smattering of nonsense given as excuse.

“While cell decompositions of the amplituhedron are geometrically inter-

esting in their own right, from the point of view of physics, we need them

only as a stepping stone to determining the form Ωn,k,L. This form was

motivated by the idea of the area of a (dual) polygon.”

It seems unlikely to this writer that hot-shot particle physicists at the Institute

for Advanced Study would have found spontaneous and profound inspiration in a

polygon’s dual having an area. In the opinion of this writer, the amplituhedron is

more evidence of the great worth of this writer’s ideas being immediately apparent

to everyone exposed to them, barring those less expert in physics. As with pseudo-

plagiaristic rewrites lacking proper acknowledgment of ideation in other sections, one

would survey work pertaining to the amplituhedron to determine if any new insights

were had and whether or not any of them might be useful for developing the MCM.
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57 Time Crystals

A time crystal is a physical system which is periodic in time. The MCM unit cell is an

example of a time crystal, and, indeed, the term “unit cell” is taken from the physics

of crystalline solids. Wilczek’s and Shapere’s time crystal papers [52, 204] appeared

on arXiv in February 2012, a year before the unit cell was published in [7]. Therefore,

we will consider the classical time crystal paper authored by Shapere and Wilczek,

and the quantum time crystal paper authored by Wilczek alone, as response papers1

to the time periodicity attributed to M̂3 near the end of 2011 [30, 40]. To Wilczek’s

credit, he seems only to analyze the possibilities related to M̂3 without attempting

to fabricate a parallel construction. He writes the following [52].

“Symmetry and its spontaneous breaking is a central theme in modern

physics. Perhaps no symmetry is more fundamental than time translation

symmetry, since time translation symmetry underlies both the reproducibil-

ity of experience and, within the standard dynamical frameworks, the con-

servation of energy. So it is natural to consider the question, whether time

translation symmetry might be spontaneously broken in a closed quantum

mechanical system. That is the question we will consider, and answer af-

firmatively, here. Here we are considering the possibility of time crystals,

analogous to ordinary crystals in space. They represent spontaneous emer-

gence of a clock within a time-invariant dynamical system. [...]

“Several considerations might seem to make the possibility of quantum

time crystals implausible. The Heisenberg equation of motion for an oper-

ator with no intrinsic time dependence reads〈
Ψ
∣∣Ȯ∣∣Ψ〉 = i

〈
Ψ
∣∣[H,O]∣∣Ψ〉 →

Ψ=ΨE

0 , (57.1)

where the last step applies to any eigenstate ΨE of H. This seems to

preclude the possibility of an order parameter that could indicate the spon-

taneous breaking of infinitesimal time translation symmetry. Also, the very

concept of ‘ground state’ implies state of lowest energy; but in any state of

definite energy (it seems) the Hamiltonian must act trivially. Finally, a sys-

tem with spontaneous breaking of time translation symmetry in its ground

state must have some sort of motion in its ground state, and is therefore

1These papers are very good, concise, and readable. The mathematical analysis therein is greatly contrasts the
mathematical content of [203] (Section 56) in that it cannot be considered math salad by any stretch of the imagination.
Wilczek’s and Shapere’s math is math as it is meant to be. Both papers are models of good work in fundamental
physics, excepting the likely lack of a due acknowledgment.
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perilously close to fitting the definition of a perpetual motion machine.”

In [204], Shapere and Wilczek state the following.

“When a physical solution of a set of equations displays less symmetry than

the equations themselves, we say the symmetry is spontaneously broken by

that solution.”

One understands that the three-fold process for M̂3 gives a context in which general

classes of solutions might display far more complex behavior than is immediately

apparent in H→Ω→A→H. Particularly, Wilczek’s attention to violation of time

reversal symmetry in [52] places the content of his paper later than the postulation

of M̂3 [30,40] but earlier than the postulation of the unit cell [7]. In 2012, M̂3 would

require violation of time translation symmetry for a particle at rest, presumably in

the ground state, to move in a periodic motion among {A,H,Ω}. This reflects the

t0 → tmax → tmin → t0 convention of [30, 40], but the subsequent introduction of

the chirological time spanning the unit cell in 2013 [7] sidesteps the main thrust of

Wilczek’s paper. Still, time crystals were affirmatively observed in 2016 [205], and we

have very much designed the unit cell to function like a clock: the ticking of M̂3 from

one observation to the next marks the chirological time. The constant cycling among

the branes of the unit cell during repeated observations of a system in its ground

state is very much like perpetual motion, but abstract perpetual motion in the bulk

of the unit cell may not be prohibited as is physical perpetual motion in H.
The point raised by (57.1) is that any order parameter, call it the expectation

value ⟨O⟩, which might indicate spontaneous symmetry breaking by a transition

from trivial into more complicated behavior is forbidden in the ground state due to

the expectation value of Ȯ being equal to zero. By imposing the overall symmetry

condition (periodicity) in the unit cell in the χ4 direction, we do not impose any

new symmetries on the xµ part of a Hamiltonian, so the extent to which Wilczek’s

work on symmetry breaking is in scope for the current iteration of the MCM must be

evaluated.

Following the wrap-the-x0-axis-around-cylinder program of the earliest incarnation

of the MCM [31], Wilczek cites a ring particle as an exception to his previous comment

regarding the preclusion of an order parameter (not excerpted.) For an angular

coordinate ϕ and a Lagrangian

L =
1

2
ϕ̇2 + αϕ , (57.2)

Wilczek makes the following remarks.
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“If α is not an integer, we will have〈
l0
∣∣ϕ̇∣∣l0〉 = l0 − α ̸= 0 . (57.3)

The case when α is half an odd integer requires special consideration. In

that case we will have two distinct states |α± 1
2

〉
with the minimum energy.”

The case of α being half an odd integer leading to two ground states deserves

closer study because it is qualitatively suggestive of the Σ± structure as well as the

structure of the fundamental fermions in the MCM particle scheme. Wilczek makes

other remarks regarding multiple ring particle wavefunctions behaving as Cooper

pairs. The utility of this language must also be evaluated for descriptions of the U±

universes’ particle descriptions. The language of Cooper pairs is well suited to the

picture of U± universes in simultaneous, isentropic cosmological bouncing.

Further hinting at an underlying ideation in the MCM,Wilczek writes the following

[52].

“It is interesting to speculate that a (considerably) more elaborate quantum-

mechanical system, whose states could be interpreted as collections of qubits,

might be engineered to traverse, in its ground configuration, a programmed

landscape of structured states in Hilbert space over time. [...] The a.c.

Josephson effect is a semi-macroscopic oscillatory phenomenon related in

spirit to time crystallization. It requires, however, a voltage difference that

must be sustained externally.”

One speculates that the more elaborate system is the one described by H→Ω→
A→H which became the unit cell and its accoutrements detailed in Section 1. The

Josephson junction is the main experimental protocol for measuring the fine structure

constant, and a comment of Shapere and Wilczek in [204] about higher powers of

velocities appearing naturally seems to refer to the third derivative application for

α−1
MCM = 2π + (Φπ)3. Another comment in [204] about converting space derivatives

into time derivatives seems to refer to the statement

Û ∝ ∂x , and M̂ ∝ ∂t , (57.4)

which was the main proposal for a new mathematical method before χ4 was introduced

in [7]. Therefore, one questions the words of Ledesma-Aguilar [206]:

“Back in 2012, Wilczek came up with a tantalizing idea. He wondered

if, in the same way that a crystal breaks symmetry in space, it would be
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possible to create a crystal breaking an equivalent symmetry in time. This

was the first time the idea of a time crystal was theorized.”

As stated above, it is to Wilczek’s credit that he has not fabricated some ficti-

tious path toward the idea of time crystals. He simply writes about the idea. Despite

Wilczek not making any claim toward independent ideation, however, his non-citation

to the MCM facilitates the above easy and natural misconception. Similarly, Wein-

stein never claimed to have formulated the theory of “Geometric Unity” (to the

knowledge of this writer) [207], but his failure to attribute the original ideation to

Tooker facilitated a profound and rampant misconception.

It remains true that time crystals were observed in 2016 [205], and the topic

is an active research area in fundamental physics today. The main results in the

field [205,208–210] must be surveyed and evaluated for applications in the MCM. The

main question will be whether the current structure of the MCM unit cell requires

the breaking of time translation symmetry, and, if it does, whether or not χ4 should

be useful as an order parameter characterizing the broken symmetry.

58 Cellular Automata

’T Hooft has written a book called The Cellular Automaton Interpretation of Quan-

tum Mechanics [211] which begins as follows.

“This book is about a theory, and about an interpretation. The theory,

as it stands, is highly speculative. It is born out of dissatisfaction with the

existing explanations of a well-established fact. The fact is that our uni-

verse appears to be controlled by the laws of quantum mechanics. Quantum

mechanics looks weird, but nevertheless it provides for a very solid basis for

doing calculations of all sorts that explain the peculiarities of the atomic

and sub-atomic world. The theory developed in this book starts from as-

sumptions that, at first sight, seem to be natural and straightforward, and

we think they can be very well defended.

“Regardless whether the theory is completely right, partly right, or dead

wrong, one may be inspired by the way it looks at quantum mechanics. We

are assuming the existence of a definite ‘reality’ underlying quantum me-

chanical descriptions. The assumption that this reality exists leads to a

rather down-to-earth interpretation of what quantum mechanical calcula-

tions are telling us. The interpretation works beautifully and seems to

remove several of the difficulties encountered in other descriptions of how
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one might interpret the measurements and their findings. We propose this

interpretation that, in our eyes, is superior to other existing dogmas.”

’T Hooft expresses the same interest in going beyond quantum mechanics which

motivates the MCM. Fortunately, one finds evidence in the literature [212, 213] that

’t Hooft was pursuing such ideas before the MCM was constructed. Indeed, ’t Hooft’s

references to the problem of information loss (Section 47) in [211,212] paint a picture

of his interests being well aligned with those of this writer. Regarding the specifics

of his model, he writes the following.

“A cellular automaton is an automaton where the data are imagined to

form a discrete, d-dimensional lattice, in an n= d + 1 dimensional space-

time. The elements of the lattice are called ‘cells’, and each cell can contain

a limited amount of information. The data Q(x⃗, t) in each cell (x⃗, t) could be

represented by an integer, or a set of integers, possibly but not necessarily

limited by a maximal value N. An evolution law prescribes the values of

the cells at time t + 1 if the values at time t (or t and t − 1) are given.

Typically, the evolution law for the data in a cell at the space-time position

(x⃗, t) , x⃗ = (x1, x2, . . . xd) , xi, t ∈ Z , (58.1)

will only depend on the data in neighbouring cells at (x⃗′, t−1) and possibly

those at (x⃗′, t− 2).”

The MCM exceeds ’t Hooft’s model in that the presence of a third derivative

will require data at least as far back as (x⃗′, t − 3) due to the backward difference

approximation of the third derivative. Retrocausality suggests data as far forward

as (x⃗′, t + 3) as well, but those would make for tricky calculations since those data

do not exist at time t. Overall, ’t Hooft’s cellular automaton is quite like the MCM.

His insights on such physics are likely to provide clarifications on the structure of

the MCM cosmological lattice. ’T Hooft’s lattice description raises an interesting

question, actually, in that we have not decided if all non-local lattice sites contribute

to local physics (as terms in a Laurent series, for example), or if we might restrict

interactions with |ψ; êkµ⟩ to |ψ′
λ; ê

k±n
ν ⟩ for 0≤ n≤ 3. For comparison, the derivation

of 10−4m as the characteristic length scale for new effects referenced only one higher

π̂-site and one lower one (Section 15).

’T Hooft explains the kernel of his model as follows [211].

“The price we do pay seems to be a modest one, but it needs to be men-

tioned: we have to select a very special set of mutually orthogonal states

241



Next Steps and the Way Forward in the Modified Cosmological Model

in Hilbert space that are endowed with the status of being ‘real’. This set

consists of the states the universe can ’really’ be in. At all times, the uni-

verse chooses one of these states to be in, with probability 1, while all others

carry probability 0. We call these states ontological states, and they form

a special basis for Hilbert space, the ontological basis [emphasis added ].

One could say that this is just wording, so this price we pay is affordable,

but we will assume this very special basis to have special properties. What

this does imply is that the quantum theories we end up with all form a

very special subset of all quantum theories. This then, could lead to new

physics, which is why we believe our approach will warrant attention: even-

tually, our aim is not just a reinterpretation of quantum mechanics, but the

discovery of new tools for model building.”

Unfortunately, ’t Hooft’s book trails this writer’s “Ontological Physics” [71] by

about five months. The main topic of that paper was that an observer has no way

to tell if his basis for quantum mechanics is on one level of aleph or another.1 One

notes that the extensive reference to Bell’s theorem in ’t Hooft’s introduction follows

“On Bell’s Inequality” [193] by that same five months. One might ask whether the

comments in ’t Hooft’s introduction regarding the theory being “completely right,

partly right, or dead wrong” refer respectively to the MCM model of particles [6], the

framework for levels of aleph [71], and the proposed workaround for Bell’s inequality

[193], all of which were published in 2013.2 Whatever the circumstances, ’t Hooft’s

program should be investigated. The following definitions from [211] are of particular

interest.

“We plan to distinguish three types of operators:

(I) beables : these denote a property of the ontological states, so

that beables are diagonal in the ontological basis {|A⟩, |B⟩, . . . }
of Hilbert space:

Oop|A⟩ = O(A)|A⟩ , (beable) . (58.2)

(II) changeables : operators that replace an ontological state by an-

1The first verbatim appearance of the phrase “ontological basis” in the MCM is traced to 2015 [161]. It is possible
that this writer had already had a look at ’t Hooft’s book when coining the term. However, the ontological basis cited
in [161] was a clear continuation of the work regarding ontology and bases begun in [71]. The verbiage was probably
found independently.

2As mentioned in Section 49, a number of unresolved conditions in the proposed workaround for Bell’s theorem
[193], and further evidence for the non-locality of χ4 suggest that the workaround may be infeasible, or “dead wrong.”
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other ontological state, such as a permutation operator:

Oop|A⟩ = |B⟩ , (changeable) . (58.3)

These operators act as pure permutations.

(III) superimposables : these map ontological states onto superposi-

tions of ontological states:

Oop|A⟩ = λ1|A⟩+ λ2|B⟩+ . . . .” (58.4)

To specify that which is of most interest, the time arrow states we have built from

M̂CM
∣∣bounce〉 = ∣∣t+〉+ ∣∣t−〉 , (58.5)

cast M̂CM as a “superimposable” operator.

59 Feynman’s Division of the Time Interval

In his spacetime approach to non-relativistic quantum mechanics, Feynman identifies

a shortcoming of his framework [68]. After showing that the action

S[x(t)] =

∫
dt L(x(t), ẋ(t)) , (59.1)

can be divided into small steps along any path as

S =
∑

S(xi, xi−1) , (59.2)

he writes the following [68].

“Actually, the sum in [(59.2)], even for finite [time steps ] is infinite and

hence meaningless (because of the infinite extent of time). This reflects a

further incompleteness of the postulates. We shall have to restrict ourselves

to a finite, but arbitrarily long, time interval.”

First, we have suggested that quantum equations of motion should differ from

their classical counterparts when the action along a path is maximized rather than

minimized (Section 1.5). Therefore, one might reformulate Feynman’s framework in

that picture so as to avoid a problem of divergent action. Under fractional distance

analysis, the sum in (59.2) will be proportional to ∞̂. One might also induce the
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superposition time |t⋆⟩ = |t+⟩ + |t−⟩ so that the integral over t in (59.1) yields one

negative action increment for every positive one so that the sum of small increments

should converge in the neighborhood of the origin. As the action of two different paths

through time, the corresponding equations of motion would describe two systems, one

of which might be taken as Feynman’s. One might develop a system for superpositions

of motion following from the superposition of time. Ultimately, this would be linked

to the metric’s definition as a sum of contributions from Σ±.

60 Path Integrals

The path integral measure∫
Dq(t) ≡ lim

N→∞

(
−im
2πδt

)N
2

(
N−1∏
k=1

∫
dqk

)
, (60.1)

represents an infinite-dimensional integral whose place in physics is not supported by

the highest level of mathematical rigor, yet it is used to compute amplitudes in the

form 〈
ψ2

∣∣e−iĤT ∣∣ψ1

〉
=

∫
Dq(t) exp

{
i

∫ t

0

dt′
1

2
mq̇2k

}
. (60.2)

The integral over the oscillating complex exponential function in (60.2) cannot be

guaranteed to converge, so, in general, one substitutes a complex integration variable

−it′ for the real variable t′ to obtain an exponentially damped integral which is known

to converge. Since substitutions of the form R→ C are still non-rigorous (under a

certain standard of rigor), one would seek to employ the many methods for complex

time listed in the previous sections to reformulate the path integral in an absolutely

convergent form from physical considerations alone without the need to introduce

an additional analytical step t→−it, commonly called Wick rotation. The desire to

obtain an effective Wick rotation for (60.2) would guide the choice of phase convention

among the various steps of M̂3.

61 The Golden Ratio in Black Holes

The factor of 2π inherent to

M̂3
∣∣ψ, π̂0

〉
= 2πΦ

∣∣ψ; π̂1
〉
, (61.1)

is ordinary in physics, but the coefficient’s proportionality to Φ is eccentric. The
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golden ratio is not encountered very often in physics. One of the few places where it

may be found is in the thermodynamics of black holes [214–218].1 Since we expect to

accrue powers of Φ in the MCM by successive transmissions through a black hole at

each ∅-brane separating successive levels of aleph, a study of the black hole context

for Φ is in order. In [214, 215], Davies has shown that the specific heat of a black

hole transitions from negative to positive when a certain ratio exceeds the golden ratio

(under certain conditions.) The transition between positive and negative specific heat

evokes the picture of changing time arrow direction at the Ω-brane where χ4
+ = Φ.

Furthermore, Cruz, Olivares, and Villanueva have found that Φ is associated with the

turning points of orbits around certain black holes [216]. Thus, a deep study of black

holes and their thermodynamics is in order.

62 Rydberg States

Rydberg states are highly excited atomic bound states near the ionization energy.

One of the least understood areas of atomic physics regards the structure of the

Hamiltonian near the ionization energy. Below it, the Hamiltonian is represented as a

diagonal matrix with a countable infinity of energy eigenvalues written as its diagonal

entries. Beyond countable infinity, however, the infinite discrete bound states |n⟩ give
way to a continuum of free particle states which cannot be enumerated with integers.

The Hamiltonian can no longer be represented as a true matrix above this energy, but

quantum theory provides little to no guidance on the transition from matrix-valued

Hamiltonians to ones with continuous analogues of rows and columns.

Numbers in the neighborhood of infinity are well suited to the study of the tran-

sition from bound states to free particle states at the ionization energy. One might

limit the number of atomic bound states by an appeal the Planck scale, but the

mathematical structure of the theory is such that for any n,m∈N with m>n, there

are an infinite number of Em such that En < Em < Eion. With n confined to the

neighborhood of the origin, it is not possible, in terms of the quantum number |n⟩,
even to begin to approach a state in the region of anomalous transition from discrete

to continuous energy eigenvalues. The arithmetic of ∞̂, however, should allow us to

write down the highest energy bound state as |∞̂ − 1⟩. In turn, this may facilitate

new methods for investigating the transition from bound states to free particle states

and thereby illuminate a nebulous region of quantum theory.

1In [219], Xu and Zhong report obtaining Φ in QM. A reference therein to El-Naschie’s E-infinity theory [220]
puts the result of [219] in scope for the MCM because αMCM was first obtained in 2011 following the program of
El-Naschie in [221].
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63 Two Time Models

The MCM is much like a two time model such as those described by Bars et al.

[222–226]. Bars writes the following [223].

“The physics that is traditionally formulated in one-time-physics (1T-

physics) can also be formulated in two-time-physics (2T-physics). The phys-

ical phenomena in 1T or 2T physics are not different, but the spacetime

formalism used to describe them is. The 2T description involves two ex-

tra dimensions (one time and one space), is more symmetric, and makes

manifest many hidden features of 1T-physics. One such hidden feature is

that families of apparently different 1T-dynamical systems in d dimensions

holographically describe the same 2T system in d+2 dimensions.”

Similarly, the MCM adds one spacelike and one timelike dimension as χ4
± to estab-

lish a system of holographic duality between boundary physics in H and bulk physics

in Σ±. Therefore, one would conduct a survey of 2T models and phrase the MCM in

those terms.

64 Time and Imaginary Time

Regarding the spacelikeness and timelikeness of χ4
±, one would undertake consid-

erations regarding duality between time in QFT and imaginary time in statistical

mechanics. Creutz and Freedman write the following [227].

“Feynman’s path integral formulation of quantum mechanics reveals a deep

connection between classical statistical mechanics and quantum theory. In-

deed, in an imaginary time formalism the Feynman integral is mathemati-

cally equivalent to a partition function.”

Like the duality between a Feynman diagram and the MCM model of dual uni-

verses, and like the AdS/CFT correspondence, this “deep connection” between the

path integral and the partition function is exciting despite any clear understanding

of what the connection is. Following the program to obtain the {−+++} signature
of Minkowski space from x0= ict, the {−+++±} signature in Σ± implies that there

must exist an imaginary phase between χ4
± relative to some affine parameter. If one

is like time, the other is like imaginary time. In terms of the metric signature which

results from this relative phase, they are spacelike and timelike, so the imaginary time

representation will give us cause to treat both of χ4
± like time, regardless of the phase.
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The spacelikeness of one or the other of χ4
± was mentioned in previous sections as

a potential impediment to equations for time-parameterized motion across the unit

cell, but the imaginary time provides a convenient workaround.

The extensive body of literature detailing the connections between time in QFT

and imaginary time in statistical mechanics, including t→−itWick rotations, should

provide valuable insights into the structure of the unit cell and its cosmological lattice.

65 String Theory

A survey of string theory is in order! Particularly, the new holographic duality be-

tween the surface H and the bulk spaces Σ± should be associated, to the degree that

it is possible, with the AdS/CFT correspondence [59] whose context in string theory

is well studied in a large body of literature. As a first jump into string theory for the

MCM, consider Zwiebach’s remarks in [228].

“Despite the large number of particles it describes, the Standard Model

is reasonably elegant and very powerful. As a complete theory of physics,

however, it has two significant shortcomings. The first one is that it does not

include gravity. The second one is that it has about twenty parameters that

cannot be calculated within its framework. Perhaps the simplest example

of such a parameter is the dimensionless (or unit-less) ratio of the mass of

the muon to the mass of the electron. The value of this ratio is about 207,

and it must be put into the model by hand. [...] The first sign that string

theory is rather unique is that it does not have adjustable dimensionless

parameters. As we mentioned before, the Standard Model of particle physics

has about twenty parameters that must be adjusted to some precise values.

A theory with adjustable dimensionless parameters is not really unique.

When the parameters are set to different values one obtains different theories

with potentially different predictions. String theory has one dimensionful

parameter, the string length ℓs. Its value can be roughly imagined as the

typical size of strings.”

One would begin a foray into the exciting field of string theory by supposing

that the lengths of strings or the dimensionless ratios of strings’ lengths should be

proportional to the numbers in the ontological basis.1 The S-, T-, and U-dualities of

string theory should be contextualized as dualities inherent to the unit cell and the

1In a video lecture series on string theory, Susskind supposes that there might exist a string of length π before
greatly demurring regarding the origin of that idea. Unfortunately, this lecture series appears to have been deleted
from the internet, and a citation cannot be offered.
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cosmological lattice spanning various levels of aleph. Not strangely, the dimensionality

of famous 10- and 26-dimensional string theories, and 11D M-theory, is natural in the

unit cell. The two 5D theories in Σ± give ten dimensions and adding x0 makes 11.

Counting

χA+ , χA− , xµ+ , xµ− , xµ , and χµ∅ , (65.1)

shows 26 degrees of freedom when Ω and A are not separated by a 5-space, i.e.: when

χ∅ ̸=χA∅. One would establish a link between 10- and 26D string theories by noting

that the coordinates in the bounding branes should be determined by holographic

duality with the coordinates in Σ±.

Sen has theorized a process in string theory called tachyon condensation which

is likely to have applications toward the MCM [229]. The superluminal quality of

tachyons is directly applicable to a model of χ4 as a non-local variable: one whose

information and correlations are not restricted by the speed of light, as in Section 49.

Furthermore, the thermodynamic process of condensation should introduce an equa-

tion of state which the MCM has so far ignored. Such physics may make it possible

to describe the change of basis operation between chirological and chronological time

arrow states as a thermodynamic phase transition from propagation in the bulk of

Σ± to confinement in H.

66 Fast Radio Bursts

This problem resides in the MCM’s early venue: cosmological phenomenology. It is

suggested that fast radio bursts [230,231] should be modeled as black hole lightning.

Petroff, Hessels, and Lorimer write the following [231].

“[P ]ulsar surveys have led to the serendipitous discovery of fast radio

bursts (FRBs.) While FRBs appear similar to the individual pulses from

pulsars, their large dispersive delays suggest that they originate from far

outside the Milky Way and hence are many orders-of-magnitude more lu-

minous. While most FRBs appear to be one-off, perhaps cataclysmic events,

two sources are now known to repeat and thus clearly have a longer-lived

central engine. [...] With peak flux densities of approximately 1 Jy, this

implied an isotropic energy of 1032 J (1039 erg) in a few milliseconds or a

total power of 1035 J s−1 (1042 erg s−1.) The implied energies of these new

FRBs were within a few orders of magnitude of those estimated for prompt

emission from GRBs and supernova explosions, thereby leading to theo-

ries of cataclysmic and extreme progenitor mechanisms. [...] Currently, the

248



Jonathan W. Tooker

research community has no strict and standard formalism for defining an

FRB, although attempts to formalize FRB classification are ongoing [...]. In

practice, we identify a signal as an FRB if it matches a set of loosely defined

criteria. These criteria include the pulse duration, brightness, and broad-

bandedness, and in particular whether the [dispersion measure] is larger

than expected for a Galactic source.”

The dynamical origin of large-scale charge distributions leading to terrestrial light-

ning are not understood. EM theory suggests that large-scale charge formations

should not appear in the atmosphere because they would seem to neutralize them-

selves at small-scale. However, lightning is known to occur on a scale which is only

possible given unexplained large-scale charge distributions. It is also known that

lightning is a radio source. Therefore, one might suppose that the mechanism for

the anomalous assembly of large-scale charge distributions between a planet and its

atmosphere is also in play between a black hole and its accretion matter. The famous

no-hair theorem (which is a conjecture) permits black holes to have only three observ-

able parameters, one of which is electric charge. In the absence of a dense atmosphere,

the amount of charge needed to induce dielectric breakdown in the local neighborhood

of a black hole is expected to be very large. Therefore, it is reasonable to suppose

that “cataclysmic” and “one-off” FRB events are black hole lightning. Dielectric

breakdown of accretion matter is one possible mechanism. Dielectric breakdown of

the quantum vacuum is an exotic mechanism which might be investigated.

As a work in phenomenology, one would assemble known radio models of terres-

trial lightning and then compute the characteristics of black hole lightning needed to

produce the observed radio fluxes at cosmological distances. A few known repeating

FRB sources may be understood as black hole lightning storms. Planetary storm

clouds are known not to totally discharge in single lightning bolts, so some constraint

mechanism would be introduced to explain the possible incomplete electric discharge

of a black hole upon a single FRB event.
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Appendix A: The Origin of M̂3

The original motivation for M̂3 was only a requirement for some third order operator

needed to generate the (Φπ)3 term appearing in α−1
MCM = (Φπ)3+ 2π. However, the

third order operator became independently useful, as in Section 1 and elsewhere. For

breadth, this appendix will fully review the original development of M̂3 in which it

was conceived only as a way to force a cubed term into a theory where cubed terms

usually do not appear. The first statement of M̂3 appeared in [30]. This was published

before the construction of the unit cell [7] whose structure provides the current best

framework for understanding M̂3.

What follows is the first statement of requirements for M̂3, as given in [30]. For

consistency with present notations, the original symbol ℵ from [30] is replaced with

A. Following the excerpt, we will carefully review what was written.

“If the observer’s proper time is t0[,] we can write the following with

certainty.

Past := [tmin, t0)

Present := [t0] (A.1)

Future := (t0, tmax] .

“In General Relativity there is no inertial frame[,] but one is assumed[,]

and L2 is the vector space of this approximation. Unitary evolution [of

charged particles ] in this space is characterized by orders of [the fine struc-

ture constant ]. This number should be a direct prediction of a complete

Quantum Theory. A finely structured theory is needed, one which does not

reside in the Hilbert space H alone. To be precise, define a Gelfand triple

{A,H,Ω} where each set contains a Minkowski picture S.

A =
{
xµ− ∈ S

∣∣tmin < t < t0
}

H =
{
xµ ∈ S

∣∣t = t0
}

(A.2)

Ω =
{
xµ+ ∈ S

∣∣t0 < t ≤ tmax

}
.

“The Minkowski diagram gives a clear illustration. The past and future

light cones define the half spaces A and Ω[,] and the hypersurface of the

present is a delta function δ(t − t0). The present is defined according to

the observer[,] so it is an axiom of this interpretation that the observer is
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isomorphic to the δ function. Our task is how to reconcile calculations in H
with the actual dynamics of Nature proceeding around us and through us

in ℵ and Ω. To this end[,] define an operator M̂3 that is non-unitary and

complimentary to the unitary evolution operator Û .

Û : H 7→ H M̂3 : H 7→ Ω 7→ A 7→ H (A.3)
and

Û := ∂x , M̂3 := ∂t .”

The above appeared in [30] only as a segue into the main result of the short paper

titled “Derivation of the Fine Structure Constant.” While terse brevity is a hallmark

of an academic writing style, the brevity of the segue has been cited as rendering

the entire paper nonsensical. The purpose of this appendix is, in part, to refute such

claims. To that end, the reader is encouraged to understand that these few words

above, excerpted from the beginning of [30], were written only to introduce the main

result that (Φπ)3+ 2π≈137 very nearly replicates the accepted value for α−1
QED. This

result does not hinge on any of the material quoted above, yet detractors cite the

abrupt progression through the introduction as if it nullifies the main result of the

paper whose title is as stated: derivation of the fine structure constant.

The second sentence of the excerpt about the assumption of inertial frames means

that although flat space does not exist, it is assumed to exist. The L2 space of position

space wavefunctions is usually assumed on a flat spacetime background. One does

quantum mechanics in an implicit Lorentz frame, even if general relativity is not

considered. In QED, a relativistic extension of quantum mechanics, α characterizes

the interaction between photons and charged particles. Various generating functionals

for amplitudes of processes involving charged particles may be decomposed as power

series in α. The unitary evolution of such particles is foremost among those things

which are described with quantum theory, as in the excerpt’s third sentence. The main

purpose of these remarks is not to derive the FSC. Instead, they are a segue into what

would otherwise be a single line reporting the paper’s main result: (Φπ)3 + 2π≈137

may be of interest to those who wonder about where α comes from.

Dirac said finding the origin of this number is, “the most important unsolved

problem in physics,” and Feynman wrote the following [87].

“It is a simple number that has been experimentally determined to be

close to 0.08542455. (My physicist friends won’t recognize this number, be-

cause they like to remember it as the inverse of its square: about 137.03597

with about an uncertainty of about 2 in the last decimal place. It has been a

mystery ever since it was discovered more than fifty years ago, and all good
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theoretical physicists put this number up on their wall and worry about

it.) Immediately you would like to know where this number for a coupling

comes from: is it related to pi [emphasis added ] or perhaps to the base of

natural logarithms? Nobody knows. It’s one of the greatest damn myster-

ies of physics: a magic number that comes to us with no understanding by

man. You might say the ‘hand of God’ wrote that number, and ‘we don’t

know how He pushed his pencil.’ We know what kind of a dance to do

experimentally to measure this number very accurately, but we don’t know

what kind of dance to do on the computer to make this number come out,

without putting it in secretly!”

While all good physicists worry about this number whose origin may be related to

π, many readers of [30] expressed no interest in it, preferring instead to fixate on a few

of the tangential introductory remarks. The main purpose of [30] was to demonstrate

that a certain “dance” with a third order operator does the trick quite nicely. At

the end of the paper, it was suggested that if this dance is real and not wrongly

contrived, then there should exist observables correlated with delay. The main point

of the paper, however, was to report that there exists a previously unconsidered type

of dance which outputs the requisite number to within an accuracy that can probably

be reconciled via theoretical restructuring, as in Section 1.9.

As is usual in physics, there was a segue giving some context at the beginning of

the paper. As is not usual in physics, detractors cite the segue as if it was something

other than a few brief words given for context.1 Furthermore, the delay experiment

which was suggested to support the context returned an affirmative confirmation [32].

If the experimental prediction had not been confirmed, the paper’s main result would

have stood on its own: (Φπ)3+2π might be of interest to those interested in the “most

important unsolved problem in physics.”

The next item in the excerpt regards the introduction of rigged Hilbert space.

The reasons for doing quantum theory in rigged Hilbert space are well known. For

instance, de la Madrid writes the following [60].

“Nowadays, there is a growing consensus that the [rigged Hilbert space],

rather than the Hilbert space alone, is the natural mathematical setting of

Quantum Mechanics.”

1A certain formula for the Riemann ζ function was given at the beginning of [49] wherein the architecture of the
neighborhood of infinity and an eventual formal negation of the Riemann hypothesis were developed. Many readers
of [49] fixated on the lack of a caveat clarifying that the formula was not defined everywhere on the complex plane
while completely ignoring the paper’s main result. Then, as in [30], the limitation on the domain of validity for that
formula had absolutely no impact on the paper’s topic or main results. It is not required to reinvent the wheel each
time a scientific paper is written, and the formula was presented only to sketch a setting for the main result.
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Nothing new about rigged Hilbert space is written in [30]. Position eigenstates

don’t exist in Hilbert space, but definite location at a point in Minkowski space S

can only be represented in quantum theory with a position eigenstate. Since one uses

such eigenstates (and similar) very often in the course of doing quantum mechanics,

one would adopt a state space which does not preclude their existence.

One valid criticism of [30] regards a notational deficiency. We fail to distinguish

with separate labels the state spaces in the RHS from the subsets of S identified

with the past, present, and future. This deficiency has been remedied in subsequent

work with the addition of a tick mark to distinguish {A′,H′,Ω′} from the manifolds

A, H, and Ω. In [30], it is clear that {A,H,Ω} is a rigged Hilbert space, and it is

clear that the given A, H, and Ω are subsets of Minkowski space. However, the non-

ticked notation relies on the reader’s ability to differentiate between state spaces and

geometric manifolds. The statement that each set (a state space is a set of vectors

equipped with an inner product) contains a Minkowski picture is imprecise. The state

spaces are said to contain the coordinate spaces because the coordinate spaces are

the domains of the functions which represent the states. It might have been stated

more clearly that if ψ is a function of xi− ∈A, then ψ ∈A′. Still, the paper’s main

result was that a third order operator can output the value (Φπ)3 required for αMCM,

and that observed delay correlations would lend further support to the way M̂3 was

hypothesized. The distinction of the domain of each function space was not very

important for the main result, and the detail was glossed over.

Moving on to the next item in the excerpt, the hypersurface of the present is

given by δ(t − t0), as per usual. Some readers of [30] insist that they cannot, could

not, or would not understand the obvious relationship between the Dirac δ function

and a surface selected from a bulk. It is claimed that the absence of further words

such as “given by” overwhelmed and destroyed their knowledge of the only possible

relationship between a δ function and a surface. Regarding the usual ability of a

scientific reader to infer, consider the definition of the Dirac δ function published by

Proceedings of the Royal Society of London in 1927 [232].

“One cannot go far in the development of the theory of matrices with

continuous ranges of rows and columns without a notation for that function

of a c-number x that is equal to zero except when x is very small, and whose

integral through a range that contains the point x=0 is equal to unity. We

shall use the symbol δ(x) to denote this function, i.e.: δ(x) is defined by

δ(x) = 0 , with x ̸= 0 , (A.4)
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and ∫ ∞

−∞
x δ(x) = 1 .” (A.5)

None of Dirac’s readers reached this definition and stopped with a declaration,

“This is nonsense! Matrices have discrete rows by construction, so there is no such

thing as a matrix with continuous rows.” None stopped reading and put Dirac’s paper

into the trash declaring, “The integral symbol only has meaning when it appears with

the differential of an integration variable such as dx. Clearly this fool Dirac, who

does not understand even the most basic principles of calculus, is wasting pages in

the journal where I have found his paper!” It is suggested that the main difference

by which Dirac’s readers were able to infer a dx in the integral over δ(x), while

others were not able to infer the relationship between a δ function and a surface, is

that Dirac’s readers were reading with an intention to understand while others were

reading about the MCM with an intention not to understand, and to say that the

MCM is worthless, and that the author is a poor pretender, or worse.

The hypersurface of the present is given by a δ function in the way that one might

select the volume V of all of space from the volume V T of all of spacetime. One

inserts δ(t− t0) into
∫
d4x. The selection of such surfaces by δ functions is standard,

and this is what was meant in [30] when it was said that the hypersurface of the

present is a δ function, rather than that it is given by one. What we usually do

with the hypersurface of the present in QM is to integrate over all of it with d3x, and

quantum mechanics usually ignores d4x. However, the dance prescribed in [30] is such

that we need to differentiate among the d3x at various x0. The intended readership

for [30] was assumed to have some familiarity with the physicist’s basic mathematical

toolbox, but many detractors have admitted no such familiarity. While it is true

that the surface is not the δ function itself identically, the reader is given a choice by

the brevity. They may understand the relationship between surfaces and δ’s, or they

may choose not to. Furthermore, the hypersurface of the present being given by a δ

function has almost nothing to do with the paper’s main result. It is only mentioned

to compare the present moment’s quality of singular thinness to the extended bulk

of the past and future, and to complement, thereby, the stated division of

Past := [tmin, t0) , Present := [t0] , and Future := (t0, tmax] . (A.6)

The observer is said to be isomorphic to the δ because the δ that selects the hyper-

surface of the present is comoving in spacetime with the observer. If the observer’s

proper time is tnow, that shows up in the stated mechanism as δ(t− tnow). Isomorphic

means “corresponding or similar in form and relations,” and the association of the
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observer at proper time tnow with δ(t− tnow) is exactly that.

Now we have worked through the introductory remarks in [30]. The remainder

of the excerpt proposes the M̂3 operator whose non-unitarity and functioning are

discussed in Section 1 of the present paper. After briefly explaining the relationships

among {A,H,Ω}, the mathematical property of M̂3 was stated as

M̂3 : H′
1 → Ω′ → A′ → H′

2 . (A.7)

It was suggested that the mechanism proposed for M̂3 would result in observable

delay correlations, and these were observed in the BaBar data forthwith [32]. The

fixation of detractors on the terseness of [30] belies a low comprehension if not a

malicious intent to wrongfully naysay. A positive reader should have come away with

the understanding that α−1
MCM can be extracted from some rather ordinary quantum

mechanical formalism, that α−1
MCM and α−1

QED differ by about 0.4%, and that observed

delay correlations were expected to serve as experimental support. In the remainder

of this appendix, we will continue a critical review of [30], and the intention will be

to address all possible criticisms that a non-positive or overly pedantic reader might

seize upon in lieu of the main results.

To contextualize the FSC result itself, first consider that the MCM is such that

the universe is like a quantum particle. Since the universe contains smaller quantum

particles of its own, an apparent scale invariance and self-similarity in the model

directed this writer’s attention toward fractal models of cosmology. Coming quickly

to the prolific body of work due to El Naschie, a formula was encountered for the

fractal dimension of a Cantorian spacetime [221]:

D = 4 + φ3 , where φ =
|1−
√
5|

2
. (A.8)

This formula profoundly attracted this writer’s attention, as described in [96]. The

formula

α−1
MCM = 2π +

(
Φπ
)3 ≈ 137 , (A.9)

was quickly obtained by the ansatz method. The example of the 2D box given in

[30] was devised to support an explanation for where such a number might come

from. The sides of the box—a duration D and a length L—were chosen to satisfy

ΦD= 2L. Written as D= 2φL, this is in the same general form of C = 2πR giving

the circumference of a circle in terms of the radius.1 This is somewhat interesting as

1In Section 1.2.4, we assumed that H was spanned by one unit of time so that we could use the locations of A
and Ω at χ4

−=−φ and χ4
+=Φ to identify the unit cell with a pair of golden rectangles of dimensions Φ×1 and 1×φ.
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a geometric confluence, and it was stated as such in [30]. However, it went unstated

that (A.9) was conceived as a circularization of the rectangular (A.8), meaning 4→2π

and ϕ3→ (Φπ)3. In that way, in the context of the author’s thinking, the confluence

of the dimensions of the 2D box mimicking C = 2πR was slightly more significant

than what was recorded in [30].

The inclusion of t for one of the sides of the box was a hard concept because t is

only used for time evolution in quantum mechanics. States in Hilbert space do not

depend on t as they do the x associated with the L side of the box. However, the

subsequent introduction of the χ4 variables as a second form of time sidesteps the

problem of double usage for t. The 2D box was eventually replaced by the unit cell,

and the box spanned by space and time later became important for the MCM particle

scheme, as in Section 0.3 and [6]. Still, the general idea for an operator on a state

in a box which should return α−1
MCM as a characteristic value remains as it was, as in

Section 1.9.

Continuing with a review of the material in [30], the well-known wavefunction of

a particle in a 2D box with sides D and L is

ψnm(x, t) =
2√
DL

sin
(nπx
L

)
sin

(
mπt

D

)
. (A.10)

A box spanned by one dimension of space and one dimension of time is a 2D universe,

so putting the particle in this box was like putting it into a finite model of the universe.

Likewise, one of the main purposes of the modern unit cell is to put a universe, possibly

even a universe extending infinitely far in its physical coordinates, inside an abstract

box of finite dimension. Having fixed the box’ aspect ratio D = 2φL in [30], the

duration was set to φ. The chosen dimensions are such that

ψnm(x, t) = 2
√
2Φ sin

(
2nπx

)
sin
(
Φmπt

)
. (A.11)

This is not a simultaneous eigenvector of ∂x and ∂
3
t as would be required for equation

(19) in [30]:

Υ̂ψ11 =
(
∂x + ∂3t

)
ψ11 = α−1

MCM ψ11 , (A.12)

where Υ̂ = ∂x + ∂3t reflects Û := ∂x and M̂ := ∂t. Instead, these partial derivatives

operate on (A.11) as

∂xψ11(x, t) = 2πϕ1(x, t) , and ∂3t ψ11(x, t) =
(
Φπ
)3
ϕ2(x, t) , (A.13)

However, x0 rightfully spans infinitely far into the past and infinitely far into future, so we would assume that the
length of the H-brane in the x0 direction is 2∞̂. Assuming that the chronological and chirological coordinates are on
different levels of aleph scaled by ∞̂, D=2 ∞̂ in H and L=Φ ∞̂ in Σ+ satisfy the ratio D = 2φL.
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where ϕ1 and ϕ2 demonstrate that ψ11 is incompatible with the eigenvalue equation

in (A.12). The exponential, not the sine, is the eigenfunction of the derivative. Since

α−1 is observable, quantum theory suggests that it should be an eigenvalue of an

operator’s eigenvector, but this detail was neglected in [30].

The equation Υ̂= Û+M̂3 was written in [30], but we have used it as Υ̂=∂x+∂
3
t .

This could have been better clarified. The statement Û :=∂x refers to

Û(t, t0) = exp

{
− iĤ

(
t− t0

)
ℏ

}
= exp

{
− i
(
t− t0

)
ℏ

[
p̂2

2m
+ V̂ (x̂)

]}
, 1 (A.14)

wherein Ĥ depends on p̂∝∂x. To get 2π out of ψ as needed for 2π + (Φπ)3, we have

operated with ∂x. Since Û uses e∂
2
x , there would be an implicit square root somewhere,

and a logarithm would be required to use Û for returning 2π. For instance, equations

(7) and (8) in [30] were

Û
∣∣ψ〉 := ∂x

(
2nπx

)
= 2nπ (A.15)

M̂
∣∣ψ〉 := ∂t

(
Φmπt

)
= Φmπ ,

but the time evolution operator Û (given a time-independent Hamiltonian and an

energy eigenstate ψE) is such that

Û
∣∣ψE〉 = e−iEt/ℏ

∣∣ψE〉 . (A.16)

The := symbol has been used in [30] to suppress the fact that the value for α−1
MCM

would probably appear as an exponent. As [30] is written, all such details pertaining

to an exact arithmetic are relegated to the catch-all := symbol. However, the hard

functioning of the main result is given by the strict equality

α−1
MCM = 2π +

(
Φπ
)3

. (A.17)

The context of the 2D box was reverse engineered to fit this result. Similarly, Schrö-

dinger’s initial publication of his equation [81] gave its context as being derived from

the stationary action principle. That reasoning for coming to the Schrödinger equa-

tion has not stood the test of time even while the equation itself has survived. Like-

wise, the context of the 2D box proffered in [30] is no longer an attractive path toward

arriving at the equation for α−1
MCM. Even then, the box is important for this appendix.

The operator Υ̂ in (A.12) requires a simultaneous eigenfunction of ∂x and ∂3t , and

1This form of Û is developed in Appendix B.
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one such function is

Ψnm(x, t) = Aeiπ(2nx+Φmt) . (A.18)

Ψnm would be obtained by rescaling x and t to be small relative to the dimensions of

the box. Far from the edges of the universe-as-a-box, the solutions are plane waves

in an ordinary way of approximating physics.1 In this case, one might have simply

supposed plane waves with the given wavenumber and frequency without invoking the

context of a box at all. It is true that free particle plane wave solutions are essentially

the opposite of particle-in-a-box solutions (Section 1.7.3), but it also true that plane

waves in the universe are ultimately constrained to be particle in a box states due

to the L2 condition of square integrability.2 In any case, observable operators have

real-valued eigenvalues, and (A.18) does the trick with operators −i∂x and −i∂3t :

Υ̂ = −i
(
∂x + ∂3t

)
=⇒ Υ̂Ψ11 =

[
2π +

(
Φπ
)3]

Ψ11 . (A.19)

Overall, the heavy reliance on the := symbol in [30] was purposed to avoid tangen-

tial details. The unstated point in presenting the 2D box was that it was reasonable

to expect that a sufficient eigenstate should exist due to the low algebraic complexity

of the formula for α−1
MCM. Noting that even the inclusion of this present paragraph

would have increased the word count of [30] by 10% or so, certain details were omit-

ted. To facilitate the structure of the paper, a toy model was constructed wherein one

obtains α−1
MCM as the eigenvalue of an operator. In hindsight, it may have been better

to directly suppose the plane waves in (A.18) than to try to extract the geometric

setting of a box. On the other hand, the initial ideation for a box led to the box-like

structure of the MCM unit cell which has been useful for continued inquiry.

Regarding the excerpt below, non-standard language around (A.20), (A.21), and

(A.22) also deserves attention.

“We have defined a unitary time evolution operator and a non-unitary

one. Assume the correct evolution operator is the sum of a unitary part

1Confinement to a finite volume induces quantization on a state’s wavenumber, but for applications in which the
wavelength is much smaller than the dimension of the box, which is also called being far from the edges, one often
ignores the quantization to suppose that the state has a continuous wavenumber and extends infinitely far. This
approximation is generally valid when the range of wavenumbers considered is such that the wavelength is everywhere
small compared to the confinement dimension, and when the region under consideration is far from the edges of the
box. For visualization purposes, one understands that increasing the quantum number on a particle-in-a-box state
adds maxima to the sinusoidal wavefunction. When the number of maxima is very large, it is often safe to assume that
the quantum number becomes continuous. It is also safe to ignore the non-plane wave boundary condition that the
states must vanish at the edges of the box if one is considering a region where the wavefunction is separated from the
boundary by a large number of local maxima. Thus, one assumes plane waves in an ordinary way of approximating
physics.

2This case for assuming plane waves follows the conditions in the previous footnote. The universe is large compared
to a typical de Broglie wavelength.
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and a non-unitary part so that Υ̂= Û + M̂3

〈
ψ;x, t

∣∣Υ̂∣∣ψ;x, t〉 = 〈ψ;x, t∣∣Û∣∣ψ;x, t〉+ 〈ψ;x, t∣∣M̂3
∣∣ψ;x, t〉 (A.20)〈

ψ
∣∣M̂3

∣∣ψ〉 := ∫ ψ∗(t) δ(t) ∂3t ψ(t) dt , (A.21)

[w ]here the inclusion of δ(t) fixes the observer at [t=0]. The integral over

all times will trace a path through A, H, and Ω. To use the integrand

f(t)δ(t)[,] we must employ the familiar method from complex analysis.∫ ∞

−∞
δ(t) f(t) dt =

∫ tmax

0

f(r, 0) dt+

∫ π

0

f(∞, ϕ) dϕ+

∫ 0

tmin

f(r, π) dt .

(A.22)

This method is an outstanding logical proxy for the process [Present→
Future→Past→Present ].”

The usual definition for an expectation value is〈
Q̂
〉
=

∫
d3xψ∗(x) Q̂ ψ(x) , (A.23)

but the excerpt contains 〈
M̂3
〉
:=

∫
dt ψ∗(t)δ(t)∂3t ψ(t) . (A.24)

Keeping in mind that t has been replaced with χ4 in subsequent work, the purpose

of this non-standard definition of the expectation value was to induce the piecewise

structure on t which is now found in {χ4
+, χ

4
−, χ

4
∅}. The := symbol is used in (A.24)

to highlight only the new MCM part of the integral while ignoring the spatial part

that should take its usual form, as in (A.23). If the δ(t) appearing in (A.24) is the

Dirac δ function, we obtain〈
M3
〉
:=
(
Φπ
)3 ∫

dt ψ∗
11(t)δ(t)ψ11(t) =

(
Φπ
)3∣∣ψ(0)∣∣2 = (Φπ)3 , (A.25)

as expected. There is no need for the separated path of integration in (A.22).

At the time of the publication of [30] in 2011, this writer was under the wrong

impression that there exists a class of spike functions called δ functions, one which is
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named after Dirac. A primitive definition of the Dirac δ function is

δ(x− x0) =

 ∞ for x = x0

0 otherwise
, (A.26)

but the δ(t) appearing in (A.24) was purposed as a generalized spike function

δ̄(x− x0) =

 ∞ for x = x0

1 otherwise
. (A.27)

It is entirely reasonable that a reader would assume that δ(t) is the Dirac δ function

from which the use case for a vanishing path of integration at infinity as in (A.22)

does not follow in an intuitive way. Now we will describe how the path of integration

in (A.22) follows from (A.27).

The expectation value for M̂3 requires an integral over all of time, but we have

inserted a pole at t = 0 with δ̄(0). Rather than to revise the definition of the ex-

pectation value, the pole is meant to separate time into the three regimes of Past,

Present, and Future defined at the outset of [30]. A common method in physics for

dealing with a pole along the path of integration in integral I is to move the pole

off of the path by the addition of an imaginary infinitesimal somewhere. Then one

forms a closed path integral with I and another path of integration at infinity along

which the L2 condition makes the integrand vanish at every point. Cauchy’s residue

theorem is applied to solve for I + 0 as 2πi times the residue at the pole.

The meaning of (A.22) is that the closed path of integration in the Cauchy formula

may be parsed as the process for M̂3 when we integrate as follows.

� From t=0 to tmax=∞ as Present→Future.

� From tmax along a path at infinity to tmin=−∞ as Future→Past. (This path at

infinity is now associated with the transit of ∅ between Σ±.)

� From tmin back to t=0 as Past→Present.

Although the unit cell was not constructed when [30] was published, these three

paths along the closed Cauchy curve are like H → Ω, Ω → A, and A → H. The

current parameterization of this path in terms of χ4 between two H-branes may yet

be simplified with Cauchy’s theorem and a pole located in or near H or ∅. A winding

number is easily added to the Cauchy curve to identify the integration’s start and

endpoints with two different instances of H rather than with each other.
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Aside from presenting the main result, the remainder of [30] develops the algebra

from which Einstein’s equation would be derived almost a year later in [3]. It was

emphasized heavily in subsequent work that the MCM derivation of Einstein’s equa-

tion may appear to have been goal-sought, or reverse engineered, but no such thing

was the case. The algebra in which Einstein’s equation appeared was assembled long

before the GR result was found and reported in [3]. The comment on Palev statis-

tics in [3] reflects a comment made to this writer by Finkelstein (Section 33) who

had gone into professor emeritus status shortly before this writer was accepted as a

PhD candidate and awarded a prestigious fellowship at Georgia Tech. The possible

relevance of Palev statistics was never investigated, and it may have been a monkey

wrench thrown into the works by a notorious and miserly detractor of the MCM.

As one further remark on the algebra developed in [30], the reader is invited to

notice that [30]’s Equation (18) is a rich algebraic structure indeed. It is not cited

as a thesis in the main body of this paper, but this algebra should be reconstructed

in the language of Galois theory, if possible. The structure is quite rich. This writer

has never seen another like it, but that may reflect this writer’s limited exposure to

abstract algebra.

The conclusion of [30] gives a suggestion to look for delay correlations in particle

collider data.

“If variations in α can be detected by varying the delay between an event and

its measurement in an experimental apparatus[,] that will strongly support

the ideas presented here.”

Very soon after this prediction was published, the BaBar collaboration discovered

time reversal symmetry violation through delay correlations in their previously col-

lected data [32]. In earlier work on the MCM [31], dark energy had been described

as a delay correlation of sorts, and the algebraic structure around [30]’s equation

(15)—the φ∗∗ ̸=φ property of C∗
±—was meant to break time reversal symmetry. Par-

ticularly, if the space of states in the past is different than the space of states in

the present, it was suspected that the duration between an event and its observation

would have observable correlations. Since the experimental quantity in context was

the FSC, it was suggested that the delay correlations would manifest in its observed

value.

The following is a summary of the prominent issues with the original formulation

in [30].

� The well-known state ψ of a quantum particle in a 2D infinite square well was
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employed as

Υ̂
∣∣ψ〉 = (∂x + ∂3t

)∣∣ψ〉 = α−1
MCM

∣∣ψ′〉 . (A.28)

The tick mark showing that ψ is not an eigenstate of Υ̂ was omitted. The state

ψnm =
2√
LD

sin
(nπx
L

)
sin

(
mπt

D

)
. (A.29)

of a 2D particle in a box spanned by x and t in respective dimensions L and D

(length and duration) is not an eigenstate of ∂x + ∂3t . Since α is observable, the

general axiomatic framework of QM suggests that a Hermitian operator should

return α−1 when acting on an eigenvector. The given ψnm fails to satisfy an

eigenvalue equation with Υ̂ as defined.

� α−1
MCM is returned only upon choosing L=1/2 andD=2φL. The fixed dimensions

of the box are associated easily enough with the fixed abstract dimensions of the

unit cell, but no explanation for this ratio was proposed.

� α−1
MCM is returned as the nm=11 eigenvalue of ψnm, but there is no ready inter-

pretation for the other nm eigenvalues. α−1 should be returned by an ontological,

or unique, eigenstate without an unbounded spectrum of other values for n and

m.

� While the single spatial derivative in α̂ = ∂x + ∂3t was natural to the 2D box

model, the full theory would have three spatial derivatives inherent to the ∇
operator. With α being rooted historically in 3D atomic physics, the initial

context for one spatial dimension must be generalized to the full theory. It

seems likely that this generalization would unfixably alter the 2π part of α−1
MCM.

� In the statement Υ̂= Û + M̂3, the relationship between Û and ∂x inherent to

Û(t, t0) = exp

{
− iĤ

(
t− t0

)
ℏ

}
, (A.30)

reflects only the simplest case of a time-independent Hamiltonian. Already,

a function for extracting one linear ∂x from Û seems too complicated. The

generalization to a time-dependent Hamiltonian would be an analytical mess.

Backing ∂x out of the Dyson series representation of a Hamiltonian such that

[Ĥ(t0), Ĥ(t1)] ̸=0 may not be possible.
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To build up a well-known operator formalism which shall be extended with M̂3, we

will begin in the basis of position eigenstates. This is the usual path of development

for QM because it connects so well with the picture of classical physics. Much of this

appendix follows Sakurai and Napolitano [84].

B.1 The Translation Operator

By definition, position eigenstates are eigenvectors of the position operator

x̂
∣∣x〉 = x

∣∣x〉 . (B.1)

The position operator x̂ has a complete, continuous spectrum. The completeness

relation is

1 =

∫
dx
∣∣x〉〈x∣∣ . (B.2)

To move a particle from position x1 to position x2, the machinery of quantum mechan-

ics requires that we operate on |x1⟩ with an operator such that |x2⟩ is the result. We

will call that operator the translation operator and label it Ĵ . Evidently, it satisfies

Ĵ (∆x)
∣∣x〉 = c

∣∣x+∆x
〉
. (B.3)

This equation comes directly from the physics of motion: Ĵ moves |x⟩ to |x + ∆x⟩.
Now it remains to reverse engineer the analytical form of the operator. Similarly, we

have proposed that M̂3 should move |ψ⟩ like so, like so, and like so, and then left a

determination of the actual machinery to a later endeavor. This is what is done with

Ĵ and other operators: one conceives of an operation, labels the operator that does

it, and then works out what it has to be. It is no hoax that we have written (B.3)

without knowing what mathematical form Ĵ might take, and neither is the MCM

reliance on M̂3 without first defining its analytical form. This is business as usual in

quantum theory.

It is for a good reason that

M̂3
∣∣ψ;H1

〉
= c

∣∣ψ;H2

〉
, (B.4)

looks like (B.3). Ĵ is the spatial translation operator, and M̂3 is another kind of

translation-like operator between unit cells. M̂3 is necessarily more complicated than

Ĵ because it must be uniquely complemented by a time evolution to the later chrono-

logical time on the forward H-brane, and this added complexity is part of why M̂3 is
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posed as three separate operations while Ĵ is not.

To work out the mathematical representation of Ĵ based on the physics assigned

to it, first we will consider infinitesimal 1D translations:

Ĵ (dx)
∣∣x〉 = c

∣∣x+ dx
〉
. (B.5)

For ease in notation, we will set c=1. As per usual in quantum mechanics, we will

explore the mathematical structure by inserting (B.2): the completeness relation.

Assigning the dummy integration variable x′, we have

Ĵ (dx)1
∣∣x〉 = Ĵ (dx)∫ dx′

∣∣x′〉〈x′∣∣x〉
=

∫
dx′ Ĵ (dx)

∣∣x′〉〈x′∣∣x〉 (B.6)

=

∫
dx′
∣∣x′ + dx

〉〈
x′
∣∣x〉 .

The quantity ⟨x′|x⟩ is the interpreted as the expansion coefficient of Ĵ (dx)|x⟩ writ-
ten in the basis of |x′ + dx⟩ states. That basis is merely the position basis with

position measured from an origin shifted by dx, so we will introduce a coordinate

transformation to shift it back. Using

x′′ = x′ + dx =⇒ dx′′ = dx′ , (B.7)

we obtain

Ĵ (dx)
∣∣x〉 = ∫ dx′′

∣∣x′′〉〈x′′ − dx∣∣x〉 . (B.8)

Since x′ and x′′ are only dummy variables, we can forget about the old x′ and rename

x′′ as the new x′:

Ĵ (dx)
∣∣x〉 = ∫ dx′

∣∣x′〉〈x′ − dx∣∣x〉 , (B.9)

The expansion coefficient ⟨x′−dx|x⟩ is called “the position space wavefunction,” and

it is written as x(x′ − dx). If we would have used “|ψ⟩” to label the operand in

(B.5) rather than “|x⟩,” then the wavefunction would be the more familiar looking

ψ(x′ − dx). In that case, we would write

Ĵ (dx)
∣∣ψ1

〉
= c

∣∣ψ2

〉
. (B.10)

This should make it obvious why it can be better to label position states with their

positions than Greek letters. In the ψ labeling, we would have to add some notes
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to say, “ψ1 is the state of being located at x and ψ2 is the state of being located at

x+ dx.” That would be cumbersome, but it is demonstrative to emphasize that the

⟨x′ − dx|x⟩ appearing in (B.9) is an ordinary ψ(x) despite it being written here as

x(x′). Overall, (B.10) does not obviously communicate the physics we have assigned

to Ĵ in the forthright manner of (B.5).

We have explained that inserting the completeness relation into the definition of

infinitesimal translation makes the wavefunction appear, but we have not yet clarified

what the wavefunction is. Since the wavefunction (in position space) is the expan-

sion coefficient in the continuous basis (of position states), we should build up an

expansion in a discrete basis, and then generalize it to the continuous basis so that

the wavefunction is not mysterious in any way. Then we will return to the analytical

form of Ĵ in the following subsection.

B.1.1 Interpretation of Basic Formalism in Quantum Mechanics

If one measures position, there is a continuum of different positions one might observe,

so we say the spectrum of the position operator is continuous. Let there be an

observable operator Â such that there are only a finite number of quantized (discrete)

values that might be observed in a measurement of observable A. In the {|ak⟩}
eigenbasis of Â, we have

Â
∣∣ak〉 = ak

∣∣ak〉 , (B.11)

which mimics the eigenvalue equation for the position operator: (B.1). The difference

is that there are an uncountably infinite number of positions x that one might find

in a measurement of position, but there are only a finite number of ak one might find

when measuring observable A.

The fundamental idea in QM is that everything which can be observed may be

represented as an operator. For a given observable, every possible value that may be

found in an observation is an eigenvalue of that operator. The possible values of x

(position) touch each other, and the spectrum of x̂ is called continuous. There are

numerical gaps between the ak, and, due to these gaps, the spectrum of Â is said to

be discrete. The completeness relation for discrete eigenbases is

1 =
∑
k

∣∣ak〉〈ak∣∣ . (B.12)

If we operate on |ak⟩ with Â, we are guaranteed to get ak since |ak⟩ is the eigenvector
of Â with eigenvalue ak. However, sometimes one does not know ahead of time what

outcome a measurement will give. To determine what will happen when we measure
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A on an unknown state ψ, we insert the completeness relation to expand ψ in the

eigenbasis of Â as ∣∣ψ〉 = 1

∣∣ψ〉 =∑
k

∣∣ak〉〈ak∣∣ψ〉 . (B.13)

As in (B.9), we have obtained an expansion coefficient ⟨ak|ψ⟩. This is the discrete

version of (B.9)’s ⟨x′ − dx|x⟩, which we have called a wavefunction. Wavefunctions

are the coefficients of expansion in a continuous basis. ⟨ak|ψ⟩ is not a wavefunction,

however. It is just a number. ⟨x′ − dx|x⟩ is a wavefunction because it contains the

integration variable x′.

If a state |ψ⟩ has its representation expanded in the basis of an operator with a

discrete spectrum, the probability for finding the ak eigenvalue is the absolute square

of the ⟨ak|ψ⟩ expansion coefficient. If |ψ⟩ is expanded in a continuous basis, this can-

not be the program for finding the probability of any particular eigenvalue because

the total probability, 100%, cannot be divided into uncountably many small but finite

probabilities. This is the reason why the continuous basis coefficients contain integra-

tion variables. By integrating over a finite interval containing an uncountably infinite

number of continuous eigenstates, one obtains a finite, real-valued probability. Rather

than taking the absolute square of the constant ck, one integrates |ψ(x)|2 across some

interval. The aggregate 100% probability can always be divided into real-valued frac-

tions across finitely many finite intervals. This can be tricky for the beginners who

are the intended audience for this appendix. Thus, we belabor the details. It is

the intention to make MCM publications so plainly accessible to beginners that even

novices might easily see through detractors’ stupid remarks and baseless criticisms.

Early work in the MCM written exclusively for subject matter experts was flawed in

that regard because myriad scandalmongers and blowhards could levy any criticism

free from accountability to many third parties who might judge for themselves.

We have expanded ψ in the eigenbasis of the observable represented by Â: (B.13).

Since the expansion coefficients are not functions of any variables, they must be

numbers, and we can simplify (B.13) as∣∣ψ〉 = 1

∣∣ψ〉 =∑
k

∣∣ak〉〈ak∣∣︸ ︷︷ ︸
Completeness

ψ
〉
=
∑
k

∣∣ak〉 〈ak∣∣ψ〉︸ ︷︷ ︸
ck

=
∑
k

ck
∣∣ak〉 . (B.14)
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For expansion in a continuous basis, we have∣∣ψ〉 = 1

∣∣ψ〉 = ∫ dα
∣∣α〉〈α∣∣︸ ︷︷ ︸

Completeness

ψ
〉
=

∫
dα
∣∣α〉 〈α∣∣ψ〉︸ ︷︷ ︸

ψ(α)

=

∫
dαψ(α)

∣∣α〉 . (B.15)

Having made clear the role of the wavefunction ψ(α) as an expansion coefficient,1 we

will continue in the example of the discrete basis. Then we will say more about the

continuous basis as the context develops.

Operating on ψ with Â does not represent a measurement of observable A. Rather,

it yields a weighted sum of possible results of measurement. In the discrete case, the

weight is the probability amplitude ck for an eigenvalue ak times the eigenvalue:

Â
∣∣ψ〉 =∑

k

Â
∣∣ak〉〈ak∣∣ψ〉 =∑

k

ak
∣∣ak〉ck =∑

k

ckak
∣∣ak〉 . (B.16)

This weighted average lends itself to the expectation value〈
Â
〉
≡
〈
ψ
∣∣Â∣∣ψ〉 . (B.17)

This is the average value that will be found across many measurements of A on

identical ψ states. The orthonormal property of the {|ak⟩} eigenbasis is such that〈
aj
∣∣ak〉 = δjk , 2 (B.18)

where δjk is the Kronecker δ, so acting on (B.16) from the left with ⟨ψ| yields a pure

number:〈
ψ
∣∣Â∣∣ψ〉 =∑

j

∑
k

cjckak
〈
aj
∣∣ak〉 =∑

j

∑
k

cjckakδjk =
∑
k

c2kak . (B.19)

We know a measurement of A on state ψ will yield eigenvalue ak with probability

Pk = |ck|2, so the interpretation of (B.19) is that the expectation value ⟨Â⟩ is the

probability weighted average of possible outcomes when measuring A. If ψ was an

eigenstate of Â, then all the ck would be equal to zero for every value of k except

one. Then we could write |ψ⟩ = cj|aj⟩ = |aj⟩ and ⟨Â⟩=aj without including the sum

because there is no need to sum the terms whose coefficients are zero.

Unless ψ is an eigenstate of Â, operation by Â does not return any one value of

ak, even though a lab measurement of A will return one and only one ak. This shows

1ψ(x) is mainly called the wavefunction when the continuous eigenbasis α is the position basis.
2Orthogonal means ⟨aj |ak⟩=0 when j ̸= k, and normalized means ⟨aj |ak⟩=1 when j = k. Orthonormal means

orthogonal and normalized.
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what it means when we say that the collapse of the wavefunction is implemented in an

“ad hoc” way in quantum mechanics. For states expanded in discrete bases, collapse

looks like ∣∣ψ〉
discrete

=
∑
k

∣∣ak〉〈ak∣∣ψ〉 (B.20)

=
∑
k

ck
∣∣ak〉 measurement−−−−−−−→

∣∣aj〉 .

One should compare this to (B.16) which shows that operating with Â on |ψ⟩ does
not reduce the state to a single eigenstate unless the initial state was an eigenstate.

Reflecting the lack of a natural mathematical operation for wavefunction collapse

upon measurement, the long labeled arrow shows that collapse happens somehow. In

practice, after obtaining eigenvalue ak in an experiment, the observer will use a P̂k
projection operator to update ψ:

P̂k
∣∣ψ〉 = ∣∣ak〉 . (B.21)

In the continuum, the same collapse behavior is written∣∣ψ〉
continuous

=

∫
dx′
∣∣x′〉〈x′∣∣ψ〉 (B.22)

=

∫
dx′ ψ(x′)

∣∣x′〉 measurement−−−−−−−→ ψ(x′) = δ(x′ − x0) ,

where δ(x′ − x0) is the Dirac δ function representing the x0 position eigenstate in

position space. This δ function makes the QM of continuous observables somewhat

(or massively) more complicated than the QM of discrete observables. In the discrete

case, the expansion coefficients for a particular basis were just the numbers ck ∈ C
whose squares are postulated to return real-valued probabilities. In the other case,

they are differentials that need to be integrated. Namely, there is no k such that we

much ask about a finite probability for being located at xk. Instead, we ask about

the probability for being found between xk and xj.

The discrete-continuous correspondence ck↔ψ(x) yields the following probability

structure:

Pk =
∣∣〈ak∣∣ψ〉∣∣2 = ∣∣ck∣∣2 ←→ P (xk)dx

′ =
∣∣〈xk∣∣ψ〉∣∣2 dx′ = ∣∣ψ(xk)∣∣2 dx′ . (B.23)

The dx′ tells us that the probability of observing state |ψ⟩ with exact continuous

parameter xk is infinitesimal. In practice, it is not possible to measure ψ at math-
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ematical point xk due to resolution limits on physical devices, general principles of

Heisenberg uncertainty, and, ultimately, Planck scale effects. While this writer is

always eager to step forward with criticisms of quantum theory, (B.23) is a beautiful

example of its robust power. The probability for observing a particle at a point is

less than any positive real number. We would like to build devices that might detect

particles at points, but such devices do not exist, and QM says they cannot exist.

This is a great success among the many shortcomings that this writer is prone to

highlight.

Since probability is dimensionless, the expansion coefficients ψ(x) in the continuous

basis have to have units of [meters]−1/2 to cancel the units of dx′. These units are

reflected in the normalization conditions〈
ψ
∣∣ψ〉 = 〈ψ∣∣1∣∣ψ〉 =∑

k

〈
ψ
∣∣ak〉〈ak∣∣ψ〉 =∑

k

c∗kck =
∑
k

∣∣ck∣∣2 = 1 (B.24)

〈
ψ
∣∣ψ〉 = 〈ψ∣∣1∣∣ψ〉 = ∫ ∞

−∞
dx′
〈
ψ
∣∣x′〉〈x′∣∣ψ〉 = ∫ ∞

−∞
dx′
∣∣ψ(x′)∣∣2 = 1 .

It follows from the units that |ψ(x)|2 cannot be a real probability like |ck|2. Proba-

bility is dimensionless, but |ψ(x)|2 is dimensionful. Calling attention to this radical

alteration of the structure for the eigenbases of operators with continuous spectra, the

expansion coefficient
〈
x
∣∣ψ〉 = ψ(x) is called the position space wavefunction rather

than simply an expansion coefficient. We often call the position space wavefunction

“the wavefunction.” The important thing to know about wavefunctions is that they

are the infinite number of expansion coefficients needed to expand an abstract state

ket |ψ⟩ in the infinite eigenbasis of some observable with a continuous spectrum. For

xk ∈ (x1, x2), ψ(xk) (which is the function ψ(x) evaluated at xk) is the expansion

coefficient of the |xk⟩ basis vector in the representation of |ψ⟩ in the eigenstates of

the x̂ operator.

For each of an uncountably infinite number of unique x in the spectrum of x̂, there

is a corresponding expansion coefficient ψ(x). Mirroring the discrete expansion∣∣ψ〉
discrete

=
∑
k

ck
∣∣ak〉 = c1

∣∣a1〉+ c2
∣∣a2〉+ c3

∣∣a3〉+ . . . , (B.25)

we would like to write the continuous expansion as∣∣ψ〉
continuous

=
∑
x

ψ(x)
∣∣x〉 = . . . ψ(x′)

∣∣x′〉+ ψ(x′′)
∣∣x′′〉+ ψ(x′′′)

∣∣x′′′〉+ . . . . (B.26)

However, the eigenvalue spectrum {x} is an uncountable set. We can never enumer-
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ate the various x eigenstates with natural numbers as we have for the ak discrete

eigenstates. Luckily, Newton has developed an excellent workaround for us. Written

in the notation of Leibniz, the workaround is∣∣ψ〉
continuous

=

∫ ∞

−∞
dx′ ψ(x′)

∣∣x′〉 . (B.27)

This workaround is great and useful, but it comes at the expense of the complications

that we have discussed.

B.1.2 Back to the Translation Operator

Now that we understand the wavefunction, we will continue from (B.9) restated here:

Ĵ (dx)
∣∣ψ〉 = ∫ dx′

∣∣x′〉〈x′ − dx∣∣x〉 = ∫ dx′ ψ(x′ − dx)
∣∣x′〉 . (B.28)

We understand that the dx infinitesimal translation is a different sort of object than

the dx′ differential of the integration variable. We also understand that ψ(x′)=⟨x′|x⟩
is used because x(x′)=⟨x′|x⟩ is relatively unsightly. The minus sign in the argument

of ψ(x′ − dx) seems to reflect translation by −dx rather than by the dx that had

been intended. This was a feature inherited by our change of variables in (B.7).

Apparently, J (−dx) is the operator that generates translation by dx:

Ĵ (−dx)
∣∣ψ〉 = ∫ dx′ ψ(x′ + dx)

∣∣x′〉 . (B.29)

We have seen that the ck expansion coefficients give the probability for finding ak
in a measurement of the discrete observable A as Pk = |ck|2. In general, the ck are

called probability amplitudes, and the product with the complex conjugate c∗k gives

a real-valued probability. In the continuous case, the probability amplitude is the

wavefunction, so we get P (x) = |ψ(x)|2dx which results in a real-valued probability

after it is integrated across some range. Since it has to be integrated, we call the

modulus squared of ψ(x) ∣∣ψ(x)∣∣2=ψ∗(x)ψ(x) , (B.30)

a probability density. Before we operated with Ĵ , the wavefunction was ψ(x). After, it

was ψ(x+dx) and the probability density was |ψ(x+dx)|2. Evidently, the translation
operator Ĵ (−dx) has shifted the probability density for finding ψ in some region of

space by the amount dx. We have succeeded in implementing the desired physics,

but we have not yet obtained the analytical form of Ĵ . To get there, we will impose

more physics.
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� If |x⟩ is properly normalized to ⟨x|x⟩ = 1, then the translated state |x′⟩ must

maintain the normalization:〈
x′
∣∣x′〉 = [〈x∣∣Ĵ †

] [
Ĵ
∣∣x〉] = 〈x∣∣Ĵ †Ĵ

∣∣x〉 = 1 =⇒ Ĵ †Ĵ = 1 .1 (B.31)

In other words, we require that Ĵ is a unitary operator. In general, unitary

transformations preserve the norm of a ket.

� Two consecutive translations by ∆x1 and ∆x2 must be equal to a single trans-

lation by ∆x1+∆x2:

Ĵ (∆x1)Ĵ (∆x2) = Ĵ (∆x1 +∆x2) . (B.32)

� Translation by ∆x1 and then −∆x1 must be the identity operation:

Ĵ (−∆x1)Ĵ (∆x1) = 1 =⇒ Ĵ (−∆x1) = Ĵ −1(∆x1) . (B.33)

(This follows from (B.32) in the case of ∆x2=−∆x1.)

� In the limit of vanishing displacement, the translation operator must reduce to

the identity:

lim
dx→0
Ĵ (dx) = 1 . (B.34)

We still don’t have an exact picture of the analytical form of Ĵ though we have

obtained have a detailed view of its physics. To move forward, we supplement these

physical requirements with a mathematical requirement that Ĵ (dx) should be linear

in dx to leading order. ∣∣1− Ĵ (dx)∣∣ = O(dx) . (B.35)

Now the magic is made to happen with... an ansatz ! We will guess that the form is

Ĵ (dx) = 1− iK̂ dx , (B.36)

for some Hermitian operator K̂. It is often taken as a postulate of quantum mechanics

that the generator of translations K̂ is the momentum operator p̂ times a constant.

When developing Ĵ in [84], Sakurai and Napolitano proceed with a method by

which one is able to deduce that the momentum operator satisfies the ansatz. Their

method of Taylor series analysis necessarily introduces some gaps in the mathematical

rigor at order O(dx2). Ignoring O(dx2) terms is perfectly standard in physics, and

1Dagger denotes the conjugate transpose. For scalars, this is the ordinary complex conjugate.
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taking K̂ ∝ p̂ directly as a postulate also introduces a gap in the first principles

approach to understanding where everything comes from. However, all the expressions

which follow from the K̂∝ p̂ postulate are exact while O(dx2) gaps propagate through
all the expressions which follow from the method of Taylor series analysis. Because

the MCM has some concept of changing levels of aleph such that dx on one level

of aleph might be finite on another level, we prefer to stay away from ignoring the

O(dx2) terms. Therefore, we postulate that K̂ is p̂ times a constant. From (B.36), we

can see that K̂ does not have the correct units to be the momentum operator which

should have units of mass times velocity. As it is, K̂ has units of inverse meters.

Dimensional analysis shows that p̂must be divided by something with units of action if

it is to play the role of the generator of translations. Sakurai and Napolitano mention

that if quantum physics had been developed in history before classical physics, the

fundamental units would have been chosen so that this constant of proportionality

between K̂ and p̂ was equal to one [84]. With units already having been set, it works

out to ℏ:
Ĵ (dx) = 1− i

ℏ
p̂ dx . (B.37)

Finite translations are obtained by compounding infinitesimal ones. To proceed in

our quest to obtain the analytical form of

Ĵ (∆x)
∣∣x〉 = ∣∣x+∆x

〉
, (B.38)

we divide the finite (non-infinitesimal) translation ∆x into N equal parts

δx =
∆x

N
. (B.39)

Applying (B.32), we have

Ĵ (∆x) = Ĵ

(
N∑
k=1

δx

)
=

N∏
k=1

Ĵ (δx) . (B.40)

We make the connection to the generator of infinitesimal translations by taking the

limit N→∞ such that δx→dx. This yields

Ĵ (∆x) = lim
N→∞

N∏
k=1

Ĵ (δx) = lim
N→∞

(
1−

ip̂x∆x

ℏN

)N

. (B.41)
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This limit is a definition of the exponential function, so we have

Ĵ (∆x) = exp

{
−
ip̂x∆x

ℏ

}
. (B.42)

If we are able to determine the analytical form of p̂ operating on position states, then

we will have found the analytical form of the translation operator for such states.

B.2 The Momentum Operator

This section begins with a brief account of the road which led to “the creation of

quantum mechanics” for which Heisenberg won the 1932 Nobel Prize in Physics. In

1925, Dirac described the kernel of what Heisenberg had done [233].

“It is well known that the experimental facts of atomic physics necessi-

tate a departure from the classical theory of electrodynamics in the descrip-

tion of atomic phenomena. This departure takes the form, in Bohr’s theory,

of the special assumptions of the existence of stationary states of an atom, in

which it does not radiate,1 and of certain rules, called quantum conditions,

which fix the stationary states and the frequencies of the radiation emitted

during transitions between them.2 These assumptions are quite foreign to

the classical theory, but have been very successful in the interpretation of a

restricted region of atomic phenomena. The only way in which the classical

theory is used is through the assumption that the classical laws hold for the

description of the motion in the stationary states, although they fail com-

pletely during transitions, and the assumption, called the Correspondence

Principle, that the classical theory gives the right results in the limiting

case when the action per cycle of the system is large compared to Planck’s

constant h, and in certain other special cases.

“In a recent paper [234] Heisenberg puts forward a new theory, which

suggests that it is not the equations of classical mechanics that are in any

way at fault, but that the mathematical operations by which physical results

1Classical electromagnetic theory predicts that electrons undergoing centripetal acceleration in atomic orbits
should radiate energy and fall into the nucleus. All classical charged particles radiate energy under acceleration, and
the non-radiation of electrons in atomic orbitals was one of the main non-classical problems in the early days of atomic
physics.

2In celestial mechanics, it is understood that a large asteroid impact might subtly alter the orbital radius of a
planet around the sun. In atomic physics, the situation is totally different. When a photon hits an atomic electron,
it cannot slightly alter the electron’s orbit. If the photon does not have enough energy to knock the electron all
the way to the next fixed stationary state (orbit), then the photon will scatter elastically from the electron (having
transferred zero energy.) This phenomenon describes the nature of quantum mechanics. In celestial mechanics, there
are a continuum of orbital radii allowed for a planet to orbit the sun, but, in the atomic version of the solar system
with electrons orbiting nuclei, the electron is only allowed certain discrete, or quantized, orbits.

273



Next Steps and the Way Forward in the Modified Cosmological Model

are deduced from them require modification. All the information supplied

by the classical theory can thus be made use of in the new theory. [...]

“We are now in a position to perform the ordinary algebraic operations

on quantum variables. The sum of [matrices ] x and y[, with the nm matrix

element of x denoted x(nm)] is determined by the equations{
x+ y

}
(nm) = x

(
nm
)
+ y
(
nm
)
, (B.42)

and the product by

xy(nm) =
∑
k

x(nk)y(km) , (B.43)

[...] An important difference now occurs between the two algebras. In gen-

eral

xy(nm) ̸= yx(nm) , (B.44)

and quantum multiplication is not commutative, although, as is easily ver-

ified, it is associative and distributive. The quantity with components

xy(nm) [...] we shall call the Heisenberg product of x and y, and shall

write simply as xy. Whenever two quantum quantities occur multiplied

together, the Heisenberg product will be understood. Ordinary multiplica-

tion is, of course, implied in the products of amplitudes and frequencies and

other quantities that are related to sets of n’s which are explicitly stated.”

Quantum quantities are what we now call observable operators. The quantities we

observe commute in the usual way, but their representations in quantum theory do

not. The principle manifestation of Heisenberg’s quantum algebra is the commutator

of position and momentum

[x̂j, p̂k] ≡
(
x̂j p̂k − p̂kx̂j

)
= iℏδjk =⇒ x̂p̂x ̸= p̂xx̂ . (B.45)

A wonderful feature of quantum mechanics is that observables which can be known

simultaneously have operators that commute. If two observables can’t be known

at the same time, their operators don’t commute, meaning the commutator [Â, B̂]

does not vanish. When two operators commute, we are able to find simultaneous

eigenstates of both which save us the hassle of change of basis operations each time

one or the other observable is to be measured. Intuitively, we know that 3D position

can be measured in the lab, so we expect that the x̂, ŷ, and ẑ observable operators

should commute. ψ(x)=δ(x) is a simultaneous eigenstate of all three operators which
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we denote |x⟩= |x, y, z⟩. That position and momentum can’t commute follows from

similar physical thinking. To measure momentum, one measures speed, mass, and

direction. To measure speed, time is measured between two positions. Once a speed

is determined, however, one must ask which of the two positions might be associated

with it. Since we have only measured speed between two positions, we cannot rightly

associate either of them with the measured speed. If we were to associate the average

of the two positions with the speed, that would require an assumption of constant

velocity between the two positions. This would be unphysical because we measured

the average velocity between the two positions and have no way to know if it was

constant on the interval. Therefore, we can be sure that p̂ won’t commute with x̂

because the underlying quantities cannot be known simultaneously.1 Other than that,

we need to determine the analytical form of p̂ if we are going to answer the previous

question about the analytical form of the translation operator Ĵ (∆x) which depends

on it, as in (B.42).

The guiding principle regarding the form of p̂ is that it has to return eigenvalue p

when it operates on a momentum eigenstate. Following along with the goal to deter-

mine the form of Ĵ (∆x) acting on states in the position representation, we will con-

sider momentum eigenstates in the position representation. Momentum eigenstates

in the momentum representation can only be δ functions,2 and, since the position rep-

resentation is the Fourier transform of the momentum representation, the momentum

eigenstate in that representation has to be a plane wave. Omitting factors of 2π and

ℏ, the Fourier transform of ψ(p) = δ(p′ − p) is

ψ(x) =

∫
dp′ e−ip

′xψ(p′) =

∫
dp′ e−ip

′xδ(p′ − p) = e−ipx . (B.46)

Momentum can be to the left or right (p can be positive or negative), so we may

ignore the minus sign to write the matrix elements of a momentum eigenstate in the

position representation as

⟨x|p⟩ = ψp(x) = eipx/ℏ . (B.47)

If x and p were discrete, it would be easy to see that the set of all ⟨aj|bk⟩ forms

a j×k matrix. For ease of description, we still call ⟨x|p⟩ a matrix element even

though x and p are continuous. The subscript on ψp(x) tells us that this is the

wavefunction of the momentum eigenstate with eigenvalue p. Although momentum
1It is somewhat miraculous that quantum theory should contain such physical constraints. By rights, there is no

need for a theory to contain this functionality without additional input requiring it.
2This detail cannot be glossed over. Anyone attempting to learn QM from this appendix must be absolutely sure

that they know exactly why a momentum eigenstate in the momentum representation must be a Dirac δ function.
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eigenstates cannot be measured (all we can observe is momentum in some range)

Heisenberg uncertainty suggests that exact knowledge of momentum implies maximal

uncertainty in position. Thus, momentum eigenstates are maximally diffuse plane

waves in the position representation. For a given p0 and x0, the expression ⟨x|p⟩ gives
the probability amplitude that a particle with momentum p0 will be found at position

x0. In other words, ⟨x|p⟩ is the wavefunction of the momentum eigenstate. Formally,

we might say that there exist normalized solutions to Schrödinger’s equation in the

form

ψp(x) = A exp

{
i
(
px− Et

)
ℏ

}
= c(t) exp

{
ipx

ℏ

}
, (B.48)

but it suffices to ignore the time part. By optical inspection of (B.47) or (B.48), one

determines that the momentum operator returning eigenvalue p when acting on a

momentum eigenstate in the position representation is −iℏ∂x:

p̂ψp(x) = −iℏ
∂

∂x
exp

{
ipx

ℏ

}
= p exp

{
ipx

ℏ

}
= pψp(x) . (B.49)

If we had used the e−ipx wavefunction, then we would have gotten the −p eigenvalue

which is correct for a plane wave moving in the other direction. Ultimately, we take

it as a postulate of quantum mechanics (surprise!) that the position representation

of the momentum operator is

p̂ = −iℏ ∂
∂x

. (B.50)

The Heisenberg algebra follows directly:

[x̂, p̂]ψp = x̂p̂ψp − p̂x̂ψp

= −iℏx̂ ∂
∂x
ψp + iℏ

∂

∂x

(
xψp

)
= xpψp +

(
iℏψp + iℏx

∂

∂x
ψp

)
(B.51)

= xpψp +
(
iℏψp − xpψp

)
= iℏψp .

Now we may plug p̂ into (B.42) to write

Ĵ (∆x) = exp

{
−
ip̂x∆x

ℏ

}
= exp

{
−∆x ∂

∂x

}
, (B.52)
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Figure 31: This figure adapted from Littlejohn [235] shows the action of the transla-
tion operator on an arbitrary wavefunction in the position representation.
While the translation application from, say, H at x to Ω at x + ∆x is
obvious, more complicated operations are required for MCM applications.
The MCM operation must alter the shape of ψ(x). Such operations are
time evolutions rather than spatial translations.

which is the analytical representation of Ĵ ! Testing it on the ψp wavefunction yields

Ĵ (∆x)ψp(x) = exp

{
−∆x ∂

∂x

}
exp

{
ipx

ℏ

}
= exp

{
−ip∆x

ℏ

}
exp

{
ipx

ℏ

}
(B.53)

= exp

{
ip
(
x−∆x

)
ℏ

}
= ψp(x−∆x) .

This agrees with (B.29). Another way to understand what is going on is to write

Ĵ (∆x)ψp(x) = ψ′
p(x) , and ψ′

p(x+∆x) = ψ(x) . (B.54)

This tells us that the translated wavefunction ψ′
p at the shifted position is equal to

the original wavefunction ψ at the unshifted position, as in Figure 31.

Now that we know what the momentum operator is, we may proceed with the

derivation of the momentum operator as the generator of translations. We previously
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skipped this around (B.36) by assuming (postulating)

Ĵ (dx) = 1− iK̂ dx , and K̂ ∝ p̂ , (B.55)

but now we will derive the K̂∝ p̂ part of our assumption. Translated by some small

amount, the momentum eigenfunction is

Ĵ (−δx)ψp(x) = ψp(x+ δx) = exp
{
ip
(
x+ δx

)}
= eipδxeipx = eipδxψp(x) . (B.56)

We expand the displacement term as

ψp(x+ δx) =
[
1 + ipδx+O(δx2)

]
ψp(x) , (B.57)

and compare to the Taylor series expansion of ψp(x+ δx) around x:

ψp(x+ δx) = ψ(x)p + δx
d

dx
ψp(x) + . . . (B.58)

=

[
1 + iδx

(
−i d
dx

)
+ . . .

]
ψp(x) .

Equating O(δx) terms between (B.57) and (B.58), we find

−i d
dx
ψp(x) = pψp(x) . (B.59)

This confirms that we have the correct form for the momentum operator. In the limit

of infinitesimal δx, we ignore the O(δx2) part of (B.57) to write

ψp(x+ δx) = (1 + ipδx)ψp(x)

=

[
1 + iδx

(
−i d
dx

)]
ψp(x)

= (1 + ip̂δx)ψp(x) (B.60)

=
[
1− iK̂

(
− δx

)]
ψp(x)

= Ĵ (−δx)ψp(x) .

By ignoring the O(δx2) terms and assuming that we can set terms of equal order in

δx equal between (B.57) and (B.58), and by assuming Ĵ =1−iK̂ dx to begin with,

we have made a derivation showing that the momentum operator is the generator

of spatial translations. This supplements our postulate/axiom which says the same
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thing.

Momentum in quantum mechanics goes on to be very complicated. Mainly, it is

only possible to define the momentum operator as the mass times the derivative of

position when the vector potential A is equal to zero. This equality gives what is

called the canonical momentum operator p̂. In general, however, we have

d

dt
x̂ =

1

m

(
p̂−

e

c
A(x̂)

)
. (B.61)

Thus, we introduce the kinematical momentum operator

Π̂ = m
d

dt
x̂ = p̂−

e

c
A(x̂) . (B.62)

The main difference between the canonical and kinematical momenta is

[p̂k, p̂j] = 0 , while [Π̂k, Π̂j] ̸= 0 . (B.63)

It is known that the vector potential is not unique, and the tricks that one can play

with A(x̂) are the main inroads to theories of gauge freedom, or gauge theories.

Usually the choice of one A(x̂) or another is called fixing the gauge. In turn, this

defines the kinematical momentum operator which replaces the p̂ we have postulated

above.

B.3 The Time Evolution Operator

It is said that time doesn’t exist in quantum mechanics. What is meant is that states

in Hilbert space are represented as functions of spatial variables but not time. The

time dependence is added to states as a phase factor which is constant in the Hilbert

space of states at time t. In the case of time-dependent Hamiltonian operators, there

is a Hilbert space of energy eigenstates corresponding to every possible Ĥ(t). Even

in the case of a time-independent Hamiltonian, there is still a Hilbert space of energy

eigenstates at every time t. This can get glossed over since the eigenstates in each

Hilbert space are the same complete set of orthonormal basis states. However, the

eigenstates of every observable operator do, in fact, belong to a Hilbert space at a

specific time which is distinct from the space of states at any other time.

To develop time evolution, we will introduce the symbol |ψ, t0; t⟩ as the state of a

system at time t > t0 that was already observed to be in state ψ at time t0. We have
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previously implemented the spatial translation operator Ĵ such that

Ĵ (∆x)
∣∣x〉 = ∣∣x+∆x

〉
, (B.61)

and now we will develop the time translation operator as

Û(t, t0)
∣∣ψ, t0〉 = ∣∣ψ, t0; t〉 . (B.62)

By convention, this is called the time evolution operator. The added argument t0
tells us that Û(t, t0) only operates on the Hilbert space of states which exist at time

t0. This is redundant for time-independent Hamiltonians, but it is not redundant in

general. The requirements imposed on Û(t, t0) are mostly the same as those imposed

on Ĵ .

� If |ψ, t0⟩ is properly normalized to ⟨ψ, t0|ψ, t0⟩=1, then the time evolved state

|ψ, t0⟩ must maintain the normalization:〈
ψ, t0; t

∣∣ψ, t0; t〉 = 〈ψ, t0∣∣Û †Û
∣∣ψ, t0〉 = 1 =⇒ Û †(t0, t)Û(t0, t) = 1 .

(B.63)

� Two consecutive time evolutions, Û(t1, t0) followed by Û(t2, t1), must be equal

to a single time evolution by Û(t2, t0):

Û(t2, t1)Û(t1, t0) = Û(t2, t0) . (B.64)

� Evolution by ∆t1 and then −∆t1 must be the identity operation:

Û(−∆t1)Û(∆t1) = 1 =⇒ Û(−∆t1) = Û−1(∆t1) . (B.65)

� In the limit of vanishing temporal displacement, the evolution operator must

reduce to the identity:

lim
t→t0
Û(t, t0) = 1 . (B.66)

� Û(t0 + dt, t0) should be linear in dt to leading order:∣∣1− Û(t0 + dt, t0)
∣∣ = O(dt) . (B.67)

The unitarity condition of (B.63) is required for the preservation of the probability

interpretation in which c2k(t) is the probability for finding eigenvalue ak at time t.

This is demonstrated when we require that the sum of the squares of the expansion
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coefficients in a particular basis must sum to unity at all times. To demonstrate, we

expand in the discrete basis of |ak⟩:∣∣ψ, t0〉 =∑
k

∣∣ak〉〈ak∣∣ψ, t0〉 =∑
k

ck(t0)
∣∣ak〉 . (B.68)

The meaning of ck(t0) is exactly the same as the previous meaning of ck. We add the

time dependence because the probability for finding the ak eigenvalue in a measure-

ment on |ψ⟩ might not be constant in time. For example, if one prepares a system in

an excited state, it will become less and less likely that one will observe the system

in the excited state as time goes on. On long time scales, systems tend to return to

the ground state and/or come to thermodynamic equilibrium.

Assume that ψ is normalized at t0. Multiplying (B.68) from the left with ⟨ψ, t0|
yields〈

ψ, t0
∣∣ψ, t0〉 =∑

k

ck(t0)
〈
ψ, t0

∣∣ak〉 =∑
k

ck(t0)c
∗
k(t0) =

∑
k

∣∣ck(t0)∣∣2 = 1 . (B.69)

Since t0 is an arbitrary time, this has to hold for any t ̸= t0, so〈
ψ, t0; t

∣∣ψ, t0; t〉 =∑
k

〈
ψ, t0; t

∣∣ak〉〈ak∣∣ψ, t0; t〉 =∑
k

ck(t)c
∗
k(t) =

∑
k

∣∣ck(t)∣∣2 = 1 .

(B.70)

Time evolution can alter the expansion coefficients in the expansion of an abstract

state in a certain basis, but the sum the coefficients’ absolute squares always adds up

to one. This tells us that the probability of finding the state in one of the possible

eigenstates is always 100%.

As with the generator of translation Ĵ , we will assume

Û(t0 + dt, t0) = 1− iΩ̂ dt , (B.71)

and then proceed to determine Ω̂. Studying Ĵ , it was not mentioned that these

ansatzes are not exactly unitary. Presently, we have(
1− iΩ̂ dt

)†(
1− iΩ̂ dt

)
= 1 + Ω̂2dt2 , (B.72)

though unitary operators satisfy

Ô
†
Ô = 1 . (B.73)

As is usual, we ignore O(dt2) terms and proceed via the minimal hand waving method
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to call Û the unitary time evolution operator. There are some principles of classical

mechanics which motivate the Hamiltonian as the generator of time evolutions, but

we will simply postulate

Ω̂ =
1

ℏ
Ĥ . (B.74)

The Hamiltonian operator Ĥ is constructed by promoting all instances of positions

and momenta in the classical Hamiltonian to their corresponding operators, or “quan-

tum quantities.”

Now we will derive the fundamental equation for Û . The composition property of

Û is given by (B.64). Combining the compositive law with the (B.71) ansatz, we have

Û(t+ δt, t0) = Û(t+ δt, t) Û(t, t0)

=

(
1− i

1

ℏ
Ĥ δt

)
Û(t, t0) (B.75)

= Û(t, t0) +
1

iℏ
Ĥ δt Û(t, t0) .

By moving Û(t, t0) to the left hand side and multiplying both sides by iℏ/δt, we

obtain

iℏ
Û(t+ δt, t0)− Û(t, t0)

δt
= Ĥ Û(t, t0) . (B.76)

In the limit δt→dt, the left side contains the definition of the derivative with respect

to t:

iℏ
∂

∂t
Û(t, t0) = Ĥ Û(t, t0) . (B.77)

As it turns out, (B.77) is the Schrödinger equation for the time evolution operator.

We obtain Schrödinger’s equation for states by multiplying from the right with |ψ, t0⟩.
This yields

iℏ
∂

∂t
Û(t, t0)

∣∣ψ, t0〉 = Ĥ Û(t, t0)
∣∣ψ, t0〉 (B.78)

iℏ
∂

∂t

∣∣ψ, t0; t〉 = Ĥ
∣∣ψ, t0; t〉 ,

which is the famous time-dependent Schrödinger equation. If we know how Û(t, t0)
evolves, then we don’t need Schrödinger’s equation for states. We can operate directly

on the states with the time evolution operator Û to generate states at arbitrary times

given that the state was known at t0. Therefore, we will solve Schrödinger’s equation
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for Û(t, t0), and then act on states with Û to obtain states at later times.

First we will examine the time-independent case of Ĥ ̸=Ĥ(t). The familiar looking

(hopefully) differential equation (B.77) is solved by optical inspection as

∂

∂t
Û(t, t0) =

1

iℏ
Ĥ Û(t, t0) =⇒ Û(t, t0) = exp

{
− iĤ

(
t− t0

)
ℏ

}
. (B.79)

As a reminder that not all differential equations are solved by optical inspection, we

continue from (B.77) as

∂

∂t
Û(t, t0) =

1

iℏ
Ĥ Û(t, t0)

1

Û(t, t0)
∂

∂t
Û(t, t0) =

1

iℏ
Ĥ (B.80)

∫ t

t0

dt′
1

Û(t′, t0)
∂

∂t′
Û(t′, t0) =

1

iℏ
Ĥ

∫ t

t0

dt′ .

We proceed by u-substitution:

u = Û(t′, t0) =⇒ du =
∂

∂t′
Û(t′, t0)dt′ , (B.81)

yields ∫ u(t)

u(t0)

du

u
=

∫ Û(t,t0)

Û(t0,t0)

dÛ
Û

. (B.82)

We continue from (B.80) as ∫ Û(t,t0)

Û(t0,t0)

dÛ
Û

=
1

iℏ
Ĥ

∫ t

t0

dt′

ln Û
∣∣∣∣Û(t,t0)

Û(t0,t0)

=
1

iℏ
Ĥt′
∣∣∣∣t
t0

(B.83)

ln
[
Û(t, t0)

]
− ln

[
Û(t0, t0)

]
=

1

iℏ
Ĥ
(
t− t0

)
.

The Û(t0, t0) operator on the left is the identity by (B.66). The log of the identity
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vanishes. Taking the exponential of both sides yields

Û(t, t0) = exp

{
− iĤ

(
t− t0

)
ℏ

}
. (B.84)

This is the unitary evolution operator for a state at time t0 subject to a time-

independent Hamiltonian. Although the ansatz stated in (B.71) was not exactly

unitary, the present form of Û given in (B.84) is exactly unitary because it is the

exponential of a Hermitian operator.

If the Hamiltonian is a function of time, and if [Ĥ(t1), Ĥ(t2)] = 0 for any t1, t2,

the solution proceeds identically except we cannot take Ĥ(t) out of the integral as we

have in (B.80). The result is

Û(t, t0) = exp

{
−
i

ℏ

∫
dt′ Ĥ(t′)

}
. (B.85)

If the Hamiltonian is a function of time and [Ĥ(t1), Ĥ(t2)] ̸= 0, then the solution is

much more complicated. In general, it will be expressed as a Dyson series:

Û(t, t0) = 1 +
∞∑
k=1

(
−i
ℏ

)k ∫ t

t0

dt1

∫ t1

t0

dt2 . . .

∫ tk−1

t0

dtn Ĥ(t1)Ĥ(t2) . . . Ĥ(tk) . (B.86)

The k = 1 term is a single integral, the k = 2 term is a double integral, etc. The

k =∞ term is an infinite-dimensional integral, notably. Although any finite ∆t =

t − t0 necessarily contains an uncountable infinity of different times tk at which the

Hamiltonian does not commute, the countable terms of the Dyson series offer a decent

approximation. Examples of these three increasingly difficult cases of Û are a spin

magnetic moment in (i) a static field such that Ĥ ̸= Ĥ(t), (ii) a time-varying field

with a constant direction such that Ĥ = Ĥ(t) but [Ĥ(t1), Ĥ(t2)] = 0, and (iii) a

field varying in strength and direction such that the time-dependent Hamiltonians at

different times do not commute.

Observables that commute with the Hamiltonian are constants of the time evo-

lution generated by Schrödinger’s equation. In general, one defines a correlation

amplitude C(t) as a measure of the difference between |ψ, t0⟩ and |ψ, t0; t⟩. C(t) is

a measure of how quickly diffusion sets in, or how quickly a state will thermalize.

Thermalization is the process by which an eigenstate will evolve into a superposition

of eigenstates if left unobserved.

This appendix has described what is called the Schrödinger picture of quantum
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mechanics, but there exist other pictures such as the Heisenberg and interaction pic-

tures wherein the conventions for grouping different objects are slightly different. In

the Heisenberg picture, for example, operators vary in time while states are constant.

A good understanding of the basics requires understanding at least the Heisenberg

and Schrödinger pictures.
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Appendix C: Historical Context

This appendix first appeared as Section 3.2 in [1]. A few new footnotes and minor

edits appear in this transcription.

The first written description of the MCM appears in [31]. It was rejected by arXiv

in September 2009, and it is the likely basis for the articles titled “Is the Universe In-

side a Black Hole?” that Nikodem Poplawski has been successfully pushing to popular

media since 2010 [236–244]. The MCM phrase inverse radial spaghettification1 [40] is

a fancy way to say that the universe is inside a black hole. In newer research, we have

gone on to show that the observer resides on a singularity at the origin of coordinates

marking each level of aleph.2 It is commonly understood that singularities mark the

center of black holes, so universe-in-a-black-hole is very much a facet of the MCM.

We suggest that Poplawski began providing material for these articles after he was

inspired to do so by the original MCM manuscript [31], which he obtained somehow.

At the end of September 2009, similarly, Ashtekar, Campiglia, and Henderson pub-

lished [50] wherein the first citation is to the Feynman paper [68] that was considered

in the introduction to [1]. This is interesting because Ashtekar had not been citing

Feynman’s war-era papers from 70 years earlier, but then he did do so immediately

after this writer distributed [31]. That paper began with a quote taken from one of

Feynman’s less famous war-era papers where he makes a comment about the time

ordering of events not being as important as the way events are encoded in his for-

malism. ArXiv lists the submission date on Ashtekar et al.’s paper [50] as about one

or two weeks after an anonymous reviewer at arXiv rejected [31].3 Since LQC was

multiply cited in [31]4—LQC being a theory whose bottom-liners include Ashtekar5—

it is not unlikely that the arXiv reviewer, if that was not Ashtekar himself, sent the

manuscript to Ashtekar.

Ashtekar may have obtained the manuscript not through arXiv but through an-

other channel. Just weeks before Ashtekar et al. published [50], this writer had

distributed [31] in the newly opened Center for Relativistic Astrophysics (CRA) at

Georgia Tech whose founding faculty include two former colleagues of Ashtekar’s:

1Inverse radial spaghettification, a term coined in [40], describes the MCM mechanism for dark energy dependent
on the rarefaction of time as the present accelerates toward the future more quickly than the past. Time rarefaction
was called inverse radial spaghettification.

2We have since sought to disassociate the present and the singularity as H and ∅. However, this convention was
in place during the main publication period for the Poplawski articles [236–244].

3Unfortunately, we have no record of the date of the original submission of [31] to arXiv. It was probably around
September 15, 2009.

4LQC and LQG were not cited directly in 2009. Instead we used the terms “bouncing” and “the repulsive force
of quantum geometry” which were taken from Ashtekar’s 2009 LQC talk at Georgia Tech. (The record of this talk
was subsequently deleted from the internet.)

5The bottom-liners also include Bojowald who declared LQC “dead” in 2013 (see [111]).
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Pablo Laguna1 and Deirdre Shoemaker. The purpose of the email distribution was

to advertise that this writer would give a talk on the MCM in the CRA that week.

Shoemaker, who had been working side by side with Ashtekar in Pennsylvania just

a year earlier, attended the talk, but she was most intently on her phone for the

duration,2 almost intentionally projecting disinterest, or disrespect, and is unlikely to

have made any effort to help this writer disseminate his research.

The key point in all of this is that, somehow, [31] was deemed not good enough

even to appear on arXiv as a preprint, though it was good enough to prompt an

immediate response paper from leading names in the field [50]. Usually eliciting a

response paper at all is considered a high achievement in theoretical physics, and

an immediate response from a leader in the field (Ashtekar) is high praise indeed.3

As a counterexample, consider that many papers passing the “very high,” “very

meaningful,” and “critically important” bar of peer review go on to be completely

ignored and accumulate a layer of dust serving as a reminder that it did, at one

point, pass peer review, meaning that the publishing cartel bestowed a cookie upon

the authors who can all add the cookie crumbles to their CV’s... which mean nothing

weighed against the merit of the research that appeared in the publication. The

cartel’s cookie crumbles have become overly important in the modern era where the

merit of the research in question is too often non-existent or not significant.

Despite science’s alleged self-correcting mechanism, the exact dynamic from 2009

unfolded again in 2011. Once again, arXiv rejected another manuscript [40] based

on their unpublished, uncited censorship guidelines. It seems that after this later

manuscript made the back channel rounds, negative frequency resonant radiation was

immediately discovered [43], and a team at USC immediately built a working quantum

computer [245]. Note that since frequency is inverse time, negative frequency resonant

radiation is a negative time mode exactly like the |t−⟩ state suggested only months

earlier in [40]. In [30], we suggested to look for correlations with delay, then the

BaBar collaboration announced that they had decided to reanalyze their old data

for correlations with delay, and that they did affirmatively find them [32], just a few

months later.

In 2009, the first account of the MCM [31] was “not good enough” even to be

allowed as an arXiv preprint, but it garnered a praiseworthy response. In 2011, [40]

1Laguna deserves an honorable mention and thanks for inviting not just Ashtekar to Georgia Tech, but also
Penrose, meaning that both of the speakers that inspired the MCM were the invitees of Laguna.

2One wonders how Shoemaker could pursue a PhD, make it through the academic grinder into a tenure track
position, get a promotion as a founding member of a center for relativistic astrophysics, and then show absolutely no
interest when some of the most important astrophysical mysteries of the universe are plainly spelled out before her
eyes on a whiteboard. Affirmative action likely explains the whole thing.

3Finkelstein wrote two MCM response papers [147,148] after arXiv rejected [31], but before they rejected [40].
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still did not meet the bar of arXiv’s unpublished censorship criteria. Not only did that

update garner MCM response papers, it garnered MCM response experiments. This

is high praise indeed because experiments cost time and money whereas papers only

cost time. It means that the “peers” of this writer have “reviewed” the manuscript

and decided to change research direction in favor of the MCM. If the results of the

experimental response had been negative, then the praise would be lessened only

somewhat because it would still be true that we had presented an admirable new

idea. This is the primary function of theorists: to theorize new theories. In that

regard, one may compare the MCM to other very famous theories that are worse yet

still manage to reap all of the praise offered by the community of theorists. Unlike the

experimental tests of most respected and praiseworthy theories, however, the results

of the MCM experimental response were all affirmative. Therefore, although the

MCM has not passed “peer review,” it has been known for an experimental fact—

multiple experimental facts, actually” [32,43,245] at least!—that it describes Nature

better than any other theory that currently exists. This was known all throughout

2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, and at least several months

in 2022, but there has been no accompanying update to the public understanding of

science.

We are essentially accusing Abhay Ashtekar, Nikodem Poplawski, and others of

plagiarism, but, in the technical sense, there has been no plagiarism. In the tech-

nical sense, the complaints listed here only suggest that the alleged self-correcting

mechanism in science does not exist, and many tenured professionals do not conform

to certain ethical standards. We pointed out Ashtekar et al.’s spurious Feynman

citation as evidence of his having viewed [31], so consider that in [50], Ashtekar et

al. wrote that they were being so vague not to avoid writing about the MCM directly,

but rather because they would leave “the detailed derivations and discussions to a

longer article.” Did those derivations exist at the time of the publication of [50]? Had

they been first suggested after someone looked at the 2009 manuscript which arXiv

rejected [31]? Perhaps they were suggested but not carried out during the hasty

preparation and revision of the rough draft that preceded the preprint cited here

as [50]? Perhaps the hastiness in that regard was motivated by a desire to fabricate

a parallel false genesis for what very obviously appeared to them to be a fantastic

new idea? One wonders if the promised detailed derivations ever did appear in the

literature. If not, did they ever come into existence? If not, was [50] worded so as to

mislead readers about the existence of the derivations?

Ashtekar et al. write the following in [50]. However, one wonders how they managed
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to report a “rigorously developed Hamiltonian theory” without reporting a rigorous

development of anything at all. To the extent that MCM papers are sometimes said

to contain “nonsense,” it is suggested that this excerpt from [50] contains nonsense.

“Because of [...] the Schrödinger equation we can now pass to a sum over

histories a la Feynman. [...] We emphasize that the result was derived from

a Hamiltonian theory. We did not postulate that [our equation] is given by

a formal path integral. Rather a rigorously developed Hamiltonian theory

guaranteed that [our equation] is well-defined.”

In 2009’s [31], we did not include a detailed derivation, and we did not claim

rigor without derivation, which is what Ashtekar et al. have done. The diagrams

in [31] explain an idea much more clearly than Ashtekar et al. were able to explain

anything with their non-rigorous rigor of math salad in [50]. They included neither

diagrams nor derivations, but, somehow, their paper was good, and ours was found

to be terrible. Not just terrible, [31] was determined to be so unacceptably terrible

that it attained the rare bar of rejection at arXiv.

How have Ashtekar et al. “rigorously developed” their theory while leaving the

“detailed derivations and discussions to a longer article?” The reader should be very

careful to note that if the rigor of Ashtekar et al.’s result is offloaded elsewhere beyond

their paper’s pages, then [31] and [50] are similar indeed! Ashtekar et al.’s murky, im-

precise, arguably self-contradictory wording contrasts [31] wherein the abstract states,

“No attempt at quantification is made.” Instead, we pursue a qualitative analysis of

the diagrams that guarantee our framework is well defined. This sharply contrasts

Ashtekar et al.’s [50] when the qualitative discussion of diagrams is practical to a

degree far beyond the qualitative analysis of quantitative equations that don’t, when

taken all together, form a rigorous derivation of anything. Generally, quantitative

analysis is only superior to qualitative analysis when it is rigorous. Otherwise, math

salad is not as good as pictures.1

As an example of real quantitative rigor, consider the unassailable truth of the ap-

pearance of the coefficient of Einstein’s equation 8π in the first intuitive manipulations

of the MCM once the equally unassailable truth of

2π +
(
Φπ
)3 ≈ 137 , (C.1)

was established. Somehow, certain individuals have slunk into the halls of power

in scholarship to convince everyone that Feynman was wrong when he is famously

1In [246], Pugh writes, “One thing you will observe about all [the books I suggest ]—they use pictures to convey
the mathematical ideas. Beware of books that don’t.”
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paraphrased as stating that all good physicists have the fine structure constant on

the wall in their offices and ask themselves where it comes from, and that no one has

a good explanation for it, and that it would probably be related to π if they did.

Given that Ashtekar et al. were able to produce the inferior analysis that became

[50] within what was likely just days of reading about the MCM, and all within the

context of their own years or decades long familiarity with their own material, it is

demonstrated exactly how well defined the MCM already was in 2009. Ashtekar et

al. strongly emphasize that their result was derived from a Hamiltonian theory, but

they do not say whether or not they were inspired to make that derivation for the first

time immediately after viewing the contentious paper that arXiv rejected in 2009 [31].

To the knowledge of this writer, they have not shown that the claimed derivations

exist at all. When they wrote that they did not postulate that their formula was

given by a formal path integral, was that to distinguish their paper from [31] wherein

we postulated that the MCM is given by the formal path integral?

The critical reader will notice that “detailed derivations and discussions” are left

out in both [31] and [50], but only one of them appears on arXiv today. In the

acknowledgments section at the end of [50], Ashtekar et al.’s first thanks are to Jerzy

Lewandowski who was the advisor or colleague of Poplawski at the University of

Warsaw. In April 2010, around the time Poplawski began appearing in very many

popular science articles about the universe being in a black hole, Poplawski also

published [247]. Note how the title of that paper is evocative of the idea of inverse

radial spaghettification:1 “Radial Motion into an Einstein–Rosen Bridge.” Likewise,

the title of Lewandowski’s October 2009 talk at LSU was evocative: “Spin foams from

loop quantum gravity perspective.” What was this new perspective that Lewandowski

was evangelizing in Louisiana just a month after arXiv rejected [31]?

While on the topic of the conduct of science in a manner that is other than ethical,

consider the following. At some point in 2011 while preparing a draft of [40], this

writer encountered a slideshow from another talk given at LSU. The title was some-

thing like “Path Integral Approach to Spin Foams,” and the name on the slides was

likely Jonathan Engle (a speaker in [111]: the “eulogy” for LQC.) The slides were

dated from the end of 2008, but when this writer checked on the seminar schedule

at the host university, LSU, the talk was really given at the end of 2009. The date

from 2008 does not appear to have been “a typo,” in the opinion of this writer. The

1The term “inverse radial spaghettification” did not appear in the literature until 2012 because arXiv did not
allow it to be added to the literature in 2011. To understand how the title of Poplawski’s 2010 paper is evocative of
2009’s [31], note that radial motion means 1D motion, and together with “into an Einstein–Rosen bridge,” it means
motion toward a bridge between two distant regions of the universe along the 1D manifold defined by the motion.
The idea presented in [31] was that dark energy is an expected feature in pairs of worldsheets in the cosmological
lattice connected in 1D through a bounce. The connection is 1D because it is along χ5.

290



Jonathan W. Tooker

erroneous time stamp is notable because the path integral formulation of spin foams

was not yet conceived in 2008, and a lesser error might not have changed the year of

initial formulation to precede the MCM’s 2009 path integral cosmology [31]. Based

on the description of a new use for the Feynman path integral in [31], and on the

fact that Engle was Ashtekar’s PhD student, it is likely that the new topic presented

and misdated in this talk was inspired by [31]. When one views the LSU Physics

and Astronomy talk schedule archives [248], one sees all the years 2004–present, ex-

cept 2009–2012: the window in which Engle presented the misdated slides. If other

researchers were already jockeying in 2009 to position themselves to receive credit

for a discovery that was not their own, then whose discovery was it? A full forensic

accounting of the failure of physics to self-correct in this regard is required.

Finally, we wish to point out that Lewandowski is a coauthor on [249] which was

published in September 2009 around the same time we were proposing to wrap the

Minkowski diagram around a cylinder [31]. Therein, Kamiński et al. refer to an

unusual cylindrical object Cyl(A(Σ)). One sees that same object in at least one

earlier arXiv preprint coauthored by Lewandowski [250], but one wonders if perhaps

they have done a more professional time stamp alteration job than was suggested

above when discussing Engle’s “Path Integral Formulation of Spin Foams” slides.
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[180] P. Ehrenfest. Gleichförmige Rotation starrer Körper und Relativitätstheorie. Physik Zeitschrift. 10

918, (1909).

[181] Oyvind Grøn. Space Geometry in Rotating Reference Frames: A Historical Appraisal, (2004).

[182] Slava G. Turyshev and Viktor T. Toth. The Pioneer Anomaly. arXiv:1001.3686, (2010).

[183] Dario Modenini and Paolo Tortora. Pioneer 10 and 11 Orbit Determination Analysis Shows no

Discrepancy with Newton–Einstein’s Laws of Gravity. arXiv:1311.4978, (2013).

[184] Scott Locklin. The Enigma of the Ford Paradox, (2013). scottlocklin.wordpress.com/

2013/03/07/the-enigma-of-the-ford-paradox/.

[185] Joseph Ford, Georgio Mantica, and Gerald H. Ristow. The Arnol’d Cat: Failure of the

Correspondence Principle. Physica D, 50:493–520, (1991).

[186] Joseph Ford and Matthias Ilg. Eigenfunctions, Eigenvalues, and Time Evolution of Finite, Bounded,

Undriven, Quantum Systems are Not Chaotic. Phys. Rev. A. 45 (9) 6165-6173, (1992).

299



[187] Donatello Dolce. Compact Time and Determinism for Bosons: Foundations. arXiv:0903.3680,

(2009).

[188] Donatello Dolce. Gauge Interaction as Periodicity Modulation. arXiv:1110.0315, (2011).

[189] Donatello Dolce. Classical Geometry to Quantum Behavior Correspondence in a Virtual Extra

Dimension. arXiv:1110.0316, (2011).

[190] Donatello Dolce. Intrinsic Periodicity: The Forgotten Lesson of Quantum Mechanics.

arXiv:1304.4167, (2013).
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