A conjecture about Euler's totient function and primes

Redoane D.*
E-mail: *red.daoudi@laposte.net

Abstract

Here I present a conjecture about Euler's totient function and primes.

Keywords: Prime numbers, conjecture, Euler's totient function

Conjecture

ϕ denotes the Euler's totient function, a denotes a natural number >1 and n denotes a natural number such that $n=4 k(k$ an integer $\geq 1)$. If $\phi\left(a^{n}-2\right)+1 \equiv n-1(\bmod n)$ then $\phi\left(a^{n}-2\right)+1$ is always a prime number.

Example with $a=119$ and $n=20: \phi\left(119^{20}-2\right)+1 \equiv 19(\bmod 20)$ then $\phi\left(119^{20}-2\right)+1$ is prime.

Investigations

Max Alekseyev studied this conjecture but no proof has been found [1].
A counterexample would have to satisfy the equation:

$$
a^{n}-2=c \cdot p^{k}
$$

with $c \in\{1,2\}$, a prime $p \equiv 3(\bmod 4)$, and an integer $k>1$. Below I will show that k cannot be even and also cannot be a multiple of 3 , implying that $k \geq 5$ is coprime to 6 .

Denoting $x:=a^{n / 4}$, we rewrite the two equations as

$$
x^{4}-2=c \cdot p^{k} .
$$

If k is even, then introducing $y:=p^{k / 2}$, we obtain the quartic equation

$$
x^{4}-2=c \cdot y^{2} .
$$

In the case $c=1$, it is easy to establish absence of meaningful solutions via factoring $x^{4}-y^{2}=$ $\left(x^{2}-y\right)\left(x^{2}+y\right)$, while in the case $c=2$ we can solve it with Magma's 'IntegralQuarticPoints' function, showing that there are no solutions in this case either.

If $3 \mid k$, then the equation is reduced to two elliptic curves (indexed by c):

$$
Y^{2}=c X^{3}+2,
$$

where $Y:=a^{n / 2}$ and $X:=p^{k / 3}$. They have the only integral points (easily computed in Magma or Sage) $(X, Y)=(-1,1)$ for $c=1$ and $(X, Y) \in\{(-1,0),(1,2),(23,156)\}$ for $c=2$, neither of which gives us a solution to the original equation.

Hence, we have $\operatorname{gcd}(k, 6)=1$ and thus $k \geq 5$.

PS. We may also notice that for $c=2, x$ must be even the equation takes form

$$
8\left(\frac{x}{2}\right)^{4}-p^{k}=1
$$

while for $c=1$ it can be written as

$$
x^{4}-p^{k}=2 .
$$

That is, p^{k} if it exists would be the smallest of two powerful numbers that differ in 1 ([OEIS A060355](https://oeis.org/A060355)) or 2 ([OEIS A076445](https://oeis.org/A076445)).

Reference

[1] Max Alekseyev (https://math.stackexchange.com/users/147470/max-alekseyev), Euler's totient function and primes, URL (version: 2022-06-23): https://math.stackexchange.com/q/4478910

