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Abstract
In this paper (i) is given a new representation for gamma matrices in which is confirmed the-

oretically the absence of positive helicity neutrino and respectively negative helicity antineutrino,
(ii) is proved the equivalence of Dirac equation for mass m with Proca equation for mass 2m, and
(iii) is proposed a discrete symmetry group for weak and strong interactions built with 4 unitary
and 4 nilpotent operators. The cosmological constant predicted by theory is Λ = 2πG(c/ℏ)3m4,
where m is neutrino mass.

1 Introduction
Let A 1, A 2, B 1 and B 2 be four anticommuting complex Lorentz transformations, two being Hermitian
and two anti-Hermitian

A
†

1 = A 1 ,

A
†

2 = A 2 ,

B
†

1 = −B 1 ,

B
†

2 = −B 2 ,
(1)

and

A
2

1 = A
2

2 = 1 , B
2

1 = B
2

2 = −1 .
(2)

The four complex Lorentz transformations are explicitly given by

A 1 =


0 i 0 0
−i 0 0 0
0 0 0 1
0 0 1 0

 ,

A 2 =


0 0 −i 0
0 0 0 1
i 0 0 0
0 1 0 0

 ,

B 1 =


0 i 0 0
i 0 0 0
0 0 0 1
0 0 −1 0

 ,

B 2 =


0 0 i 0
0 0 0 −1
i 0 0 0
0 1 0 0

 ,

(3)

and used to define four contravariant gamma matrices of our representation

γ0 = A 1 , γ1 = i A 2 , γ2 = B 2 , γ3 = B 1 . (4)

The positive energy plane wave solutions Φ1(p) and Φ2(p) of Dirac equations are

Φ1(p) =
1

[2ε(ε+ p3)]
1/2


m

−i(ε+ p3)
p1 − ip2

0

 e−ipx , Φ2(p) =
1

[2ε(ε− p3)]
1/2


0

p2 − ip1
ε− p3
m

 e−ipx ,

(5)
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with

HΦ1(p) = +εΦ1(p) , HΦ2(p) = +εΦ2(p) , (6)

and the negative energy plane wave solutions Ψ1(p) and Ψ2(p) are

Ψ1(p) =
1

[2ε(ε+ p3)]
1/2


p1 + ip2

0
m

−ε− p3

 e+ipx , Ψ2(p) =
1

[2ε(ε− p3)]
1/2


−i(ε− p3)

m
0

p2 + ip1

 e+ipx ,

(7)

with

HΨ1(p) = −εΨ1(p) , HΨ2(p) = −εΨ2(p) , (8)

where H = A 1A 2 ∂1 − iA 1B 2 ∂2 − iA 1B 1 ∂3 +mA 1 denotes the Hamiltonian, and ε = +
√
p2 +m2.

2 Spinors under Charge Conjugation

We introduce two charge conjugation operators C1 and
∼
C2 which transform positive energy spinors

Φ1(p) and Φ2(p) into negative energy spinors Ψ1(p) and respectively Ψ2(p), and another two charge
conjugation operators

∼
C1 and C2 which transform negative energy spinors Ψ1(p) and Ψ2(p) into positive

energy spinors Φ1(p) and respectively Φ2(p).

Ψ1(p) = C1Φ1(p) ,

Φ1(p) =
∼
C1Ψ1(p) ,

Φ2(p) = C2Ψ2(p) ,

Ψ2(p) =
∼
C2Φ2(p) , (9)

where
C1 = iA 1B 1B 2C ,
∼
C1 = −iB 2C ,

C2 = −A 1A 2B 1C ,
∼
C2 = A 2C ,

(10)

and C denotes the complex conjugation operator. Every charge conjugation operator is antilinear,
acts on a wave function first by complex conjugation operator C and then by a unitary matrix. Under
charge conjugation the absolute value of the inner product remains invariant, therefore it represent a
symmetry operation. The charge conjugation operators all commute and the following relations holds

C1 C1 =
∼
C1

∼
C1 = −A 1B 1 ,

C1
∼
C1 =

∼
C1 C1 = 1 ,

C1
∼
C2 =

∼
C2 C1 = −iA 2 B 2 ,

∼
C1

∼
C2 =

∼
C2

∼
C1 = −iA 1 A 2 B 1 B 2 ,

C2 C2 =
∼
C2

∼
C2 = +A 1B 1 ,

C2
∼
C2 =

∼
C2 C2 = 1 ,

C2 C1 = C1 C2 = +iA 1 A 2 B 1 B 2 ,

C2
∼
C1 =

∼
C1 C2 = iA 2 B 2 .

(11)

Using charge conjugation operators we can define, in similar fashion of shift operators of SU(3), two
left and two right chiral conjugation operators

CL =
1

2
(C1 − i

∼
C2 ) ,

∼
CL =

1

2
(
∼
C1 + iC2 ) ,

CR =
1

2
(C1 + i

∼
C2 ) ,

∼
CR =

1

2
(
∼
C1 − iC2 ) .

(12)

The left chiral operators CL,
∼
CL together with A 1 A 2 B 1 B 2 = γ5 and A 2 B 2 = P form a closed set

under commutation, and similarly the right chiral operators CR,
∼
CR together with γ5 and P form a

closed set under commutation
[ γ5 , CL ] = −2CL ,

[ γ5 ,
∼
CL ] = −2

∼
CL ,

[P , CL ] = −2
∼
CL ,

[P ,
∼
CL ] = −2CL ,

[ γ5 , P ] = 0 ,

[ γ5 , CR ] = +2CR ,

[ γ5 ,
∼
CR ] = +2CR ,

[P , CR ] = +2
∼
CR ,

[P ,
∼
CR ] = +2CR ,

[ γ5 , P ] = 0 ,

(13)
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which will be called the left algebra LA and respectively right algebra RA. The union of left algebra
and right algebra is also a closed algebra under commutation, the following relations between left and
right operators holds

[
∼
CL , CR ] = −γ5 ,

[CL , CR ] = −P ,

[
∼
CR , CL ] = +γ5 ,

[
∼
CR ,

∼
CL ] = +P .

(14)

The parity P and chirality γ5 are unitary, while left and right chiral operators are nilpotent

C 2
L =

∼
CL

2 = 0 , C 2
R =

∼
CR

2 = 0 , (15)

antilinear and orthogonal

CL
∼
CL =

∼
CL CL = 0, CR

∼
CR =

∼
CR CR = 0 . (16)

The six elements set, namely two left chiral operators CL,
∼
CL, two right chiral operators CR,

∼
CR , P

and γ5 form a closed algebra under commutation relations 13 and 14. They are explicitly given by

CL =


0 0 0 0
0 0 0 −i
+1 0 0 0
0 0 0 0

C ,

∼
CL =


0 0 0 0
0 0 0 +i
+1 0 0 0
0 0 0 0

C ,

γ5 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 ,

CR =


0 0 +1 0
0 0 0 0
0 0 0 0
0 +i 0 0

C ,

∼
CR =


0 0 +1 0
0 0 0 0
0 0 0 0
0 −i 0 0

C ,

P =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 .

(17)

3 Spinors under Spatial Reflection and Time Reversal
We explore the action of P = A 2 B 2 to the eigenfunctions of positive and negative energy

PΦ1(p) = +Φ1(γ5 p),

PΦ2(p) = −Φ2(γ5 p),

PΨ1(p) = −Ψ1(γ5 p),

PΨ2(p) = +Ψ2(γ5 p),
(18)

and the action of T = iA 1 B 2 and
∼
T = A 1 A 2 to the eigenfunctions of negative energy and positive

energy, respectively

TΦ1(p) = −Φ2(A 1B 1 p),

TΦ2(p) = +Φ1(A 1B 1 p),

∼
TΨ 1(p) = −Ψ2(B 2 A 2 p),
∼
TΨ2(p) = +Ψ1(B 2 A 2 p).

(19)

While charge conjugation operators transform a spinor into another of opposite energy leaving its
four-momentum unchanged, P transform a spinor with four-momentum p = (ε, p1, p2, p3) into the
same spinor but with four-momentum γ5 p = (ε,−p1,−p2, p3). T acts on positive energy spinors by
changing its four-momentum p into other spinor of positive energy and four-momentum A 1B 1 p =
(−ε, p1,−p2, p3). Similarly,

∼
T acts on negative energy spinor by changing its four-momentum p into

the other the spinor of negative energy and four-momentum B 2A 2 p = (−ε,−p1, p2, p3). Operators T
and

∼
T are anti-Hermitian and satisfy T2 =

∼
T2 = −1. They reverse the sign of energy ε and also of one

spatial component of momentum, therefore we will denote time reversal operators as being T and
∼
T.

Operator P is Hermitian, satisfy P2 = 1, reverse the sign of two components of momentum, therefore
we will denote the parity operator as being P. The existence of two time reversal operators and the
symmetry of left and right algebra 13 foresee the existence of two fundamental particles predicted by
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the Dirac equation. Parity and time reversal operators are anti-commuting and form a closed algebra
under commutation

[T ,
∼
T ] = 2iP , [P , T ] = −2i

∼
T , [P ,

∼
T ] = 2iT . (20)

We can define two nilpotent operators, i.e. raising T+, lowering T− and T3 operator as

T3 =
1

2
P , T+ =

1

2
(i

∼
T− T) , T− =

1

2
(i

∼
T+ T) , (21)

which commutes with γ5, fulfill the algebra SU(2) of the angular momentum operators

[T3 , T+ ] = +T+ , [T3 , T− ] = −T− , [T+ , T− ] = 2T3 , (22)

and form a closed algebra together with P and γ5. Explicitly, time reversal operators defined by 19
are given by

T =


0 0 0 +1
0 0 i 0
0 i 0 0
−1 0 0 0

 ,
∼
T =


0 0 0 i
0 0 −1 0
0 +1 0 0
i 0 0 0

 . (23)

The properties of parity and time reversal operators shed light on the spatial geometry of particles
predicted. For both particles, the action of parity operator to reverse the sign of x and y, but not all
three spatial coordinates as we would have expected, is suggesting that at any moment these entities
exist only in x− y plane and this bear a resemblance with oscillation of electromagnetic radiation in
a plane perpendicular to the direction of motion.The action of T is to reverse the sign of t and y while
the action of

∼
T is to reverse the sign of t and x. Following the resemblance with the electromagnetic

radiation where electric and magnetic field oscillate in planes perpendicular one to another, the action
of time reversal operators as described above is suggesting that each of the two entities described by
Dirac equation exist in planes one perpendicular to the other, like electric and magnetic fields.

4 Left Chiral and Right Chiral Particles
All combinations of simultaneous charge conjugation, parity and time reversal operators are of funda-
mental importance

C1PT = A 1C ,
∼
C1PT = B 1C ,

C1P
∼
T = iγ5B 1C ,

∼
C1P

∼
T = iγ5A 1C ,

C2 PT = iγ5B 1C ,
∼
C2 PT = −iγ5A 1C ,

C2 P
∼
T = −A 1C ,

∼
C2 P

∼
T = B 1C ,

(24)

because none lead to Stückelberg-Feynman particle-antiparticle interpretation of the solutions of Dirac
equations, i.e. a particle of mass m is equivalent to an anti-particle of mass m traveling backward in
spacetime. Squaring the relations 24 we obtain

(C1PT)
2 = (C1P

∼
T)2 = −P ,

(
∼
C1PT)2 = (

∼
C1P

∼
T)2 = +P ,

(C2 PT)2 = (C2 P
∼
T)2 = −P ,

(
∼
C2 PT)2 = (

∼
C2 P

∼
T)2 = +P ,

(25)

which is different from result [1] of Wigner who obtained −14, and also different from that of Weinberg
[2] who obtained +14. The commutation relation [ γ5 , P ] = 0 imply that eigenvalues of chirality γ5
and parity P can be used to classify their common eigenstates. The −1 and +1 eigenvalues of γ5 will
be denoted L and R i.e. −1 correspond to left chiral L and +1 to right chiral R, while the eigenvalues
−1 and +1 of P will be denoted as − and + i.e. − for negative parity eigenvalue −1 and + for positive
parity +1. If Ψ is a solution of Dirac equation then we define the four common eigenstates of chirality
and parity as:

Ψ+L =

∼
CL − CL

2
Ψ ,

Ψ−L =

∼
CL + CL

2
Ψ ,

Ψ+R =

∼
CR + CR

2
Ψ ,

Ψ−R =
CR −

∼
CR

2
Ψ .

(26)
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The action of parity and chirality operators on eigenstates are

γ5 Ψ+L = −Ψ+L ,

PΨ+L = +Ψ+L ,

γ5 Ψ−L = −Ψ−L ,

PΨ−L = −Ψ−L ,

γ5 Ψ+R = +Ψ+R ,

PΨ+R = +Ψ−R ,

γ5 Ψ−R = +Ψ−R ,

PΨ−R = −Ψ−R .

(27)

Starting with the complex conjugate of Dirac equation, we find that, for the eigenstates 26 the following
coupled partial differential equations holds

i(γ0 ∂

∂x0
+ γ3 ∂

∂x3
)Ψ+R + i(γ1 ∂

∂x1
+ γ2 ∂

∂x2
)Ψ−R −mΨ+L = 0 ,

i(γ0 ∂

∂x0
+ γ3 ∂

∂x3
)Ψ−R + i(γ1 ∂

∂x1
+ γ2 ∂

∂x2
)Ψ+R −mΨ−L = 0 ,

i(γ0 ∂

∂x0
+ γ3 ∂

∂x3
)Ψ+L + i(γ1 ∂

∂x1
+ γ2 ∂

∂x2
)Ψ−L −mΨ+R = 0 ,

i(γ0 ∂

∂x0
+ γ3 ∂

∂x3
)Ψ−L + i(γ1 ∂

∂x1
+ γ2 ∂

∂x2
)Ψ+L −mΨ−R = 0 .

(28)

Introducing 16-dimmensional spinor Υ = (Ψ+L,Ψ−L,Ψ+R,Ψ−R)
T and four 16× 16 matrices

Γ0 =


0 0 γ0 0
0 0 0 γ0

γ0 0 0 0
0 γ0 0 0

 ,

Γ2 =


0 0 0 γ2

0 0 γ2 0
0 γ2 0 0
γ2 0 0 0

 ,

Γ1 =


0 0 0 γ1

0 0 γ1 0
0 γ1 0 0
γ1 0 0 0

 ,

Γ3 =


0 0 γ3 0
0 0 0 γ3

γ3 0 0 0
0 γ3 0 0

 ,

(29)

the coupled partial differential linear equations 28 can be written as a Dirac equations

(iΓα∂α −mI16)Υ = 0 , (30)

where I16 is the 16×16 identity matrix and the Γ matrices satisfy the usual anticommutation relations
ΓαΓβ + ΓβΓα = 2Eαβ = 2 diag(I4,−I4,−I4,−I4). Let Φ be the superposition of chirality and parity
eigenstates

Φ = Ψ+L +Ψ−L +Ψ+R +Ψ−R , (31)

wich is also a solution of Dirac equation. The solutions Φ and Ψ of Dirac equations are transformed
one into another and vice-versa by the chirality and parity conjugation operator C

Φ = CΨ ,

Ψ = CΦ ,
C =


0 0 1 0
0 0 0 i
1 0 0 0
0 i 0 0

C . (32)

Chirality and parity conjugation operator is antilinear and anticommutes with the Hamiltonian, there-
fore if Ψ is a positive(negative) energy solution then Φ = CΨ is a negative (positive) solution.

C2 = 1 , HC = −CH . (33)

Closed algebra under commutation can be constructed by extending LA and RA with chirality and
parity conjugation operator C and the following commutation relations holds

[CL , C ] = −P ,

[
∼
CL , C ] = −γ5 ,

[P , C ] = 2(
∼
CR − CL ) ,

[CR , C ] = +P ,

[
∼
CR , C ] = +γ5 ,

[ γ5 , C ] = 2(CR −
∼
CL) .

(34)
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In the same manner we defined the common eigenstates of chirality for Ψ, we define them for Φ which
also has four common eigenstates of chirality and parity

Φ+L =

∼
CL − CL

2
Φ ,

Φ−L =

∼
CL + CL

2
Φ ,

Φ+R =

∼
CR + CR

2
Φ ,

Φ−R =
CR −

∼
CR

2
Φ ,

(35)

The action of parity and chirality operators on Φ eigenstates are

PΦ−L = −Φ−L ,

PΦ+L = +Φ−L ,

γ5 Φ−L = −Φ−L ,

γ5 Φ+L = −Φ+L ,

PΦ−R = −Φ−R ,

PΦ+R = +Φ−R ,

γ5 Φ−R = +Φ−R ,

γ5 Φ+R = +Φ+R ,

(36)

the sum of Φ eigenvalues of parity and chirality is equal to Ψ

Ψ = Φ+L +Φ−L +Φ+R +Φ−R . (37)

Chirality and parity conjugation operator C transform Φ eigenstates of chirality and parity into Ψ
eigenstates with inverse eigenvalues of chirality and parity, and vice-versa

Ψ+L = CΦ−R ,

Ψ−L = CΦ+R ,

Ψ+R = CΦ−L ,

Ψ−R = CΦ+L ,

Φ−R = CΨ+L ,

Φ+R = CΨ−L ,

Φ−L = CΨ+R ,

Φ+L = CΨ−R .

(38)

The Φ eigenstates satisfies coupled partial differential equations similar with equations 28 in which
Ψ−L, Ψ+L, Ψ+R and Ψ−R are replaced by Φ+R, Φ−R, Φ−L and respectively Φ+L. All 8 left and right
eigenstates can be expressed in terms of parity and chirality operators as

Ψ±L =
1± P

2

1− γ5
2

Φ ,

Φ±L =
1± P

2

1− γ5
2

Ψ ,

Ψ±R =
1± P

2

1 + γ5
2

Φ ,

Φ±R =
1± P

2

1 + γ5
2

Ψ ,

(39)

and similarly their adjoints

Ψ±L = Φ
1± P

2

1 + γ5
2

,

Φ±L = Ψ
1± P

2

1 + γ5
2

,

Ψ±R = Φ
1± P

2

1− γ5
2

,

Φ±R = Ψ
1± P

2

1− γ5
2

.
(40)

Next, we define left XL and right XR eigenstates of chiral operator by superposition of all left chiral
and respectively right eigenstates

XL = Φ−L +Φ+L +Ψ−L +Ψ+L , XR = Φ−R +Φ+R +Ψ−R +Ψ+R , (41)

which form an orthogonal set

XLXL = 0 ,

XLXR = 0 ,

XRXR = 0 ,

XRXL = 0 ,
(42)

mix positive (negative) energy solutions with negative (positive) energy solutions of Dirac equation

XL =
1− γ5

2
(Ψ + Φ) ,

XL = (Ψ + Φ)
1 + γ5

2
,

XR =
1 + γ5

2
(Ψ + Φ) ,

XR = (Ψ + Φ)
1− γ5

2
,

(43)
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and they satify Klein-Gordon equation

(□+m2)XL = 0 , (□+m2)XR = 0 , (44)

and the following partial differential coupled equations

i ∂αγ
αXL −mXR = 0 , i ∂αγ

αXR −mXL = 0 . (45)

Out of 64 currents between all 8 common eigenstates of chirality and parity defined by 39 and 40,
32 of them, which are between L and R or R and L are zero. The 32 non-zero currents are between
eigenstates of the same chirality, but not being conserved we introduce left and right conserved four-
currents (probability densities) for eigenstates of the same chirality defined by 41

jα(XL, XL) = XLγ
αXL , jα(XR, XR) = XRγ

αXR , (46)

which are equal and positively defined

C jα(XL, XL) = jα(XL, XL) , C jα(XR, XR) = jα(XR, XR) . (47)

We interpret the conservation of the left and right four-currrent

∂α jα(XL, XL) = 0 , ∂α jα(XR, XR) = 0 , (48)

and the zero current between eigenstates of left an right chirality

jα(XL, XR) = jα(XR, XL) = 0 , (49)

as the existence of chiral particles L and R. The two chiral particles are transformed one into another
by chirality and parity operator C

XL = CXR , XR = CXL , (50)

and are two different states of the particle described by Ψ + Φ = XL + XR, which has no definite
chirality nor parity and is an eigenstate of chirality and conjugation operator, i.e. is transformed into
itself by chirality and parity operator,

C(Ψ + Φ) = Ψ+ Φ , (51)

therefore is a Majorana particle. All three particles mix positive (negative) energy solutions of Dirac
equation with negative (positive) energy solutions, and their currents are explicitly given by

jα(XL, XL) = (Ψ + Φ)γα 1− γ5
2

(Ψ + Φ) , jα(XR, XR) = (Ψ + Φ)γα 1 + γ5
2

(Ψ + Φ) , (52)

and

jα(Ψ + Φ,Ψ+Φ) = (Ψ + Φ)γα(Ψ + Φ) . (53)

Next, we calculate in the ultrarelativistic regime ε ≫ m the helicity of L and R particles moving along
the z axis. The helicity operator is given by

h =
1

p
(p1S

1 + p2S
2 + p3S

3) , (54)

where p = (p21 + p22 + p23)
1/2 is momentum and S1 = Σ23, S2 = Σ31, S3 = Σ12 are spatial components

of spin, related to the generators of Lorentz transformations of gamma matrices by Σµν = i
4 [γ

µ, γν ].
Helicity commutes with parity and chirality operator and for a particle moving along z axis we get
h = − 1

2P. For each of the four solution of Dirac equations we calculate the action of helicity operator
on ultrarelativistic left and right particles moving along z axis and get correct predictions

hXL = −1

2
XL , hXR = +

1

2
XR , (55)
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when ε ≫ m. We can now identify the neutrino as the left chiral particle XL having helicity − 1
2 and

the antineutrino as the right chiral particle XR having helicity − 1
2 . Conserved currents are formed

only by left XL and right XR eigenstates of chirality, not by the parity eigenstates. The superposition
of all negative parity eigenstates

P(Ψ−L +Ψ−R +Φ−L +Φ−R) = −(Ψ−L +Ψ−R +Φ−L +Φ−R) , (56)

and of all positive parity eigenstates

P(Ψ+L +Ψ+R +Φ+L +Φ+R) = +(Ψ+L +Ψ+R +Φ+L +Φ+R) , (57)

gives currents which are are not conserved, i.e. we can not built conserved currents using linear
combinations of parity eigenstates. Therefore, it is the chirality which is the fundamental symmetry of
nature, because the left chiral and right chiral currents are conserved and identified with L and right
R particle, i.e. neutrino and respectively antineutrino and the question is if chirality, not parity, is
violated, i.e. if there is a field (particle) which couple with different strengths to L and R currents. The
property of parity operator, in Weyl basis, to transform the left-handed Weyl spinor into the right-
handed Weyl spinor and vice-versa requires that right-handed neutrino and left-handed antineutrino
should also exist. The absence of right-handed neutrino and left-handed antineutrino had led to the
conclusion that parity is not conserved. The mistake was to associate left-handed Weyl spinor, which
gives a four current that is not conserved, to neutrino, and similarly, a right-handed Weyl spinor, which
gives a four current that is not conserved, to antineutrino. Our definition of currents associated to left
and right eigenstates of chirality are conserved 48 and transformed one into another by the chirality
and parity conjugation operator 38, not by the parity operator as in Weyl representation. Therefore,
the puzzling absence of positive helicity neutrino and respectively negative helicity antineutrino, i.e.
parity violation, is a consequence wrong association of spinors to particles. The −1/2 helicity of
the neutrino and +1/2 helicity of antineutrino are a result of their ultrarelatistic regime in which
eigenstates XL and XR of chirality operator γ5 are also eigenstates of parity operator P. We can also
construct conserved currents with first order derivatives of left eigenstates and conserved currents with
first order derivatives of right eigenstates

jα(1)(XL, XL) = ∂µXLγ
α ∂µXL ,

∂α jα(1)(XL, XL) = 0 ,

jα(1)(XR, XR) = ∂µXRγ
α ∂µXR ,

∂α jα(1)(XR, XR) = 0 ,
(58)

as well as conserved currents with second order derivatives of left and respectively right eigenstates

jα(2)(XL, XL) = ∂µ∂νXLγ
α ∂µ∂νXL ,

∂α jα(2)(XL, XL) = 0 ,

jα(2)(XR, XR) = ∂µ∂νXRγ
α ∂µ∂νXR ,

∂α jα(2)(XR, XR) = 0 ,
(59)

and also conserved currents with derivatives of higher order than 2. For both left and right particles,
only jα and jα(1) are independent, all other currents built with derivatives of higher order than one can
be expressed in term of jα or jα(1) as follows

jα(2)(XL, XL) = m4jα(XL, XL) ,

jα(3)(XL, XL) = m4jα(1)(XL, XL) ,

jα(2)(XR, XR) = m4jα(XR, XR) ,

jα(3)(XR, XR) = m4jα(1)(XR, XR) ,
(60)

and so on. The currents jα(XL, XL) and jα(1)(XL, XL) satisfy coupled second order differential equations

□ jα(XL, XL) = −2m2jα(XL, XL) + 2jα(1)(XL, XL) ,

□ jα(1)(XL, XL) = −2m2jα(1)(XL, XL) + 2m4jα(XL, XL) ,
(61)

and similar equations holds for jα(XR, XR) and jα(1)(XR, XR). Next we define four vector fields Aα
L ,

Aα
R, Bα

L , and Bα
R

Aα
L = m2jα(XL, XL)− jα(1)(XL, XL) ,

Bα
L = m2jα(XL, XL) + jα(1)(XL, XL) ,

Aα
R = m2jα(XR, XR)− jα(1)(XR, XR) ,

Bα
R = m2jα(XR, XR) + jα(1)(XR, XR) ,

(62)
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and find that Aα
L and Aα

R fields satisfy Proca equations for a particle with mass 2m

(□+ 4m2)Aα
L = 0 ,

∂αA
α
L = 0 ,

(□+ 4m2)Aα
R = 0 ,

∂αA
α
R = 0 ,

(63)

while Bα
L and Bα

R satisfy Mawxell equations

□Bα
L = 0 ,

∂αB
α
L = 0 ,

□Bα
R = 0 ,

∂αB
α
R = 0 .

(64)

Using the solutions of Dirac equation for free field 5 and 7, by direct calculations we find that left and
right B fields are equal and constant in space-time

Bα
L = Bα

R =
2m2

ε
pα. (65)

This result should be compared with Higgs Kibble cumbersome mechanism [3] that postulates a scalar
field ϕ which couples to a massless boson to obtain a factor in the wave equation for W− boson which
play the same role as a mass term, and it is assumed that the scalar field is constant in space, while
in our representation we have proved, not postulated, the existence of two fields derived from Dirac
equation that are constant in space, and the symmetry SU(2)× LA× RA has the mass built-in, while
Higgs Kibble mechanism requires spontaneous symmetry breaking. The α index in 65 is obvious not
a covariant one, due to ε at the denominator. We multiply B fields as well as A fields with ε/(2m2)
to get covariant fields without changing all previous results. Explicitly, the left and right A-fields are

Aα
L =

ε

2

[
(Ψ + Φ)γα 1− γ5

2
(Ψ + Φ)− 1

m2
∂λ(Ψ + Φ)γα 1− γ5

2
∂λ(Ψ + Φ)

]
,

Aα
R =

ε

2

[
(Ψ + Φ)γα 1 + γ5

2
(Ψ + Φ)− 1

m2
∂λ(Ψ + Φ)γα 1 + γ5

2
∂λ(Ψ + Φ)

]
.

(66)

Since L particle current equals R particle current, and left and right currents built with first derivatives
of eigenstates are equal, it follows that A-fields are also equal Aα

L = Aα
R . In the present framework,

we postulate that for weak interaction processes (i) all particles are represented by the left fields AL,
all antiparticles by the right AR fields and (ii) the Hamiltonian of interaction is

Hint = g

∫
d3x

(
Aλ

L (x) , AR(x)
λ
)
out

G
(
AL

λ(x)

AR
λ(x)

)
inc

, (67)

where left and right fields for incoming particles are superposed separately, as well as left and right
fields for outgoing particles, G = diag(1,−1) is an 2 × 2 matrix whose elements were determined
by requiring that the Hamiltonian of B-fields for a free particle is zero, and g is a constant which
determines the strength of interaction. The postulated Hamiltonian of interaction has resemblance
with that of F.J. Hasert [4] for scattering of a muon neutrino by an electron, constructed with neutral
currents, rather than those of Fermi and V-A theory, constructed with charge transition currents. As
an application of postulated interaction Hamiltonian 67 to weak interactions processes, for muon decay
µ− −→ νµ + νe + e− the A-fields for incoming and outgoing particles are given by

Aλ
L (x)inc = Aλ

Lµ−(p, x) ,

Aλ
L (x)out = Aλ

L e−(p
′, x) +Aλ

L νµ
(k′, x) ,

Aλ
R(x)inc = 0 ,

Aλ
R(x)out = Aλ

L νµ
(k, x) ,

(68)

and the B-fields by

Bλ
L (x)inc = pλ ,

Bλ
L (x)out = p′λ + k′λ ,

Bλ
R(x)inc = 0 ,

Bλ
R(x)out = kλ ,

(69)

where p, p′, k′ and k are the momenta of muon, electron, muon neutrino and respectively electron
antineutrino. Detailed calculations and comparison with the V-A theory and the standard model
of electroweak interactions will be given in a future paper. Using redefined fields we construct the
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Lorentz invariant for left and right B-fields as Bλ
LB

L
λ = m2 and Bλ

RB
R
λ = m2. The particle mass m can

not be arbitrary small because the product of left and right invariant is proportional to the trace of
energy-momentum tensor, which accordingly to Einstein field equations is a positive constant equal to
Λ/(2πG) for flat Minkowski space-time, where G is the gravitational constant and Λ the cosmological
constant. Therefore, the cosmological constant is related to the lightest particle mass predicted by the
following relation

Λ

2πG
= m4 , (70)

in natural units, with ℏ = 1 and c = 1. Considering neutrino as the lightest particle of the theory
we get Λ = 2.38× 10−30s−2 which is 5 orders bigger than current value of cosmological constant, and
vice-versa, the mass of the lightest particle predicted by the theory m = 3.80×10−3eV/c2 is calculated
using cosmological constant Λ = 2.036 × 10−35s−2 obtained by the High-Z Supernova Team and the
Supernova Cosmology Project [5].

5 Conclusions
This result, that Dirac equation is equivalent with two Aα

L (x) and Aα
R(x) Proca fields with mass 2m and

two constant massless fields Bα
L and Bα

R , suggest that this representation unifies fermion and bossons
fields, its symmetry given by left and right algebra could be used to unify the description of weak and
strong interactions. While the gauge symmetry U(1)× SU(2)× SU(3) of the Standard Model is exact
only when the particles are massless, the SU(2)× LA× RA is built with 4 antiunitary and 4 nilpotent
operators, and have the mass built in the symmetry, i.e. it require neither cumbersome mechanism
with arbitrary chosen fields and parameters nor spontaneous breaking symmetry to generate mass.
The theory predicts 5 orders of magnitude discrepancy for cosmological constant by using the neutrino
as the lightest particle, otherwise for the current cosmological constant it predicts the value of the
lightest particle as being m = 3.80× 10−3eV/c2.
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