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Abstract

Two paradoxes in quantum mechanics for two particles on a circle are presented.

1 Two particles on a circle and centre of mass coordinates

Consider two nonidentical free particles on a circle. Particle one with of moment of inertia I; and
particle two with moment of inertia 5. As coordinates we can use 61,0, where #; is the coordinate of
particle one and 6, is the coordinate of particle two. We can also use ©, 0 where © is the coordinate of
the centre of mass and # the relative coordinate. The coordinates are related by
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Let 1(61,05) be an eigenfuction of H in 6y, 0, coordinates so
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Particle one at coordinate 6; or at coordinate #; + 27 is at the same point on the circle. The wave
function at this point has only one value hence
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Similarly for particle two
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Let ¥(©,0) be an eigenfunction of H in ©,6 coordinates so
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The centre of mass at coordinate © or at coordinate © + 27 is at the same point on the circle hence
V(O +2m,0) = ¥(O,0) (8)

Now ¥(0,0) = ¥(0, 0, — 6,) and particle two at coordinate 05 or at coordinate fy + 27 is at the same
point on the circle hence
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We expect Sp,0, = Sep but this is not the case [1].

2 Two particles on a circle and probability densities

Consider two nonidentical particles, each on a circle, with wave function at t =0
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W(6q,09) = sin (6, + 09) (11)

Note particle one and particle two can be on separate circles that are far apart. The probability density
of particle one at t = 0 is then
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In general the wave function of particle one at ¢ = 0 is
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where |¢,|? is the probability of finding the value nfi when angular momentum of particle one is measured.
Measuring angular momentum of particle one yields only values of A and —h with equal probability
hence using (13) we have at ¢t = 0 that

D100 = —cos? (6, + ) (19)

for some constant ¢. This differs from (12).
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