Two Paradoxes in Quantum Mechanics for Two Particles on a Circle

Karl De Paepe*

Abstract

Two paradoxes in quantum mechanics for two particles on a circle are presented.

\section*{1 Two particles on a circle and centre of mass coordinates}

Consider two nonidentical free particles on a circle. Particle one with of moment of inertia I_{1} and particle two with moment of inertia I_{2}. As coordinates we can use θ_{1}, θ_{2} where θ_{1} is the coordinate of particle one and θ_{2} is the coordinate of particle two. We can also use Θ, θ where Θ is the coordinate of the centre of mass and θ the relative coordinate. The coordinates are related by

$$
\begin{equation*}
\Theta=\frac{I_{1} \theta_{1}+I_{2} \theta_{2}}{I_{1}+I_{2}} \quad \theta=\theta_{2}-\theta_{1} \tag{1}
\end{equation*}
$$

We have by (1) that

$$
\begin{equation*}
H \equiv-\frac{\hbar^{2}}{2 I_{1}} \frac{\partial^{2}}{\partial \theta_{1}^{2}}-\frac{\hbar^{2}}{2 I_{2}} \frac{\partial^{2}}{\partial \theta_{2}^{2}}=-\frac{\hbar^{2}}{2\left(I_{1}+I_{2}\right)} \frac{\partial^{2}}{\partial \Theta^{2}}-\frac{\hbar^{2}}{2\left(\frac{I_{1} I_{2}}{I_{1}+I_{2}}\right)} \frac{\partial^{2}}{\partial \theta^{2}} \tag{2}
\end{equation*}
$$

Let $\psi\left(\theta_{1}, \theta_{2}\right)$ be an eigenfuction of H in θ_{1}, θ_{2} coordinates so

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 I_{1}} \frac{\partial^{2} \psi}{\partial \theta_{1}^{2}}\left(\theta_{1}, \theta_{2}\right)-\frac{\hbar^{2}}{2 I_{2}} \frac{\partial^{2} \psi}{\partial \theta_{2}^{2}}\left(\theta_{1}, \theta_{2}\right)=E \psi\left(\theta_{1}, \theta_{2}\right) \tag{3}
\end{equation*}
$$

Particle one at coordinate θ_{1} or at coordinate $\theta_{1}+2 \pi$ is at the same point on the circle. The wave function at this point has only one value hence

$$
\begin{equation*}
\psi\left(\theta_{1}+2 \pi, \theta_{2}\right)=\psi\left(\theta_{1}, \theta_{2}\right) \tag{4}
\end{equation*}
$$

Similarly for particle two

$$
\begin{equation*}
\psi\left(\theta_{1}, \theta_{2}+2 \pi\right)=\psi\left(\theta_{1}, \theta_{2}\right) \tag{5}
\end{equation*}
$$

As a result

$$
\begin{equation*}
E \in S_{\theta_{1} \theta_{2}} \equiv\left\{\frac{k^{2} \hbar^{2}}{2 I_{1}}+\frac{n^{2} \hbar^{2}}{2 I_{2}}: k, n \in \mathbb{Z}\right\} \tag{6}
\end{equation*}
$$

Let $\Psi(\Theta, \theta)$ be an eigenfunction of H in Θ, θ coordinates so

$$
\begin{equation*}
-\frac{\hbar^{2}}{2\left(I_{1}+I_{2}\right)} \frac{\partial^{2} \Psi}{\partial \Theta^{2}}(\Theta, \theta)-\frac{\hbar^{2}}{2\left(\frac{I_{1} I_{2}}{I_{1}+I_{2}}\right)} \frac{\partial^{2} \Psi}{\partial \theta^{2}}(\Theta, \theta)=E \Psi(\Theta, \theta) \tag{7}
\end{equation*}
$$

[^0]The centre of mass at coordinate Θ or at coordinate $\Theta+2 \pi$ is at the same point on the circle hence

$$
\begin{equation*}
\Psi(\Theta+2 \pi, \theta)=\Psi(\Theta, \theta) \tag{8}
\end{equation*}
$$

Now $\Psi(\Theta, \theta)=\Psi\left(\Theta, \theta_{2}-\theta_{1}\right)$ and particle two at coordinate θ_{2} or at coordinate $\theta_{2}+2 \pi$ is at the same point on the circle hence

$$
\begin{equation*}
\Psi\left(\Theta, \theta_{2}+2 \pi-\theta_{1}\right)=\Psi\left(\Theta, \theta_{2}-\theta_{1}\right)=\Psi(\Theta, \theta) \tag{9}
\end{equation*}
$$

as a result

$$
\begin{equation*}
E \in S_{\Theta \theta} \equiv\left\{\frac{k^{2} \hbar^{2}}{2\left(I_{1}+I_{2}\right)}+\frac{n^{2} \hbar^{2}}{2\left(\frac{I_{1} I_{2}}{I_{1}+I_{2}}\right)}: k, n \in \mathbb{Z}\right\} \tag{10}
\end{equation*}
$$

We expect $S_{\theta_{1} \theta_{2}}=S_{\Theta \theta}$ but this is not the case [1].

2 Two particles on a circle and probability densities

Consider two nonidentical particles, each on a circle, with wave function at $t=0$

$$
\begin{equation*}
\psi\left(\theta_{1}, \theta_{2}\right)=\frac{1}{\sqrt{2} \pi} \sin \left(\theta_{1}+\theta_{2}\right) \tag{11}
\end{equation*}
$$

Note particle one and particle two can be on separate circles that are far apart. The probability density of particle one at $t=0$ is then

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|\psi\left(\theta_{1}, \theta_{2}\right)\right|^{2} d \theta_{2}=\frac{1}{2 \pi} \tag{12}
\end{equation*}
$$

In general the wave function of particle one at $t=0$ is

$$
\begin{equation*}
\psi_{1}\left(\theta_{1}\right)=\sum_{n=-\infty}^{\infty} c_{n} \frac{e^{i n \theta_{1}}}{\sqrt{2 \pi}} \tag{13}
\end{equation*}
$$

where $\left|c_{n}\right|^{2}$ is the probability of finding the value $n \hbar$ when angular momentum of particle one is measured.
Measuring angular momentum of particle one yields only values of \hbar and $-\hbar$ with equal probability hence using (13) we have at $t=0$ that

$$
\begin{equation*}
\left|\psi_{1}\left(\theta_{1}\right)\right|^{2}=\frac{1}{\pi} \cos ^{2}\left(\theta_{1}+\phi\right) \tag{14}
\end{equation*}
$$

for some constant ϕ. This differs from (12).

References

[1] K. De Paepe, Physics Essays, September 2008

[^0]: *k.depaepe@alumni.utoronto.ca

