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Abstract

We show all all reduced c/d ∈ (0, 1) can be represented using any

base b ∈ N \ {1}.

Introduction

Hardy’s classic An Introduction to the Theory of Numbers doesn’t prove that
all fractions c/d ∈ (0, 1) can be represented in any base b. His Chapter 9 The
Representation of Numbers by Decimals does show this is the case for base
b = 10 [1] and bases that are given by the product of unique primes to the
first power. Here we fill in the details for the general proof: all c/d ∈ (0, 1)
can be represented in base b ∈ N \ {1}.

General Bases

The central patterns are discernible from simple by hand divisions given by
1/d, d ∈ {2, . . . , 17}. Such divisions convert the fractions 1/d to decimals
base 10. The decimals generated are dependent on the intersection of D, the
prime factors of d and B, the prime factors of b.

If all prime factors of D are also in B then the decimal representation
terminates or is said to be finite: D ⊂ B implies finite. This is the case with
{2, 4, 8, 10, 16}. If D∩B = ∅, then the decimal does not terminate. It is said
to be pure repeating. For example (3, 10) = 1, the two numbers are relatively
prime, and 1/3 = .3. This is the case with {3, 5, 7, 11, 13, 17}: D ∩ B = ∅
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implies pure repeating. If D ∩ B 6= ∅ and D 6⊂ B, that is D and B share
some prime factors but not all, then the decimal representation is termed
mixed. It consists of a non-repeating part and a repeating part. For example
10 and 6 share the prime factor 2 but not 3 and the representation is given
by 1/6 = .16. This is the case with {6, 12, 14, 15}: D ∩ B 6= ∅ and D 6⊂ B
implies mixed. As one might suspect, the sets D and B can be generalized
to any denominator and any base and these relationships continue to hold.

In each of these three cases there are two central questions. How many
digits are needed and what are the digits. Why does 1/2 have a single digit
5 as in .5 and 1/4 have two in .25? Why does .16 have one non-repeating
digit and one repeating digit in this mixed case? Why does 1/3 have a single
repeating digit in .3 and 1/7 have 6 repeating digits as in .142857. One might
surmise that the number of digits, called the period of these pure repeating
decimals, increases; but, 1/11 just has 2, .09, 1/13 has 6 digits, and 1/17 has
16? So it is more mysterious than one might suspect.

These questions having been answered for fractions 1/d, decimal repre-
sentations of reduced c/d are found by just multiplying the integers generated
for 1/d by c: Thus 3/4 : 3(25) = 75; 3/7 : 3(142857) = 428571. The mixed
case is, as we shall see, a combination of the finite and pure cases and two
multiplications are necessary.

The Finite Case

The number of digits needed for the finite case is the minimum m such that
bm(1/d) is an integer. So assuming we are in base 10, 1/2 with d = 2 is
such that b1(1/d) = 10(1/2) = 5, an integer. The integer is also the digit
in the representation. For 1/4, 102(1/4) = 25 and dividing both sides gives
1/4 = .25. This same pattern carries over to any base.

Lemma 1. If D ⊂ B then there exists a minimum m such that

bm1

d
= i,

where i is an integer.

Proof. Suppose b = px1

1 px2

2 · · · pxk

k with xj > 0 for 1 ≤ j ≤ k. As D ⊂ B,
d = py1

1 py2

2 · · · pyk

k with yj ≥ 0 for 1 ≤ j ≤ k. That is if a specific prime is not
a prime factor of d it will have an exponent of 0.
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Using the Archimedian property of the reals, there exists a minimum mj

such that mjxj ≥ yj for each j. Let

m = max{mj : 1 ≤ j ≤ k}.

Note: as all mj can’t be zero m > 0. This means

bm1

d
=

pmx1

1 pmx2

2 · · · pmxk

k

py1

1 py2

2 · · · pyk

k

= pmx1−y1

1 pmx2−y2

2 · · · pmxk−yk

k (1)

is an integer. If m′ is less than m then for some j, 1 ≤ j ≤ k, m′xj − yj < 0
and (1) is not an integer.

We know m exists and we can use a while loop to find it. But Hardy in a
footnote provides a detail that can make the calculation of m more definitive.
He doesn’t provide a proof. We’ll make it a lemma and give it a proof.

Lemma 2. If b = px1

1 px2

2 · · · pxk

k with xj > 0 for 1 ≤ j ≤ k and d =
py1

1 py2

2 · · · pyk

k with yj ≥ 0 for 1 ≤ j ≤ k with D ⊂ B, then the minimum
m such that

bm1

d
= i,

an integer, is given by

max{
y1

x1
,
y2

x2
, . . . ,

yr

xr
},

where the over line indicates the fractions are rounded up.

Proof. We argue by induction on the number of shared prime factors between
b and d. If b and d share just one prime, p, then let b = px and d = py, where
x and y are positive integers. As

by/x 1

d
=

(px)y/x

py
= 1,

this power does give the needed integer, but y/x might not be an integer.
There are however just three possibilities y < x, x = y, and y > x. If y < x,
then y/x < 1 and n = x − y is a positive integer. Also

y

x
+

x − y

x
= 1 and

(px)(y/x+(x−y)/x)

py
= px−y
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and y
x

= y/x + (x − y)/x = 1.
If y > x, then y = kx + r where k is a positive integer and r is an integer

between 0 and x− 1. The r = 0 case is clear. If r 6= 0,

y

x
= k +

r

x
and

y

x
= k +

r

x
+

x − r

x
= k + 1.

Now
(px)

y

x

py
=

(px)k+ r
x
+x−r

x

py
=

pkx+r+x−r

py
=

py+x−r

py
= px−r ,

an integer.
If y = x, then y/x = 1 and this case is obvious. Let m = [ y

x
].

Suppose the theorem is true for n = k. That is suppose b and d share k
prime factors and

(px1

1 px2

2 · · · pxk

k )mk

py1

1 py2

2 · · · pyk

k

= pr1

1 pr2

2 · · · prk

k ,

with

mk = max {
y1

x1
,
y2

x2
, . . . ,

yk

xk
} .

Consider

(px1

1 px2

2 · · · pxk

k p
xk+1

k+1 )m

py1

1 py2

2 · · · pyk

k p
yk+1

k+1

= ps1

1 ps2

2 · · · psk

k

p
mk+1xk+1

k+1

p
yk+1

k+1

= ps1

1 ps2

2 · · · psk

k p
sk+1

k+1 ,

with sj ≥ rj and m = max {mk, mk+1} . We have used the k = 1 case with

p
mk+1xk+1

k+1

p
yk+1

k+1

to generate mk+1 for this k + 1 prime.

Notice that we could use any large enough m value. For example,

105 1

4
= 2355 = 10352 = 25000 and

25000

105
= .25,

but this is certainly inelegant.
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Theorem 1. The Finite Case. If D ⊂ B, the number of digits in the base b
representation of 1/d is finite. Further the representation is given by

1

d
=

i

bm
= .(i)(bm) = .i1 · · · im, (2)

where m is the least exponent such that bm 1
d

is an integer and this integer is
given as i1 · · · im in base b.

Proof. Using Lemma 1,

bm1

d
= i,

an integer. This implies 1/d = i/bm and when i is converted to base b, this is
ib. When the decimal point is moved m places to the left we have the finite
decimal of (2).

Example 1. Find the base 10 decimal representation of 1/2354. Using
Lemma 2, the ratios of d over b’s exponents for the shared factors are 3/1
and 4/1 and the maximum is 4, so m = 4.

104 1

23 · 54
= 2.

giving
2

104
= .0002.

Example 2. Find the decimal representation of 1/3354 = 1/16875 in base
15. This will be given by

154 1

3354
= 3.

As the symbol 3 has the same meaning in base 15 as in base 10, we have
.0003(15) as the answer. We confirm this by noting

3

154
=

1

3354
.

Example 3. What is 1/d in base b if d = 35 = 243 and b = 223 = 12? We
have

b51

d
= 210 = 102410
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and this implies
1

d
=

102410

b5
,

but this doesn’t mean we can move the decimal in the numerator over by
5 and get the answer. We must convert the integer 1024 to base 12, then
we can so move the decimal point. Using the tower of divisions method
we arrive at 102410 = 71412 and conclude the answer is .0071412. By tower
of divisions I am referring to long divisions performed in sequence where
the quotient becomes the dividend and the remainders are concatenated to
give the conversion. These algorithms are generally performed in high school
algebra classes manually, but they are a natural for spreadsheets.

The Pure Repeating Case

The pure repeating case is best motivated by reverse engineering the result.
Suppose we have a pure repeating decimal in base b, can we conclude that
the reduced fraction it converges to will have a denominator, a d relatively
prime to b? We can evaluate a pure repeating decimal; it is a geometric series
with the first, zero exponent dropped.

Lemma 3. A pure repeating decimal .x1x2 . . . xp in base b converges to the
fraction

x1x2 . . . xp

bp − 1
. (3)

Proof. A repeating decimal is a form of the geometric series:

.(x)b = x
∞∑

j=1

1

bj
=

x

b − 1
. (4)

The number of repeating digits is called the period. For periods greater than
one, say p, the formula is similar:

.(x1x2 . . . xp)b = x1x2 . . . xp

∞∑

j=1

1

(bp)j
=

x1x2 . . . xp

bp − 1
. (5)
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We are on the right track; as b and b− 1 are relatively prime1, (4) shows
that decimals with period one obey the rule D∩B = ∅ implies pure repeating.
In the general case, we need to show that

x1x2 . . . xp

bp − 1
=

1

d
, (6)

for some p where (b, d) = 1. But (6) says that x1x2 . . . xp · d = bp − 1, that
there exists a p such that bp ≡ 1 mod d.

Viola: Fermat Euler’s theorem says that if (d, b) = 1 then bφ(d) ≡ 1 mod d,
where φ(d) is Euler’s φ function, giving the number of numbers less than and
relatively prime to d. Hence such a number does exist. Whether or not it is
the least such exponent need not concern us yet. The digits fall out neatly.

Theorem 2. Pure repeating decimals. If B∩D = ∅, then there exists p such
that bp ≡ 1 mod(d) and 1/d is a pure repeating decimal of period p with digits
given by

i =
bp − 1

d
. (7)

Proof. Using Fermat-Euler’s theorem, let p = φ(d), then

bp ≡ 1 mod(d). (8)

By definition of modularity there exists an integer i such that

bp − 1 = i · d or
1

bp − 1
=

1

di
or

i

bp − 1
=

1

d
.

Using Lemma 3, it follows that 1/d is a pure repeating decimal in base b of
period p.

Notice that with pure repeating decimals we once again calculate an in-
teger.

Example 4. Find 1/7 in base 10 without using the tower of division tech-
nique, but using the above Theorem.

Using Maple (or manual calculations) we determine that 106 ≡ 1 mod 7.
That is we iterate through 1, 2, . . . and find that 6 works. We know φ(7) = 6,
so we know we will find this least value. Then a division gives the digits:

106 − 1

7
= 142857,

1Try some examples, attempt a proof, look up a proof if stuck.
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but this means

142857

∞∑

j=1

1

(106)j
= .142857 + .000000142857 + · · · = .142857.

If b is other than base 10, the integer calculated will need to be converted
to base b.

Example 5. Find 1/d in base b when d = 7 and b = 5. Using a spreadsheet,
a calculator, or Maple we determine that 56 ≡ 1 mod 7 and find the integer
using

56 − 1

7
= 2232.

Using a spreadsheet implementation of the tower of division algorithm this
is converted to 32412(5) and then upon division by 56 we arrive at 1/7 =
.032412(5).

Example 6. Find 1/d in base b = 10 when d = 11, 13, and 17. As
these denominators are all prime and as Euler’s phi function evaluated at
a prime is one less than the prime, we should get periods of 10, 12 and
16 for these d values. But we find 1/11 = .09, 1/13 = .076923, and
1/17 = .0588235294117647. The fine print is that Fermat-Euler guaran-
tees the existence of a number, not that it is the least such number that
works. We can iterate through all the values between 1 and φ(b) and we will
be assured of finding the least p that works.

Like the use of inefficiently large m values for the finite and mixed cases,
too large exponents, the bps, in the pure case will give the same number, but
inelegantly. For example, 1/11 = .09, using period 2 and 1/11 = .0909090909
using period 10 – the same number. This least such value is called the order
of b mod d and it is known to always be a divisor of φ(b).

The Mixed Case

Mixed decimals are logically last, as they have have finite and pure repeating
parts.

Theorem 3. Mixed decimals. If D ∩ B 6= ∅ and D 6⊂ B, then there exists a
least m such that

1

d
=

i + r′

d′

bm
, (9)

where (d, d′) = 1 and r′/d′ ∈ (0, 1).
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Proof. By Lemma 1 there exists a least m for the primes shared by d and b.
Using this m

bm1

d
=

r

d′
= i +

r′

d′
(10)

and dividing by bm gives (9).

Example 7. Find 1/6 base 10. We follow the pattern given in (10):

101 ·
1

6
=

5

3
= 1 +

2

3
.

We know using repeated divisions that 2/3 = .6, so we arrive at 1/6 = .16,
base 10.

Example 8. Find the non-repeating and repeating parts of 1/d in base b if
d = 2 · 32 · 5 = 90 and b = 2 · 32 = 18. Complete the conversion. We follow
the pattern given in (10) and use m = 1 based on ratios of shared prime
exponents:

b
1

d
= (2 · 32)

1

2 · 32 · 5
=

1

5
.

Here the non-repeating part is .0. The repeating part is 1/5. We seek an
exponent x such that 18x ≡ 1 mod 5 ; x = 4 works and

i =
184 − 1

5
= 20995.

This converted to base 18 is (3)(10)(14)(7) where the base ten numbers in
parentheses are symbols base 18. Dividing this by 184 moves the decimal
to the left for .(3)(10)(14)(7). Combining the finite and repeating parts and
remembering m = 1, we have

1

90
=

0 + .(3)(10)(14)(7)

181
= .0(3)(10)(14)(7).

Example 9. Find the non-repeating and repeating parts of 1/d in base b
if d = 24 · 3 = 48 and b = 22 · 5 = 20. One can determine the power m
using the greatest integer function on the ratios of exponents. So m = 2, as
4/2 = 2/1 = 2 with the only shared prime 2.

b2 1

d
= (22 · 5)2 1

24 · 3
=

52

3
.

9



As
52

3
= 8 +

1

3
,

the non-repeating part is .08. Note: the digit 8 is the same in base 10 and in
the base needed here base 20. We look for x such that 20x ≡ 1 mod 3. With
x = 2 we have 202 − 1 = 399. This gives

202 − 1

3
= 13310.

As 13310 = (6)(13), 1/3 = .(6)(13) is the repeating part. Finally, using m = 2
we have

1

48
=

8 + 1
3

202
= .08 + .00(6)(13) = .08(6)(13).

Conclusion

Lemmas 1 and 2 are simple, obvious, and ungainly all at the same time. It is
perhaps for this reason that Hardy didn’t want to dig into these weeds.
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