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Abstract 
Generating number systems reveals most of the structure and behavior 

of our universe. A system of separable Hilbert spaces that all share the 

same underlying vector space describes all aspects of the dynamic field 

that our universe represents. One of these Hilbert spaces acts as the 

background and reference platform. Via its non-separable companion, 

this separable Hilbert space resents the dynamic field that physicists 

consider the dynamic universe. All other members of the system 

represent moving particles. 
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1 Set theory 

Importantly, the set theory makes no sense without considering the 

container of the set and is meaningless without considering the type of 

elements of the set. A finite set is fundamentally different from an 

infinite set. An infinite set cannot be achieved by gradually expanding a 

finite set. The set must be redefined to get an infinite set. A countable 

set is fundamentally different from an innumerable set. Countable 

means that each member of the set can be labeled with a natural 

number. The set of natural numbers is infinite. A countable set can be 

infinite. A countable set must be redefined to make it an innumerable 

set. An innumerable set is always an infinite set. The elements of sets 

that cannot otherwise be distinguished can be identified by elements of 

a number system.  

A simple space can act as a container of locations. A vector is a 

combination of a base point and a pointer connected by a directional 

line. A scalar measures the distance between these points. A shift 

parallel to the direction line does not change the integrity of the vector. 

Using vectors instead of locations as elements of a set located in space 

has the advantage that vectors obey simple arithmetic. This vector 

arithmetic allows the vectors to reach any location in simple space. The 

vector arithmetic can be used to generate number systems whose 

elements can be applied to identify the locations in space. It turns out 

that this can be done in many ways.  

The arithmetic of number systems does not regulate all the freedom of 

choice that remains in the container. This means that numbering 

systems exist in many versions that differ in the included choice 

freedoms.  Freedom of selection is called symmetry. Most of these 

symmetries relate to the geometry of the locations. Some selection 
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exemptions concern choices which are left open in the rules of the 

arithmetic. 
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2 Number systems 

A treatise on number systems usually emphasizes the arithmetic of the 

number system, but most of the time the treatise ignores the 

symmetries of the number system. In physical reality, both arithmetic 

and symmetries play an essential role. 

It seems that two base number systems can be mixed into three 

associative division rings.  

2.1 Real numbers 

The rational numbers for which the square is a zero or a positive 

rational number already form an associative division ring.  The 

arithmetic of this set is taught in primary schools.   All elements fit on a 

directional line and occupy a single dimension.  If all irrational numbers 

take part, the set becomes countless. This combination is the set of real 

numbers. In real numbers, all converging series of elements end in a 

limit that is also a real number. The resulting set is a continuum and 

shows a special behavior when deformed. 

2.1.1 The arithmetic of real numbers 

We will indicate the real numbers with the suffix ᵣ.  

For real numbers, addition and multiplication are commutative, 

associative, and distributive. 

 
( ) ( )

r r r r

r r r r r r

b a a b

a b c a b c

+ = +

+ + = + +
  (2.1.1) 

 
( ) ( )

r r r r

r r r r r r

b a a b

a b c a b c

=

=
  (2.1.2) 

 ( )r r r r r r ra b c a b a c+ = +   (2.1.3) 

For real numbers, the square is zero or it is positive  

https://en.wikipedia.org/wiki/Division_ring
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 0r ra a    (2.1.4) 

2.2 Spatial numbers and mixed numbers 

There is another number system where the squares are equal to zero or 

a negative real number. This is the spatial number system that is often 

called the system of imaginary numbers. It exists in a one-dimensional 

and a three-dimensional version. Together with the real numbers, the 

one-dimensional version of the spatial numbers forms the two-

dimensional associative division ring of the complex numbers. Together 

with the real numbers, the three-dimensional version of the spatial 

numbers forms the four-dimensional associative division ring of the 

quaternions. The arithmetic of the spatial number system contains a 

commutative and associative addition. The product splits into an inner 

product that has a scalar value and is responsible for the negative 

square and an outer product that occurs only in the three-dimensional 

version. The outer product may be chiral right-handed, or it may be 

chiral left-handed. 

The elements of a continuum obey the arithmetic of the corresponding 

number system. The geometry of a continuum can change in a well-

ordered way. This change is regulated by special change arithmetic that 

mathematicians call differential calculus. 

The dimension of associative division rings is always less than five. The 

spatial number system is not considered an associative division ring. 

Three-dimensional associative division rings do not exist. 

Each dimension in a number system corresponds to a directional line 

and can be ordered by a countable or non-countable coordinate system 

based on real numbers. 

Quaternions are commonly not introduced as combinations of spatial 

numbers and real numbers. The spatial part of a quaternion is often 



6 
 

named a vector, but that is a mistake. Vectors obey arithmetic that 

differs from the arithmetic of spatial numbers. 

2.2.1 The arithmetic of spatial numbers 

For spatial numbers, addition and multiplication are commutative and 

associative. 

 
( ) ( )
b a a b

a b c a b c

+ = +

+ + = + +
  (2.2.1) 

The product d of two spatial numbers a and b results in a real scalar part 

rd  and a new spatial part d  

 rd d d ab= + =   (2.2.2) 

,rd a b= −  is the inner product of a and b  

For the inner product and the norm a holds 
2

,a a a=  

 , cos( )a b a b =   (2.2.3) 

The angle   between the spatial numbers a and b is measured in 

radians. 

The square of a spatial number equals zero or it is a negative real 

number. 

 , 0aa a a= −    (2.2.4) 

d a b=  is the outer product of a and b  

The spatial part d is independent of a and independent of b . This means 

that , 0a d = and , 0b d =  
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sin( )a b a b

a b b a

 =

 = − 
  (2.2.5) 

It is possible to write spatial numbers as superpositions of base 

numbers. For the three-dimensional spatial numbers, this means. 

 
i j ka a i a j a k

i j k

= + +

=  
  (2.2.6) 

The   sign indicates the chiral choice of the handedness of the outer 

product.  
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3 Mixed arithmetic 

The addition and multiplication of real numbers with spatial numbers 

are commutative.  

 r r

r r

a b b a

a b ba

+ = +

=
  (3.1.1) 

Mixed numbers are indicated without suffixes and caps. In the next 

formula c is a mixed number. 

 
rc c c= +   (3.1.2) 

Quaternionic multiplication obeys the equation  

 

( )( )
,

r r r

r r r r

c c c ab a a b b

a b a b a b ab a b

= + = = + +

= − + +  
  (3.1.3) 

The   sign indicates the freedom of choice of the handedness of the 

product rule that exists when selecting a version of the quaternionic 

number system. In this way, the handedness of the product rule is 

treated as a special kind of symmetry. The version must be selected 

before it can be used in calculations. 

Two quaternions that are each other’s inverse can rotate the spatial 

part of another quaternion. 

 /c ab a=   (3.1.4) 

The construct rotates the spatial part of b  that is perpendicular to a  

over an angle that is twice the angular phase   of ia a e =  where 

/i a a=  . 

Cartesian quaternionic functions apply a quaternionic parameter space 

that is sequenced by a Cartesian coordinate system. In the parameter 
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space, the real parts of quaternions are often interpreted as instances 

of (proper) time, and the spatial parts are often interpreted as spatial 

locations. With these interpretations, the real parts of quaternionic 

functions represent dynamic scalar fields. The spatial parts of 

quaternionic functions represent dynamic spatial fields. These fields are 

often called vector fields. This is a misleading name. Vectors obey 

different arithmetic. 

3.1 The arithmetic of change 

In continuums, all convergent series of numbers end in a limit that is a 

member of that continuum. This fact enables the differentiation of the 

continuum. Differential calculus shows that a continuum can change. 

The continuum shows astonishing behavior. It has the habit to remove 

deformations via spherical shock fronts. Without disturbing actuators, 

the continuum stays flat. 

Along a direction line, change can be described by a partial differential. 

If in a region of the space coverage inside this direction line all 

converging series of coordinate markers result in a limit that is a 

coordinate marker, then the partial change of the space coverage along 

the direction of r is defined as the limit  

 
( )

0

( )
lim
r

r r r

r r

  

→

+ −
=


  (3.1.5) 

  

If the region is covered by all its irrational numbers, then this limit 

exists.  

If the spatial part of the neighborhood is isotropic and the limit also 

exists in the real number space, then the total differential change df of 

field f equals 



10 
 

 
f f f f

df d idx jdy kdz
x y z




   
= + + +

   
  (3.1.6) 

In this equation, the partial differentials , , ,
f f f f

x y y

   

   
  behave like 

quaternionic differential operators. 

The quaternionic nabla   assumes the special condition that partial 

differentials direct along the axes of the Cartesian coordinate system in 

a natural parameter space of a non-separable Hilbert space. Hilbert 

spaces are extensions of vector spaces and are treated in chapter 5. 

Thus, for the quaternionic nabla holds 

 
4

0

i

i i

e i j k
x x y z=

    
 = = + + +

    
   (3.1.7) 

This will be applied in the next section by splitting both the quaternionic 

nabla and the function in a scalar part and a spatial part. 

The first-order partial differential equations divide the first-order 

change of a quaternionic field into five different parts that each 

represent a new field. We will represent the quaternionic field change 

operator by a quaternionic nabla operator. This operator behaves like a 

quaternionic multiplier. 

The first order partial differential follows from 

 , , , r
x y z

    
 = =  +  

    
  (3.1.8) 

The spatial nabla is well-known as the del operator and is treated in 

detail in Wikipedia. The partial derivatives in the change operator only 

use parameters that are taken from the natural parameter space of the 

Hilbert space. 

https://en.wikipedia.org/wiki/Del
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( )

,

r

r r r r

   


    

 
=  = +  + 

 

=  −  +  +   

  (3.1.9) 

In a selected version of the quaternionic number system, only the 

corresponding version of the quaternionic nabla is active. In a selected 

Hilbert space, this version is always and everywhere the same. 

The differential   describes the change of field  . The five separate 

terms in the first-order partial differential have separate physical 

meanings. All basic fields feature this decomposition. The terms may 

represent new fields. 

 ,r r r  =  −    (3.1.10) 

r  is a scalar field. 

 
r r   =  +      (3.1.11) 

  is a spatial field. 

f is the gradient of f . 

, f is the divergence of f . 

f  is the curl of f . 

Important properties of the del operator are 

 ( ) 2,     =  =    (3.1.12) 

 ( ), 0   =   (3.1.13) 

 ( ) 0r   =   (3.1.14) 
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 ( ) ( ) ( ), ,      =   −     (3.1.15) 

Sometimes parts of the change get new symbols 

 
r rE  = − −   (3.1.16) 

 B =    (3.1.17) 

The formula (3.1.9) does not leave room for gauges. In Maxwell 

equations, the equation (3.1.10) is treated as a gauge. 

 ( ), 0B =   (3.1.18) 

 
r r rE B  = −  − = −   (3.1.19) 

 ( ) ( ) ( ), , ,r rE   = −  −     (3.1.20) 

 

 

The conjugate of the quaternionic nabla operator defines another type 

of field change. 

 *

r =  −   (3.1.21) 

 
( )*

,

r

r r r r

   


    

 
=  = −  + 

 

=  +  +  −  

  (3.1.22) 

All dynamic quaternionic fields obey the same first-order partial 

differential equations (3.1.9) and (3.1.22).  

 † * † *

r r r =  =  − =  +  =  +    (3.1.23) 
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In the Hilbert space, the quaternionic nabla is a normal operator. The 

operators 

 † † * * ,r r  =  =   =  =   +     (3.1.24) 

are normal operators who are also Hermitian operators. 

,  is known as the Laplace operator.  

One of the second-order partial differential equations results from 

combining the two first-order partial differential equations  =   and 
* =  . 

 
( )( )( )

( )

* * *

,

r r r

r r

     



=  =   =  =  +   −  +

=   +  
  (3.1.25) 

All other terms vanish. The separate operators
r r   and ,   are 

Hermitian operators.  

 

 

The two operators can also be combined as ,r r=   −    . This is 

the d’Alembert operator.  

The solutions to , 0r r  +   =  and , 0r r  −   =  differ. These 

two equations offer different solutions and for that reason, they deliver 

different dynamic behavior of the field. The equations control the 

behavior of the embedding field that physicists call their universe. This 

dynamic field exists everywhere in the reach of the parameter space of 

the function. Both equations also control the behavior of the symmetry-
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related fields. The homogeneous d’Alembert equation is known as the 

wave equation and offers waves and wave packages as its solutions. 

Integration over the time domain results in the Poisson equation 

 , =    (3.1.26) 

Solutions of differential equations are treated in a paper that treats Paul 

Dirac’s bra-ket combination. Together with the differential equations 

these solutions form the quaternionic field theory. 

3.1.1 The spherical del 

In isotropic conditions, the Poisson equation can be rewritten as 

 ( )
2 2

2 2

2 1
, r

r r r r r
   

   
=   = + = 

   
   (3.1.27) 

The product ( )r = is a solution of a one-dimensional equation in 

which r plays the variable.  

The same thing holds for all differential equations that contain the 

Laplace operator ,    

So, spherical solutions / r = of the second-order differential 

equations can be obtained from the solutions  of one-dimensional 

second-order differential equations by dividing   by the distance r  to 

the center. 

It looks as if in isotropic conditions the quaternionic differential calculus 
can be scaled down to complex-number-based differential calculus. This 
already works at local scales. If on larger scales the isotropic condition is 
violated, then the coordinates of the complex-number-based 
abstraction must be adapted to the possibly deformed Cartesian 
coordinates of the quaternionic platform. This makes sense in the 
presence of moderate deformations of the quaternionic field. After 

https://www.researchgate.net/publication/360423479_The_quaternionic_bra-ket_combination
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adaptation, the map of each complex-number-based coordinate line 
becomes a geodesic. 

These tricks are possible because complex-number-based Hilbert spaces 
can be considered subspaces of quaternionic Hilbert spaces. 

If the dimension of the quaternionic Hilbert space is reduced to the 
dimension of a subspace that contains a complex-number-based Hilbert 
space, then it might become important whether the selected direction 
involves a polar angle or an azimuth angle. In mathematics, the range of 
the polar angle is twice the range of the azimuth angle. In physics, the 
two ranges are exchanged. 

The correspondence between isotropic conditions and one-dimensional 
conditions is important for the mass-energy equivalence. The spherical 
shock fronts cause deformation and the one-dimensional shock fronts 
transfer energy. These shock fronts appear to be intimately related. 
Spherical shock fronts are dark matter objects and one-dimensional 
shock fronts are dark energy objects. Shock fronts are generated by 
corresponding pulses that trigger the shock front. 

The one-dimensional solution to  

 ( ) ( ) ( ), 4 ' 'r r q q      +   = −    (3.1.28) 

 Along the line 'q q−  is 

 ( )( )' 'f q q c n  = −  −   (3.1.29) 

( )   is a temporal step function and ( )q  is a spatial Dirac pulse 

response.   

After the instant ' , the equation turns into a homogeneous equation.  

During travel the shape of front f stays the same. 
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For the spherical pulse response, the pulse must be isotropic. 

 
( )( )' '

/
f q q c n

r
r

 
 

−  −
= =   (3.1.30) 

The spherical shock front keeps its shape f , but the amplitude of the 

front shrinks with distance r . 

Here n  is a normed spatial quaternion. This spatial quaternion has an 

arbitrary direction that does not vary in time. In the one-dimensional 

shock front, the normalized spatial number n  can be interpreted as the 

polarization of the solution. / r =  describes the spherical shock front 

solution. In that solution n  is a spin vector. The solution for the 
quaternionic equivalent of the wave equation does not contain the 
normed spatial quaternion n . 

Both shock fronts are tiny field excitations. It will be impossible to 

perceive these excitations in isolation. Several occasions exist in which 

these shock fronts join their effect and become perceivable. This happens 

in the footprints of some of the elementary fermions and in the halos of 

galaxies. 

If a fermion emits or absorbs a dark energy object, then its kinetic energy 

will change accordingly. A moving fermion must emit dark energy 

objects at one side or emit them at the other side. This works better 

perceivable for photons, which are strings of equidistant black energy 

objects. 
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4 Vector space  (1.31) 

In this paper, a plain space is a container that has the capability to 

harbor sets of point-like objects that represent locations. Empty space 

contains nothing that can be referred to. It has no size, no boundaries, 

and no center.  

A vector is a combination of two point-like objects that are connected 

by a line. This line defines the direction of the vector. One of the points 

is the base of the vector and the other point is its pointer. The vector 

has a length that is represented by a scalar. Shifting the vector along its 

direction line does not change the integrity of the vector. Also shifting 

the vector parallel to its direction does not change its integrity. Adding a 

vector to an empty space turns that space into a vector space. Vectors 

obey vector arithmetic. Via that arithmetic, vectors can reach all 

locations of point-like objects that are contained in the vector space.  

For example, by recurrently repeating the described shift along the 

direction line, the set of natural numbers can be constructed such that 

each new vector pointer location is identified by a corresponding 

natural number. This enables humans to think about these vector 

pointer locations. 

4.1 Vector arithmetic 

In this section vectors that reside in a vector space will be indicated 

with boldface and scalars will be indicated with italics. 

The addition of vectors is commutative. It can be done by shifting one of 

the vectors in parallel until it coincides with the alternative point of the 

other vector. Now the two resulting points represent the vector sum. 

The arithmetic of scalars resembles the arithmetic of rational members 

of the real number systems. Vector addition is commutative. The 

addition creates new vectors. 

 + = +v w w v   (4.1.1) 
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Vector addition is also associative. 

 ( ) ( )+ + = + +u v w u v w   (4.1.2) 

Multiplication with a scalar is commutative. This multiplication may 

change the length and thus the integrity of the vector. It may create a 

new vector. 

 a a= =w v v   (4.1.3) 

Multiplication with scalars is distributive for scalars and vectors. 

 
( )

( )

a b a b

a a a

+ = +

+ = +

v v v

v w v w
  (4.1.4) 

Multiplication with negative scalars reverses the direction of the vector. 

In particular   

 ( )1− = −v v   (4.1.5) 

 

Vectors obey an inner product. However, they do not obey an outer 

product. Otherwise, their arithmetic would be equal to the arithmetic of 

the spatial numbers, and the dimension of the vector space would be 

limited by three. 

4.1.1 Base vectors 

A selected base  iu  is a subset of the vectors that is used to define 

another vector as a superposition of the members of the base. 

 
0

i N

i i

i

v
=

=

= v u   (4.1.6) 

An inner product ,v w  of two vectors v  and w would be defined in 

terms of the orthonormal base  iu as  
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0

, ,
i N

i j i j

i

v w
=

=

= v w u u   (4.1.7) 

while 

 ,i j ij=u u   (4.1.8) 

If the orthonormal base spans the full vector space, then the vector 

space contains N dimensions. N can be infinite. 

The inner product that is taken over all dimensions generates a metric. 

That metric can establish the length 
a
 of the vectoraas a scalar. The 

inner product can indicate the length of a vector 

 
2

,

=

=

a a

a a a
  (4.1.9) 

If the inner product equals zero, then either one of the vectors has zero 

length or the two vectors live in different dimensions. In that case, the 

vectors are independent. In a N dimensional vector space precisely N  

vectors can be mutually independent.  

The inner product can be applied to construct a set of coordinate 

markers that together form a coordinate system. 
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5 Hilbert space 

Dirac's bra-ket combination converts a vector space into a Hilbert space.  

This concept applies a selected version of an associative division ring to 

define the combination of bras and kets. The resulting Hilbert space 

enables archiving partial sets of elements of the selected version of the 

number system that the Dirac bra-ket combination has applied to 

construct the Hilbert space. Consequently, all Hilbert spaces manage a 

private parameter space in a special operator's eigenspace. This turns 

any separable Hilbert space into a sampled function space. 

5.1 Position space and change space 

The position space and the change space are different representations 

of a quaternionic Hilbert space in which the real part of the parameter 

space is limited to a single point. A Fourier transformation relates 

functions in the position space to corresponding functions in the change 

space. This means that in the change space, the location in the position 

space has no meaning. Similarly, changes in the position space have no 

meaning.  This shows that the scalar part of the parameters can reflect 

the progress of change. A point in the scalar part of the parameter 

space represents a standstill and can often be seen as a timestamp. 
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6 System of Hilbert spaces  

The definition of Hilbert space results in a system of separable Hilbert 

spaces that all share the same underlying vector space. The system 

limits its members to the Hilbert spaces which have parameter spaces 

that have the axes of their Cartesian coordinate systems parallel to the 

coordinate system of the vector space. This constraint reduces the 

number of types of these parameter spaces to a shortlist. 

The system of separable Hilbert spaces represents all possible 

coverages of the vector space by sets of locations that can be identified 

by a member of a countable number system. One of the separable 

Hilbert spaces acts as a background platform. All other members of the 

system float with their geometric center over the private parameter 

space of the background platform. Only the difference in the symmetry 

between the background parameter space and the floating parameter 

spaces appears to be relevant. The shortlist is very similar to the 

shortlist of electric charges that appear in the Standard Model that 

experimental particle physicists have discovered.  This indicates that 

there is a strong relationship between symmetry differences in the 

system of Hilbert spaces and the electrical charges in the Standard 

Model. 

6.1 Background platform 

The background platform is a separable Hilbert space. The background 

platform acts as a reference for the symmetries of the other platforms. 

The background platform possesses a non-separable companion who 

embeds its separable partner. The resulting Hilbert space provides 

operators who manage continuous eigenspaces. These eigenspaces can 

be considered as continuum extensions of the background parameter 

space. The continuum represents a dynamic quaternionic field. The 

operator is defined via a corresponding quaternionic function by Dirac’s 
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bra-ket combination. It is a normal operator. The function applies the 

background parameter space. This parameter space does not change. 

Its spatial part “behaves” as a static flat field. The real part of the 

parameter space takes the role of progression. It is an ordered series of 

timestamps. For every timestamp the function produces a standstill 

version of the dynamic quaternionic field. 
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7 Quantum physics 

So far, the system has not exposed any sign of the uncertainty that 
characterizes quantum physics.   Quantum physicists believe that the 
wave function is the carrier of this characteristic.   The wave function is 
interpreted as a state function. The square of the modulus of the wave 
function is a location density distribution. The existence of the wave 
function can be explained by associating a private state vector with 
each floating member of the Hilbert space system.   The state vector 
comes from the underlying vector space. A stochastic process generates 
the hopping path of the state vector in the parameter space of the 
floating Hilbert space.   The hopping path focuses in a stochastic blurry 
way to the geometric center of the parameter space. The hopping path 
repeatedly regenerates a hop landing swarm with many landing 
locations. Covering this swarm with a coordinate grid shows that the 
swarm can be described by a location density distribution. This 
distribution appears a stable function. This means that the expected 
value of the stochastic process is the geometric center of the private 
parameter space. 
 
The stochastic process can be described as the combination of a Poisson 

process and a binomial process. The binomial process is implemented 

by a point scattering function equal to the named location density 

distribution. This distribution has a Fourier transformation, which is the 

characteristic function of the stochastic process. Therefore, the wave 

function can simulate a wave package. Unlike mainstream quantum 

physics, this paper uses a quaternionic equivalent of the complex wave 

function. 

 

In some Hilbert space types, the existence of the state vector has a 

noticeable effect because in the images of these Hilbert spaces in the 

dynamic universe field, the hop landings cause distortion of the 

dynamic universe field. The hop landing of the floating Hilbert spaces 

https://en.wikipedia.org/wiki/Wave_function
https://en.wikipedia.org/wiki/Wave_function
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with an isotropic symmetry difference with the background platform 

distort the continuum that acts as the dynamic universe.  The isotropic 

pulse response is a spherical shock front that travels away from the 

location of the pulse at the speed of light in all directions until the front 

disappears into infinity. Thus, the distortion also extends the coverage 

of the vector space.  

 

This phenomenon explains the origin of gravity and contributes to the 

dynamics of the universe.  Each isotropic pulse depicted on the dynamic 

universe field causes a corresponding distortion of that field. Why this 

happens is a mystery, but it explains the gravitational potential in the 

dynamic universe field. 

7.1 The embedding process 

The background platform is a combination of a separable Hilbert space 

and a non-separable Hilbert space. The non-separable Hilbert space 

embeds its separable partner. The non-separable Hilbert space provides 

operators who manage continuous eigenspaces. One of these 

eigenspaces is the continuum extension of the background parameter 

space that represents a dynamic field that can represent what physicists 

call their universe. This dynamic field is archived in the eigenspace of a 

normal operator. The operator is defined via a corresponding 

quaternionic function by Dirac’s bra-ket combination. That function 

applies the background parameter space. This parameter space does 

not change. Its spatial part “behaves” as a static flat field. The real part 

of the parameter space takes the role of progression. It can be 

considered as an ordered series of timestamps. For every timestamp 

the function produces a standstill version of the dynamic field.  

The function constructs a picture of the embedding of the hopping 

paths of the floating platforms into the constructed field. Some of the 
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hop landings deform the embedding field. This happens when the 

symmetry of the floating platform differs isotropic from the symmetry 

of the background platform. The embedding process appears to behave 

as an imaging process. Similar imaging processes exist in reality and can 

be qualified by an Optical Transfer Function. The OTF is the Fourier 

transform of the Point Spread Function. Here, the point spread 

functions describe the location density distributions of the hop landing 

location swarms that are recurrently regenerated by the hop landing 

paths of the state vectors of the embedded platforms. 

If the embedding process can be considered as such an imaging process, 

then that makes the dynamic field that is archived by the background 

platform and represents what physicists call their universe an ongoing 

picture of a huge series of possible coverages of space by locations that 

are identified by values of number systems. 

7.2 Electric charges and fields 

Electric charges appear to correspond to the difference between the 

geometric symmetry of the background platform and the geometric 

symmetry of the floating platforms representing the other elements of 

the system of separable quaternionic Hilbert spaces. Probably, the 

electric charge is located in the geometric center of the floating 

platforms. The charge generates a corresponding electric field that 

moves with the floating platform. The values of the symmetry 

differences correspond to the shortlist -3, -2, -1, 0, 1, 2, 3. The 

corresponding charges form the shortlist 1, 2/3, 1/3, 0, -1/3, -2/3, -1.  

The charges can be interpreted as sources or sinks through which the 

electric field streams. Why the symmetry-related electric charges 

appear in the geometric center of the corresponding Hilbert spaces is a 

mystery. The corresponding electric fields are fundamentally different 

from the dynamic universe field. Yet both fields obey the change 
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arithmetic that governs the behavior of continuums. The dynamic 

universe field has existed everywhere since the beginning of time. In the 

beginning this field was flat. The electric fields are linked to the electric 

charges and indirectly to the symmetries of the prevailing number 

systems. The fields differ in their start and boundary conditions. 

If we limit ourselves to the elementary fermions of the first generation, 

then electric charge -1 corresponds to the electrons, and the 

antiparticle called positron corresponds to electric charge 1.  In the 

system, antiparticles are represented by Hilbert spaces in which the sign 

of the real parts of the parameters is reversed.  As a result, the 

antiparticle seems to move against the direction of time.  Also, the sign 

of the geometric symmetry difference acts reversed. The geometric 

symmetry of electrons differs isotropic from the geometric symmetry of 

the background platform. This means that the hop landings of electrons 

distort the dynamic universe field. The positrons also appear to distort 

the dynamic universe field. 

Neutrinos correspond to electric charge 0. This means that neutrinos 

share geometric symmetry with the background platform. It seems that 

neutrinos also distort the dynamic universe field. The reason is that the 

chiral handedness of the outer product of neutrinos differs from the 

chiral handedness of the outer product of the background platform. 

Quarks have fractional electric charges and therefore do not differ in an 

isotropic way from the geometric symmetry of the background 

platform. The chiral handedness of the outer product also does not 

differ. Therefore, quarks do not distort the dynamic universe field. 

Certain conglomerates of quarks can form isotropic symmetry 

differences.  These hadrons can distort the dynamic universe field. The 

distortion betrays the presence of the conglomerate. Isolated quarks 

remain undetectable. This phenomenon is called color confinement. 
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7.3 Conglomerates 

Elementary fermions appear to be able to form conglomerates. These 

conglomerates are superpositions of elemental fermions or other 

conglomerates defined in the change space. In the change space, 

positions have no meaning. 

Higher generations of elementary fermions can be interpreted as higher 

oscillation modes of the first generation of elementary fermions. The 

hop landing location swarms of higher oscillation modes contain more 

hop landing locations than the swarms of the lower generation 

fermions. More hopping landing locations mean a higher ability to 

distort the embedding universe field. 

If the definition of the conglomerate prohibits certain oscillation modes, 

then this limitation applies independently of the relative location of the 

participating components of the conglomerate. This phenomenon is 

known as entanglement. 

The ability to form conglomerates produces a very powerful ability to 

generate modular systems. Modular system generation is more 

economical than monolithic system generation. All modular systems in 

the universe are conglomerates of the elemental fermions. Since all 

elementary fermions have mass or can be combined into particles that 

have mass, all modular systems in the universe will show mass. 

7.3.1 Bosons 

in this paper bosons are not considered to be elementary particles. 

Instead, they are considered to be conglomerates. 

7.3.2 Atoms 

Atoms are conglomerates in which the components share the image of 

their geometric center in the dynamic universe. As a result, the 

compensated electric charges do not participate in the oscillations of 
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the internal components.  Atoms that possess a resulting electric charge 

are ions. 

7.3.3 Molecules 

Molecules are conglomerates of ions that share some of their electrons. 

Molecules archive their essential properties in the system of Hilbert 

spaces that share the same underlying vector space.  

7.4 Earth  

On Earth, conglomerates of molecules can form living species. Living 

species archive essential properties in RNA and DNA molecules. 

7.5 Black holes 

Black holes are not conglomerates. They are encapsulated regions in 

the continuum that represents our dynamic universe. These regions do 

not contain a continuum. No field excitation can leave or penetrate the 

area. Black holes deform their continuous surround. 
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8 Photons 

Photons are not represented by a Hilbert space. A photon is not an 

elementary particle. Instead, a photon is a cord of equidistant energy 

packets. These packages consist of one-dimensional pulse reactions that 

act as one-dimensional shock fronts. These shock fronts are solutions of 

second-order partial differential equations that describe the behavior of 

a quaternionic continuum such as the dynamic universe. The shock 

fronts move at the speed of light. Photons can occur in streams called 

light beams. These bundles can have an energy distribution, an angle 

distribution, a phase distribution, or a location distribution. The location 

distribution may possess a Fourier transform. In that case, the light 

beam can behave like a wave package.   The imaging properties of the 

light beam can be qualified by the optical transfer function. This is the 

Fourier transform of the point spread function. This point spread 

function is equal to the location density distribution of photons in the 

light beam. 

Atoms and some interactions between elementary particles can cause 

photons to form or disappear.   For example, the conversion of a 

particle into an antiparticle includes the emission or absorption of a 

corresponding photon containing a one-dimensional shock front for 

each hop landing replaced. 
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9 Conclusion 

An important conclusion is that the number of Hilbert space types is 

one greater than the number of the first generation of fermion types. 

This is because the additional type represents a background platform. 

The other types are floating platforms. They move over the background 

parameter space.  This suggests that the background platform 

represents what the Higgs object is supposed to represent. It is the 

object that via its non-separable companion supports the dynamic 

universe field, and this companion bears the origin of gravity. 

Some mysteries remain unsolved. One of them is the reason for the 

existence of electric charges. The other mystery is why isotropic 

symmetry differences cause spherical shock fronts in the dynamic 

universe field. The most important mystery is why the embedding 

process is an imaging process that can be qualified by the Optical 

Transfer Function. 
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