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1 Preliminary Definitions

Suppose (X, d) is a metric space and E ⊆ X. Let h : R+
0 → R+

0 be an (exact)
dimension function (or gauge function) which is monotonically increasing,
strictly positive, and right continuous [11]. If

µhδ (E) = inf

{ ∞∑
i=1

h(diam(Ci)) : diam(Ci) ≤ δ, E ⊆
∞⋃
i=1

Ci

}
(1)

where diam is the diameter of a set and:

µh(E) = sup
δ>0

µhδ (E) (2)

is the Hausdorff Outer Measure, we define h so µh(E) is strictly positive and
finite for a majority (but not all) ”nice” sets (i.e. measurable sets in the sense of
Caratheodory [8]).

For some of these ”nice sets”, meaningful gauge functions don’t exist, (I’ll
explain in the next section.)

When f : A→ R, and A is a bounded subset of Rd, the average with respect
to the Hausdorff Measure is:

mf (A) :=
1

µh(A)

∫
A

f(x) dµh (3)

And when A is unbounded and t ∈ R+, mf (A) can be adjusted as:

m′f (A) := lim
t→∞

1

µh(A ∩ [−t, t])

∫
A∩[−t,t]

f(x) dµh (4)

where we add [−t, t] so when A = R, the density of positive real numbers is:
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µh (R+ ∩ [−t, t])
µh(R ∩ [−t, t])

=
µh ((0, t])

µh ([−t, t])
= 1/2

and the density of negative real numbers is

µh (R− ∩ [−t, t])
µh(R ∩ [−t, t])

=
µh([−t, 0))

µh([−t, t])
= 1/2

which is intuitive since [−t, t] has a mid-point of zero that’s neither positive nor
negative.

2 Motivation for Extending the Mean From the
Hausdorff Measure and Fractal Setting to the
Non-Fractal Setting

The function m′f (A) gives a satisfying average that is unique for a majority
measurable A in the sense of Caratheodory. Despite this, there’s measurable
A without meaningful gauge functions since they’re either σ-finite with respect
to the counting-measure (e.g. Countably-Infinite sets) or their gauge function
doesn’t exist (e.g. the Liouville Numbers [7]). In these cases, m′f (A) can’t exist

as µh(A) is neither positive nor finite.

While there are methods to extending m′f (A), I haven’t found a constructive
extension which gives a unique, satisfying average for all functions defined on
measurable sets in the sense of Caratheodory, with no meaningful gauge function.

One extension uses non-standard measure theory [10] but isn’t unique as it
requires ultra-filters, Zorn’s Lemma and equivalent principles.

Other methods extend m′f (A) to A in the fractal setting ( [5],[6]) but does
not work for non-fractal, measurable A.

Additional options can be found in the work of Attila Losonczi (e.g. [1])
where he provides all averages and their properties but I’m unsure if the averages
he mentions are unique and satisfying for nowhere-continuous f which has a
domain dense in R but with no meaningful gauge function.

For example, consider f : Q ∩ [0, 1]→ R and

f(x) =

{
2 x ∈

{
a2 : a ∈ Q

}
∩ [0, 1]

1 x ∈
(
Q \

{
a2 : a ∈ Q

})
∩ [0, 1]

(5)

In this case, is the average 1, 2 or a value in between?
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Note we must choose a unique, satisfying average for the cases that aren’t
covered; since, for the cases already covered, mathematicians choose m′f (A), or
the averages in [5] and [6] than other averages.

3 Question 1

How do we find a constructive extension of m̂′f (A), [5] and [6] (with as many
properties an average can have from [2], [3] and [4]) that give a unique, satisfying
average for nowhere continuous functions defined on non-fractal, measurable sets
in the sense of Caratheodory with no meaningful gauge function?

4 Attempt

Since I don’t fully understand uncountable, measurable sets with no gauge
function I will define a unique, satisfying average for f defined on countably
infinite subsets of the real numbers (e.g. equation [5]). (I hope this is compatible
with m′f (A), [10], [5], and [6] and have as many properties as Losonczi listed in
[2], [3] and [4]).

Note there are already methods to averaging over a countably infinite set;
however, I would like to generalize them to give more satisfying averages to
choose from.

4.1 Purpose of Changing the Current Definition of Aver-
age on Countably Infinite Sets

Suppose f : A→ R and A is a countably infinite, bounded subset of R.

If t ∈ N and {an}∞n=1 is an enumeration of A, the average of f is:

lim
t→∞

f(a1) + f(a2) + · · ·+ f(at)

t
(6)

where different enumerations of a function’s domain could possibly give different
averages: for instance nowhere continuous functions defined on countably dense
sets)

A structure, however, (see Section 3.2) is a generalization of an enumeration
that allows more satisfying averages to choose from.

Since different structures of the function’s domain give different averages, I
want to create a choice function that picks a unique class of equivalent structures
(see section 3.3) such that it gives a satisfying average similar to the Hausdorff
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Measure for fractals.

For specific examples of A (see section 3.4), I would like to find the most
natural or satsifying choice function which chooses the structures I believe would
give the most satisfying average (if it exists). (If it does not exist, then I’d like to:

1. choose an alternate structure where the average does exist or

2. is undefined if no structure gives a defined average.

4.2 Defining Structures

Suppose F1, F2, ... are a sequence of finite subsets of A where

1. F1 ⊂ F2 ⊂ ...

2.
∞⋃
n=1

Fn = A.

We denote the sequence of subsets as a structure of A which has the form
{Fn}.

An example of a structure, such as when A =
{

1
m : m ∈ N

}
,

is {Fn}n∈N =
{{

1
m : m ∈ N,m ≤ n

}}
n∈N.

As mentioned earlier, the structure Fn generalizes the enumeration since as
n increases by one, if |Fn| increases by one, then {Fn} behaves as an enumeration.

Further, there may be multiple structures of A e.g. for A =
{

1
m : m ∈ N

}
, a

second structure of the set is
{Fn}n∈N =

{{
1

2m : m ∈ N,m ≤ n
}
∪
{

1
2m+1 : m ∈ N,m ≤ 2n

}}
n∈N

.

4.3 Defining Equivalent and Non-Equivalent Structures

Suppose we have two structures of A, {Fn} and {F ′j}

Structures are non-equivalent if there exists a function f : A → R where,
using the monotonic convergence theorem (if f is bounded) and the rigorous
definition of limits of sequences (if unbounded):

lim
n→∞

1

|Fn|
∑
x∈Fn

f(x) 6= lim
j→∞

1

|F ′j |
∑
x∈F ′

j

f(x) (7)

Otherwise if for all functions f : A→ R,
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lim
n→∞

1

|Fn|
∑
x∈Fn

f(x) = lim
j→∞

1

|F ′j |
∑
x∈F ′

j

f(x) (8)

Then the structures {Fn} and {F ′j} are equivelant.

4.4 Specific Structures of Specific Countably Infinite A
That My Choice Function Should Choose

Suppose the average of f : A→ R for countably infinite A, from structure {Fn}
of A, (using the equations in [7] and [8]) is:

m̂f ({Fn} , A) = lim
n→∞

1

|Fn|
∑
x∈Fn

f(x) (9)

Then, for specific A, if {F ′′n } is the set of equivalent structures I want the
choice function to choose, then:

1. When A = Z, {F ′′n } should equal {m ∈ Z : −n ≤ m ≤ n}

2. When p ∈ 2N + 1, A = { p
√
r : r ∈ Q} {F ′′n } should equal:{

p
√
m/n! : m ∈ N, b−n · n!c ≤ m ≤ bn · n!c

}
if m̂f ({F ′′n } , A) is defined and finite. This would give a satisfying av-
erage. (I don’t know the structure the choice function should choose if
m̂f ({F ′′n } , A) is not defined and finite. I will attempt to answer this in
the following sections.)

3. When A = {1/m : m ∈ N} and [×] is the nearest integer function, {F ′′n }
should be {1/ [2n/m] : m ∈ N, 1 ≤ m ≤ 2n} if m̂f ({F ′′n } , A) is defined and
finite.

4. When A is almost nowhere dense (e.g.
{

1
m : m ∈ N

}
), {F ′′n } should

be points with the smallest 1-d Euclidean Distance from each point in
Cn = {m/2n : −n · 2n ≤ m ≤ n · 2n} (unless the point in Cn is a limit
point of A where minimum distance won’t exist) such that m̂f ({F ′′n } , A)
is defined and finite.

(For other countably infinite A, I am unsure what the choice function
should choose. I wish for a unique set of equivalent structures.)
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4.4.1 Reason For The Choices in 4.4

For the cases with a known and desired set of equivalent structures, the rea-
son for choosing them is that they give an intuitive m̂f

(
{Fn}′′ , A

)
when f is

nowhere continuous e.g. using {F ′′n } = {m/n! : m ∈ N, b−n · n!c ≤ m ≤ bn · n!c}
of equation [5]’s domain (A = Q ∩ [0, 1]), consider finding m̂f ({F ′′n , A}) of that
equation. Also suppose f :

{
1
m : m ∈ N

}
→ R and A =

{
1
m : m ∈ N

}
, where

{F ′′n } = {1/[2n/m] : m ∈ N, 1 ≤ m ≤ 2n} and

f(x) =

{
1/
√
x x ∈

{
1/(2j) : j ∈ N

}
1 otherwise

(10)

If we use the most natural structure of A (i.e. {Fn} =
{

1
m : m ∈ N,m ≤ n

}
),

m̂f ({Fn} , A) = 1 but the values of 1/
√
x, for x ∈

{
1/2j : j ∈ N

}
, are signifi-

cantly larger than 1. Therefore, it could be reasonable that 1/
√
x should have

more weight on the average.

Using a calculator, I found m̂f ({F ′′n } , A) is approximately 2.707107; however,
note for f :

{
1
m : m ∈ N

}
→ R, if we replace 1/

√
x with 1/x:

f(x) =

{
1/x x ∈

{
1/(2j) : j ∈ N

}
1 otherwise

(11)

then m̂f ({F ′′n } , A) =∞.

Using the choice function in the section 4.6, it may be possible to get a unique,
finite m̂f ({F ′′n } , A) as long as there exists an {Fn} where m̂f ({Fn} , A) exists.

4.5 Using Discrepancy to Define A Choice Function

4.5.1 Defining Equidistribution For Structures

Older definitions of discrepancy and equidistribution (on enumerations) are
shown in articles [12] and [9]

As with structures {Fn}, we say it’s equidistributed or uniformly dis-
tributed on At = [inf(A ∩ [−t, t]), sup(A ∩ [−t, t])], if for any sub-interval [c, d]
of At we have:

lim
t→∞

lim
n→∞

|Fn ∩ [c, d]|
|Fn|

=
d− c
`(At)

(12)

where `(At) is the length of the interval At

We add [−t, t] so when A has no infima or suprema, the limit on the left side
of equation [12] exists.
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Note current measures of discrepancy measure the maximum point of
density deviation from a uniform or equidistributed sample

sup
inf(A∩[−t,t])≤c≤d≤sup(A∩[−t,t])

∣∣∣∣ |Fn ∩ [c, d]|
|Fn|

− d− c
`(At)

∣∣∣∣ (13)

with more rigorous definitions deriving from articles [12] and [9] (we replace
{a1, ..., aN} with Fn and N with |Fn|). Unfortunately the discrepancy of most
structures converges to zero as n→∞ making it impossible to find a structure
with a lower discrepancy compared to the rest.

One solution is finding a {Fn} where the lower bound of its’ discrepancy con-
verges to zero the fastest. Unfortunately, I’m unconfident with current measures
as most calculate the maximum point of density deviation rather than the overall
deviation from an equidistributed structure).

4.5.2 Defining A Precise Form Of Discrepancy

Below are steps to measuring the overall deviation of a structure from an equidis-
tributed structure).

1. Arrange the values in Fn from least to greatest and take the absolute
difference between consecutive elements. Call this ∆Fn. (Note ∆Fn is
not a set since if absolute differences repeat, we don’t delete the repeating
differences.)

1.1 Example: IfA =
{

1
m : m ∈ N

}
and {Fn}n∈N =

{{
1
m : m ∈ N,m ≤ n

}}
n∈N

then
F4 = {1, 1/2, 1/3, 1/4}

Arranging F4 from least to greatest gives us {1/4, 1/3, 1/2, 1}

Therefore, ∆F4 = {|1/4− 1/3|, |1/2− 1/3|, |1/2− 1|} = {1/12, 1/6, 1/2}.
(None of the differences here are the same, but there are examples,
such as the one below, where at least two of the differences are equiv-
alent.)

1.2 Example: IfA = Q∩[0, 1] and {Fn}n∈N =
{{

j
k : j, k ∈ N, k ≤ n, 0 ≤ j ≤ k

}}
n∈N

then the elements of F4, arranged from least to greatest is,
F4 = {0, 1/4, 1/3, 1/2, 2/3, 3/4, 1} and

∆F4 = {|0− 1/4| , |1/4− 1/3| , |1/2− 1/3| , |2/3− 1/2| , |3/4− 2/3| , |1− 3/4|} =

{1/4, 1/12, 1/6, 1/6, 1/12, 1/4}. (Here the difference 1/4 repeats two
times but we do not delete the second 1/4)
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2. Divide ∆Ft by the sum of all its elements so we get a distribution where all
the elements sum to 1. We shall call this ∆Fn/

∑
x∈∆Fn

x or the information

probability of the structure

2.1 From example 1.1 note
∑

x∈∆F3

x = 1/2 + 1/6 + 1/12 = 3/4 and

∆F3/
∑

x∈∆F3

x = 4/3 · {1/2, 1/6, 1/12} = {2/3, 2/9, 1/9}.

Note the elements in this set sum to 1 and act as a probability
distribution (despite not being actual probabilities)

3. Since the elements of information probability always sum to 1, we can
calculate its deviance from a discrete uniform distribution using Entropy
which is written as

E(Fn) = −
∑

j∈∆Fn/
∑

x∈∆Fn

x

j log j (14)

(Note the smaller the deviation from a disrete uniform distribution, the
greater the entropy of the information probability and the lower the
structure’s discrepancy. Moreover, if E(Fn)→∞ as n→∞, we say {Fn}
is equidistributed).

3.1 From ∆F3/
∑

x∈∆F3

x, in example 2.1, E(F3) is the same as

−
∑

j∈{2/3,2/9,1/9}

j log j = − (2/3 log (2/3) + 2/9 log (2/9) + 1/9 log (1/9))

≈ .369

4.6 Defining The Choice Function

Inorder to get my results from Section 4.4, if g : A→ R is the identity function,
we should adjust:

T (Fn) = 2m̂g({Fn},A)
(

2E(Fn) + |Fn|
)

(15)

and also adjust the equations below (where S′(A) is the set of structures of
A; where, if {Fj} ∈ S′(A) then m̂f ({Fj} , A) is finite and defined and finite)∣∣F ′′n ∣∣ = inf {|Fj | : j ∈ N, {Fj} ∈ S′(A), T (Fj) ≥ T (F ′′n )} (16)

∣∣∣F ′′n ∣∣∣ = sup {|Fj | : j ∈ N, {Fj} ∈ S′(A), T (Fj) ≤ T (F ′′n )} (17)
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to choose C1 : R3 → R and C2 : R3 → R such that:

C1

(
|F ′′n | ,

∣∣F ′′n ∣∣ , ∣∣∣F ′′n ∣∣∣) ≤ |F ′′n | ≤ C2

(
|F ′′n | ,

∣∣F ′′n ∣∣ , ∣∣∣F ′′n ∣∣∣) (18)

or otherwise

z∑
n=1

C1

(
|F ′′n | ,

∣∣F ′′n ∣∣ , ∣∣∣F ′′n ∣∣∣) ≤ z∑
n=1

|F ′′n | ≤
z∑

n=1

C2

(
|F ′′n | ,

∣∣F ′′n ∣∣ , ∣∣∣F ′′n ∣∣∣) (19)

5 Question 2

What are the most elegant choices for C1 and C2 (which for each of the A listed
in Section 4.4) give the {F ′′n } required?

6 Generalized Mean

If f : A→ R, A is a subset of R, and avgf (A) is a unique, satisfying average of
f defined on sets measurable in the sense of Caratheodory, then avgf (A) should
be defined as:

avgf (A) :=



m′f (A) (See eq: [4]) A has a gauge function

Averages in [5], [6] A is fractal but has no gauge function

m̂f ({F ′′n } , A) A is countably infinite, non fractal-like and for

at least one structure, m̂f ({Fn} , A) is defined

Unknown A is uncountable and non-fractal with

no gauge function

Undefined Satisfying average cannot exist e.g. there is

no {Fn} where m̂f ({Fn} , A) exists

(20)

And an example where the average is unknown is for nowhere continuous f
defined on Liouville Numbers [12].

7 Question 3

How do we develop a satisfying average, when avgf (A) is unknown?
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8 Question 4:

Can we unite the peice-wise average in Section 6 into a elegant, non-peicewise
mean?
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