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Abstract 

It is generally believed that under the condition of relatively strong gravitational field, the effect of 

general relativity will be more significant. Under the condition that the gravitational field is 

relatively weak, we can directly use Newton's theory of gravity. However, if we think that dark matter 

is a kind of fluid, then general relativity can also be used to explain the more special space-time 

structure formed by the dark matter fluid. According to the characteristics of the fluid, when the 

fluid flows, two different flow phenomena, laminar flow and turbulent flow, can be formed. In this 

study, the Zou metric is analyzed, and it is believed that the space-time formed by dark matter 

turbulence can be well described by the Zou metric. On this basis, this study calculates the pulsation 

frequency and amplitude of dark matter turbulence in space-time, and predicts the possible impact 

of dark matter turbulence on visible matter. For the space-time formed by the laminar flow of dark 

matter, this paper attempts to establish a new two-dimensional metric. This two-dimensional metric 

has a structure similar to that of a uniform gravitational field. But the two-dimensional metric in 

this study are obtained entirely from the properties of the space-time structure. In this metric, 

therefore, the resulting acceleration is due to the structure of the space-time itself. When the speed 

of visible matter is slower than that of the dark matter fluid, the visible matter will be pulled by the 

dark matter fluid and continue to accelerate. Conversely, if the velocity of visible matter is lower 

than that of dark matter fluid, the velocity of visible matter will continue to slow down due to the 

dissipation of energy. In addition, this dark matter laminar space-time metric also has a very 

interesting phenomenon, that is, if the velocity of the visible matter is equal to the velocity of the 

dark matter fluid, the metric will degenerate into the flat metric of Minkowski space-time. 

1 Introduction 

It is generally believed that general relativity should be able to show its observable effects under a 

strong gravitational field. Under the condition of weak gravitational field, general relativity will be 

approximated to Newton's theory of gravity. However, some studies have shown that the nonlinear 

effects of general relativity exist even under the conditions of extremely weak gravitational fields 

[1,2]. For example, by introducing a new nonlinear metric [1], or introducing the self-interaction of 

the gravitational field, etc. [2]. 

This study believes that general relativity under the condition of this extremely weak gravitational 
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field may be related to dark matter. If we adopt the dark matter fluid model, due to the different flow 

states of the dark matter fluid: laminar flow or turbulent flow, etc., it will lead to nonlinear changes 

in the space-time where the visible matter is located. This nonlinear change can be handled using 

general relativity. At present, Zou solves the relationship between the galaxy velocity curve and the 

galaxy matter density distribution by establishing a nonlinear metric in the weak gravitational field. 

For dark matter fluid, its flow mode can be divided into two cases: laminar flow and turbulent flow. 

For spacetime in a laminar dark matter fluid state, a flat spacetime metric can be used to describe it. 

However, since the matter is in the dark matter fluid, the visible matter still has a gravitational 

interaction with the dark matter fluid. This gravitational interaction causes energy dissipation in the 

dark matter fluid, which in turn transfers some of that energy to visible matter. This can cause 

acceleration and deceleration of visible matter. Therefore, in this laminar dark matter fluid space-

time, a special energy dissipation term needs to be introduced. 

For the turbulent state of dark matter fluids. Its shape will be more complicated. The relatively 

simple random turbulence appears as a very random turbulent flow state of the fluid. This random 

turbulence may cause random curvature of spacetime. 

Another relatively ordered dark matter turbulent state is the vortex state of dark matter fluid. This 

eddy state is also a type of turbulent flow. But in form, it shows a certain orderly rotating flow state. 

By establishing a nonlinear metric [1], Zou can be used to describe the space-time formed by this 

dark matter fluid in a vortex state. 

We can also get an inspiration from the Zou metric, that is, when we calculate the influence of dark 

matter on space-time, we can not only simply do the approximate work of Newtonian gravity, but 

also directly consider the influence of dark matter on the space-time metric. For example, the 

existence of dark matter is regarded as an interference term of the space-time metric for 

computational analysis [3,4]. It can also be regarded as an important component of time and space. 

2 Zou Metrics 

Here is a more typical example of nonlinear general relativity, which was proposed by Zou in 2022. 

In his dissertation, he proposed a rotation metric that could explain the relationship between galaxy 

velocity curves and galaxy mass density distributions. 

The form of the Zou metric is this 

𝑔𝜇𝜈 =

(

 
 

−𝑐2 0 −𝛽(𝑟) 0
0 1 0 0

−𝛽(𝑟) 0 𝑟2 −
𝑞

𝑏
𝛽(𝑟) 0

0 0 0 1)

 
 

 

If a particle moves in the Zou metric, its velocity 
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𝑣 =
𝑟𝑑𝜙

𝑑𝑡
=
𝑟𝛽′ ± √(𝑟𝛽′)2 + (𝑟 + 𝛾′)𝑐2𝑟2𝛼′

(𝑟 + 𝛾′)
 

It can be seen from Zou's analysis that 𝛼(𝑟) = 0; therefore 𝛼′ = 0; 

If 𝑟 ≫ 𝛾′, if the velocity v is not 0, then： 

𝑣 ≈ 2𝛽′ 

Considering 

𝛽′ = 𝑏(
1

1 + 𝑒−
𝑟
𝑠

−
1

1 + 𝑒
𝑤
𝑠
−
𝑟
𝑠

) 

Therefore, if 𝑟 ≫ 𝑠;𝑤 ≫ 𝑠; 𝑟 ≫ 𝑤, then 

𝛽′ ≈ 𝑏 (1 − 𝑒−
𝑟
𝑠 − 1 + 𝑒

𝑤
𝑠
−
𝑟
𝑠) = 𝑏𝑒−

𝑟
𝑠 (−1 + 𝑒

𝑤
𝑠 ) ≈ 𝑏𝑒

𝑤
𝑠
−
𝑟
𝑠 

and  

𝛽(𝑟) = −𝑏𝑠𝑙𝑛 (
𝑒−
𝑟
𝑠 + 1

 𝑒
𝑤
𝑠
−
𝑟
𝑠  + 1

 ) = 𝑏𝑠𝑙𝑛(
𝑒
𝑟
𝑠 + 1

 𝑒
𝑤
𝑠  + 𝑒

𝑟
𝑠

 ) 

𝛽(𝑟) ≈ 𝑏𝑠𝑙𝑛 (
1

 𝑒
𝑤
𝑠
−
𝑟
𝑠  + 1

 ) = −𝑏𝑠𝑙𝑛 (𝑒
𝑤
𝑠
−
𝑟
𝑠  + 1) 

𝛽(𝑟) ≈ −𝑏𝑠𝑒
𝑤
𝑠
−
𝑟
𝑠 −

𝑏2𝑠2

2
𝑒2
(
𝑤
𝑠
−
𝑟
𝑠
)
≈ −𝑏𝑠𝑒

𝑤
𝑠
−
𝑟
𝑠 

So 

𝑣 ≈ 2𝑏𝑒
𝑤
𝑠
−
𝑟
𝑠 

This is to reflect the variation of the velocity in the tangential ϕ direction with the radius. It can be 

seen that this is a velocity that decreases exponentially. 

The inspiration given to us by the Zou metric is that in such a nonlinear general relativity metric, 

even if gravity is very weak, particles will still produce corresponding tangential motions in this 

space-time. This is incomprehensible in the linear approximation of general relativity. 

If we regard the region of r < w as a vortex region of dark matter fluid, the above-mentioned change 

of velocity can be regarded as a region away from the vortex. In this region away from the vortex, 

the tangential velocity begins to decrease. But it still exists. 
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On the other hand, if we consider the characteristics of turbulence. There may also be turbulent flow 

of dark matter fluids far from the eddies. At this time, it will also cause a certain degree of curvature 

of space-time. 

3 Randomly curved space-time 

If a dark matter fluid composed of space-time is a turbulent flow with strong randomness. 

Considering the randomness of turbulence, we can set the constant b as a random function b(t). 

Since it is a random function, it means that the function has a changing amplitude A, a changing 

frequency f, and so on. 

It is difficult to predict the frequency of this random function. However, the experimentally 

measured turbulent frequencies are generally between 102 and 105𝐻𝑧. The amplitude is less than 

10% of the average speed [5] 

According to the turbulent dissipation rate equation proposed by Jones, W. P and Launder, B. K. in 

1972, the eigenfrequency formula of turbulent flow can be obtained [6] 

𝑓0 =
1

𝑐𝜇
 
𝜀

𝑘
  

where k is the kinetic energy of the turbulent flow and ε is the turbulent dissipation of the turbulent 

energy. And 𝑐𝜇 is a constant. 

Turbulent dissipation is proportional to the viscosity coefficient. Kinetic energy is proportional to 

the square of velocity. 

From my estimates in my last paper [7], the viscosity coefficient of dark matter fluids may be 4200 

times that of water. The speed is calculated according to the speed of 200km/s of the outer galaxies 

of the Milky Way, which is 200,000 times the flow velocity of ordinary water at 1m/s. So we can 

estimate that the frequency of dark matter turbulence is about 

𝑓𝑑𝑎𝑟𝑘 =
4200

2000002
𝑓𝑤𝑎𝑡𝑒𝑟 = 2.1 × 10

−7𝑓𝑤𝑎𝑡𝑒𝑟 

According to the general conditions, the turbulent frequency of water is generally 100 Hz, and the 

pulsation frequency of dark matter turbulence can be roughly obtained as: 

𝑓𝑑𝑎𝑟𝑘 = 2.1 × 10
−5𝐻𝑧 

That is to say, the dark matter fluid pulsates once every 47619 seconds. This is equivalent to an 

average of 0.55 days, or a pulse of 13.23 hours. If it enters this space-time, it means that the entire 

space-time may have random changes that pulsate every 13 hours or so, resulting in the problem 

that visible matter may need to be adjusted in direction. 
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4 The scale of dark matter turbulence 

If large-scale galaxies such as the Milky Way are involved, the scale of the resulting turbulence can 

be very large. And if it is local dark matter turbulence like the solar system, the scale of the 

turbulence will be much smaller. 

For example, if we fly out of the solar system according to the distance from Kuiper to Voyager 2 

in 2018 (the detected solar radiation ions have dropped significantly), the distance of the entire area 

is about: 

∆𝑟 = 1.8 × 1010 − 48 × 1.5 × 108 ≈ 1.08 × 1010(𝑘𝑚) 

If dark matter turbulence is also equivalent to such a range of visible matter turbulence. It means 

that there is also a dark matter turbulent region in the range of about 1.08 × 1010(𝑘𝑚) outside the 

solar system. If it runs at a speed of 20km per second, it takes about 5.4 × 108𝑠 to cross the past. 

It will take about 17 years. However, considering that the further away from the solar system, the 

lower the intensity of turbulence, the phenomenon of random bending of spacetime will gradually 

weaken. 

5 Dark matter laminar space-time 

If dark matter is in a laminar state, then this time can be represented by a flat space-time metric. But 

if there is an interaction between the visible matter and the dark matter fluid, it will cause the energy 

dissipation of the dark matter fluid, resulting in a change in the velocity of the visible matter. 

So we can also slightly change the flat space-time metric. Assuming that the dark matter fluid has 

only one direction of the x-axis, if the range of the dark matter fluid is large enough, and the laminar 

flow has only one flow direction, we can use a two-dimensional metric to express: 

𝑔𝜇𝜈 = (
𝛼(𝑥) 0
0 −𝛽(𝑥)

) 

The formula of Christoffel symbols 

Γ𝛼𝛽
𝜇
=
1

2
𝑔𝜇𝜈 (

𝜕𝑔𝛼𝜈
𝜕𝑥𝛽

+
𝜕𝑔𝜈𝛽

𝜕𝑥𝛼
−
𝜕𝑔𝛼𝛽

𝜕𝑥𝜈
) 

We can get 

Γ𝛼𝛽
0 =

1

2
𝑔00 (

𝜕𝑔𝛼0
𝜕𝑥𝛽

+
𝜕𝑔0𝛽

𝜕𝑥𝛼
−
𝜕𝑔𝛼𝛽

𝜕𝑥0
) 
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The components that are not 0 are 

Γ01
0 =

1

2
𝑔00 (

𝜕𝑔00
𝜕𝑥

) =
𝛼′(𝑥)

2𝛼(𝑥)
 

Γ10
0 = Γ01

0 =
𝛼′(𝑥)

2𝛼(𝑥)
 

While  

Γ𝛼𝛽
1 =

1

2
𝑔11 (

𝜕𝑔𝛼1
𝜕𝑥𝛽

+
𝜕𝑔1𝛽

𝜕𝑥𝛼
−
𝜕𝑔𝛼𝛽

𝜕𝑥1
) 

The non-zero components are： 

Γ00
1 = −

1

2
𝑔11 (

𝜕𝑔00
𝜕𝑥

) =
𝛼′(𝑥)

2𝛽(𝑥)
 

Γ11
1 =

1

2
𝑔11 (2

𝜕𝑔11
𝜕𝑥

−
𝜕𝑔11
𝜕𝑥

) =
𝛽′(𝑥)

2𝛽(𝑥)
 

if 

𝛼(𝑥) = 𝑒𝜈 

𝛽(𝑥) = 𝑒𝜇 

then 

Γ10
0 = Γ01

0 =
𝜈′

2
 

Γ00
1 =

𝜈′

2
𝑒𝜈−𝜇 

Γ11
1 =

𝜇′

2
 

In this way, we can solve the corresponding Ricci curvature tensor 

𝑅𝜇𝜈 =
𝜕Γ𝜇𝜆

𝜆

𝜕𝑥𝜈
−
𝜕Γ𝜇𝜈

𝜆

𝜕𝑥𝜆
+ Γ𝛾𝜈

𝜆 Γ𝜇𝜆
𝛾
− Γ𝛾𝜆

𝜆 Γ𝜇𝜈
𝛾

 

Notice 𝑅𝛼𝛽 = 0, where 𝛼 ≠ 𝛽 

The non-zero components include 
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𝑅00 =
𝜕Γ0𝜆

𝜆

𝜕𝑥0
−
𝜕Γ00

𝜆

𝜕𝑥𝜆
+ Γ𝛾0

𝜆 Γ0𝜆
𝛾
− Γ𝛾𝜆

𝜆 Γ00
𝛾
= −

𝜕Γ00
1

𝜕𝑥
+ Γ10

0 Γ00
1 + Γ00

1 Γ01
0 − Γ10

0 Γ00
1 − Γ11

1 Γ00
1

= −
𝜕Γ00

1

𝜕𝑥
+ Γ10

0 Γ00
1 − Γ11

1 Γ00
1

= −
𝑒𝜈−𝜇

2
𝜈′′ −

𝑒𝜈−𝜇

2
(𝜈′ − 𝜇′)𝜈′ + (

𝜈′

2
−
𝜇′

2
)
𝑒𝜈−𝜇

2
𝜈′

= −𝑒𝜈−𝜇 (
𝜈′′

2𝜈′
+
𝜈′

4
−
𝜇′

4
) 𝜈′ 

Therefore 

𝑅00 = 𝑒
𝜈−𝜇 [−

𝜈′′

2
+
𝑣′

4
(𝜇′ − 𝜈′)] 

𝑅11 =
𝜕Γ1𝜆

𝜆

𝜕𝑥1
−
𝜕Γ11

𝜆

𝜕𝑥𝜆
+ Γ𝛾1

𝜆 Γ1𝜆
𝛾
− Γ𝛾𝜆

𝜆 Γ11
𝛾
=
𝜕Γ10

0

𝜕𝑥
+
𝜕Γ11

1

𝜕𝑥
−
𝜕Γ11

1

𝜕𝑥
+ Γ01

0 Γ10
0 + Γ11

1 Γ11
1 − Γ10

0 Γ11
1 − Γ11

1 Γ11
1

=
𝜕Γ10

0

𝜕𝑥
+ Γ01

0 Γ10
0 − Γ10

0 Γ11
1 =

𝜈′′

2
+
𝜈′
2

4
−
𝜇′𝜈′

4
 

So  

𝑅11 =
𝜈′′

2
−
𝑣′

4
(𝜇′ − 𝜈′)                                               (4 − 14) 

By the Einstein’s equation 

𝑅𝜇𝜈 = 0 

We can get 

𝜈′′

2
−
𝑣′

4
(𝜇′ − 𝜈′) = 0 

According to the Schwarzschild metric, we can know that when r is very, very large, there is a 

reciprocal relationship between α(x) and β(x), that is to say 

𝛽(𝑥) =
1

𝛼(𝑥)
 

And when r is very large, it is equivalent to a very weak gravitational force. 

Because  

𝜈 = 𝑙𝑛𝛼(𝑥) 

Therefore 
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𝜇 = 𝑙𝑛𝛽(𝑥) = −𝑙𝑛𝛼(𝑥) 

or 

𝜇 = −𝜈 

then 

𝛼(𝑥) = 𝑎𝑥 + 𝑏 

𝛽(𝑥) =
1

𝛼(𝑥)
=

1

𝑎𝑥 + 𝑏
 

So the metric can be expressed as 

𝑔𝜇𝜈 = (
𝑎𝑥 + 𝑏 0

0 −
1

𝑎𝑥 + 𝑏

) 

This way we can find the distance between two points: 

𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈 = (𝑎𝑥 + 𝑏)𝑑𝑡2𝑐2 −

1

𝑎𝑥 + 𝑏
𝑑𝑥2 

where a reflects an acceleration factor. With this factor, once a particle enters this space-time, it 

means that it will continue to accelerate or decelerate. This is similar to the space-time metric in a 

uniform gravitational field [8~11]. 

Also if we consider that in the complete absence of this acceleration factor, the entire metric should 

be approximated by the Minkowski metric. which is 

𝑠2 = 𝑑𝑡2𝑐2 − 𝑑𝑥2 

So we can get b = 1 

Then the whole metric will become 

𝑔𝜇𝜈 = (
𝑎𝑥 + 1 0

0 −
1

𝑎𝑥 + 1

) 

𝑑𝑠2 = (𝑎𝑥 + 1)𝑑𝑡2𝑐2 −
1

𝑎𝑥 + 1
𝑑𝑥2 

This is basically consistent with the formula (47) of the literature [8]. Where a reflects the 

acceleration of a uniform gravitational field. 
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Of course, in the object of this study, the existence of the acceleration factor a is caused by the 

gravitational interaction between the visible matter and the dark matter flow. When the velocity of 

the visible matter is less than the velocity of the dark matter flow, an accelerating viscous force is 

generated, which causes the visible matter to continue to accelerate. And if the velocity of visible 

matter is greater than the velocity of the dark matter fluid, a viscous force that hinders the movement 

will be generated, thus causing the visible matter to continue to slow down. 

When the velocity of the visible matter is the same as the velocity of the dark matter fluid, the 

viscous force of this acceleration or deceleration disappears. At this time, the acceleration factor a 

= 0 in the metric, and the metric will become the Minkowski metric of flat space-time. 

6 Conclusions 

It is generally believed that under the condition of weak gravitational field, although general 

relativity can still be used, it is slightly more complicated to deal with problems. Therefore, when 

conducting research and analysis, Newton’s theory of gravity is more widely used. 

However, this study shows that the theory of general relativity still needs to be used even under 

conditions where the gravitational field is very weak. For example, under the conditions of 

calculating galaxy velocity curves, gravitational lensing effects, etc., if Newton’s theory of gravity 

is used, there will be difficult self-consistent errors. The current solution is to introduce dark matter 

to generate excess gravity. But if we directly use the general theory of relativity and establish an 

appropriate metric that adapts to this scale, we can solve the related problems without considering 

the extra gravitational force generated by dark matter. 

There is a contradiction here. Since general relativity is indeed under the condition of weak 

gravitational field, it can be approximated as Newton’s theory of gravity, why under certain 

conditions, such as at the scale of galaxies, some results cannot be obtained using Newton’s theory 

of gravity? 

The fundamental reason for this lies in what kind of dark matter the visible matter of the universe 

is built on. If dark matter is also regarded as static, dark matter can generate corresponding 

gravitational force like other visible matter, thereby affecting the gravitational interaction of visible 

matter. This still seems to be able to solve the related problems in the framework of Newtonian 

gravity. 

And if we regard dark matter as a kind of fluid, the state of this fluid is different, which can lead to 

changes in the space-time structure of visible matter, then we can create a suitable metric, and we 

can use the theory of general relativity to solve the current Newtonian gravity theoretically 

intractable problems. From the calculation results of some literature [1], the results are quite 

satisfactory. 

Using such a new space-time metric, this study analyzes the frequency and magnitude of turbulent 
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pulsations in dark matter fluids. From the current application situation in various fields, the research 

in this direction is obviously still a blank. In the absence of any relevant theory, I think such research 

is still very meaningful. It is believed that this can provide a useful reference for the conditions 

under which human spacecraft have been able to enter the galaxy space. 

This study further explores the space-time properties at locations far from the visible matter of the 

galaxy. Since these regions far from the visible matter of the galaxy are basically filled with dark 

matter fluid. These dark matter fluids also exhibit the characteristics of laminar flow under 

undisturbed conditions. Therefore, this study believes that this can be analyzed using a metric 

similar to a uniform gravitational field. In general relativity, the main study is the spherical 

symmetric gravitational field. However, there are relatively few studies on uniform gravitational 

fields. However, there are still some papers on this subject. This study refers to the work of some 

authors to construct a space-time metric suitable for laminar flow of dark matter. It can be seen from 

this space-time metric that there is an acceleration factor. This factor is related to the coefficient of 

viscosity (that is, the gravitational constant) between the dark matter fluid and visible matter. If the 

visible matter is moving slower than the flow rate of the dark matter fluid, the visible matter will be 

accelerated. Visible matter, which moves faster than the dark matter fluid, may be slowed down. 

When the velocity of visible matter is the same as that of dark matter fluid, the laminar space-time 

metric of this dark matter fluid will degenerate into a flat Minkowski space-time metric. 

From the results of this study, we can now do a reflection on the theory of general relativity. Perhaps 

general relativity should not be seen as a theory of gravity, but rather as a theory of space-time. This 

is in line with the special theory of relativity. 
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