SHAO-DAN LEE

Abstract Let C be a category. Suppose that the hom-sets of C is small. Let $C_{\mathcal{H}}$ be a category consist of the hom-sets of C. Then we define a morphism of $C_{\mathcal{H}}$ by a morphisms pair $\langle \nu, \mu \rangle$. Hence the morphism is monic if and only if ν is epi and μ is monic. An object $Hom_{\mathcal{C}}(P, E) \in C_{\mathcal{H}}$ is an injective object if and only if P is a projective object and E is an injective object. There exists a bifunctor $T : (C \downarrow A)^{op} \times (B \downarrow C) \rightarrow (Hom(A, B) \downarrow C_{\mathcal{H}})$. And the bifunctor T is bijective. There exist the products in $C_{\mathcal{H}}$ if and only if there exist the products and coproducts in C.

1. Introduction

In this paper, C is a category. Then we define a category $C_{\mathcal{H}}$:

Objects: Hom-sets of C. If $A, B \in C$, then $Hom_C(A, B)$ is an object of $C_{\mathcal{H}}$.

Morphisms: Pairs of morphisms of C. Let $\nu: C \to A, \mu: B \to D$. Then $\langle \nu, \mu \rangle$ is a morphism $Hom_{\mathcal{C}}(A, B) \to Hom_{\mathcal{C}}(C, D)$ given by $f \mapsto \mu \circ f \circ \nu$ for all $f \in Hom_{\mathcal{C}}(A, B)$.

The hom-set $Hom_{\mathcal{C}_{\mathcal{H}}}(Hom_{\mathcal{C}}(A, B), Hom_{\mathcal{C}}(C, D))$ is a quotient set. And a hom-set of two objects in $\mathcal{C}_{\mathcal{H}}$ is determined by other objects of $\mathcal{C}_{\mathcal{H}}$. To avoid trouble, we suppose that $\mu \circ f \circ \nu = \mu' \circ f \circ \nu'$ for all $f \in Hom(A, B)$ if and only if $\nu = \nu'$ and $\mu = \mu'$. In subsection 3.1, we discuss morphisms of $\mathcal{C}_{\mathcal{H}}$ in more detail.

The category $C_{\mathcal{H}}$ is a subcategory of **Sets**[1], *not* full. Hence for an object $A \in C$, Hom(A, -) is a functor from C to $C_{\mathcal{H}}$.

Proposition (proposition 3.3). The functor Hom(A, -) preserves[1] all monic[1] morphisms and limits[1] in $C_{\mathcal{H}}$.

It is determined by morphisms of C that a morphism in $C_{\mathcal{H}}$ is monic(epi)[1].

Proposition (propositions 3.1 and 3.2). The morphism $\langle \nu, \mu \rangle$ in $C_{\mathcal{H}}$ is monic if and only if μ is monic and ν is epi.

Hence every monic of $C_{\mathcal{H}}$ consists of an epi and a monic of C. And an object of $C_{\mathcal{H}}$ is projective(injective)[1] is determined by the objects of C.

Proposition (propositions 3.4 and 3.5). An object $Hom(P, E) \in C_{\mathcal{H}}$ is a projective object if and only if $P \in C$ is a projective object and $E \in C$ is an injective object.

For an object $Hom(A, B) \in C_{\mathcal{H}}$, if $\langle \langle v, \mu \rangle$, $Hom(C, D) \rangle$ is an object of comma category[1] $(Hom(A, B) \downarrow C_{\mathcal{H}})$, then $\langle v, C \rangle \in (C \downarrow A)$ and $\langle u, D \rangle \in (B \downarrow C)$. See subsection 3.5 for detail.

The situation of (co)products[1] and pullback(pushout)[1] are similar.

Date: May 26, 2022.

²⁰²⁰ Mathematics Subject Classification. 18B99. Key words and phrases. Category, Hom-set.

es. Calegory, nom-s

SHAO-DAN LEE

Proposition (propositions 3.7, 3.8, 3.10 and 3.11). There exist the (co)products in $C_{\mathcal{H}}$ if and only if there exist the products and coproducts in C.

Suppose that \mathcal{J} be a category. Let F be a functor from \mathcal{J} to $\mathcal{C}_{\mathcal{H}}$. We have that

Proposition (propositions 3.14 and 3.15). There exists the (co)limit of F if and only if there exist the (co)limit of $T \circ F$ and the (co)limit of $S \circ F$. The functors T and S are defined in subsection 3.8.

Contents

1. Introduction	1
2. Preliminaries	2
2.1. Monic and Epi	2
2.2. Limit and Colimit	2
2.3. Functor <i>Hom</i> (<i>A</i> , –)	3
2.4. Projective and Injective	5
2.5. Comma category	5
2.6. Product and Coproduct	5
2.7. Pullback and Pushout	6
3. Hom-Set Category	6
3.1. Hom-Set of C_H	7
3.2. Monic and Epi in C_H	7
3.3. Functor $Hom(A, -)$ from C to C_H	8
3.4. Injective and Projective Objects In C_H	8
3.5. Comma Category ($Hom(A, B) \downarrow C_H$)	9
3.6. Product and Coproduct in C_H	10
3.7. Pushout and Pullback in C_H	11
3.8. (Co)Limit In $\mathcal{C}_{\mathcal{H}}$	13
References	15

2. Preliminaries

2.1. Monic and Epi.

Definition 2.1 (Monic[1]). A morphism μ is monic when it is left cancellable, $\mu \circ f = \mu \circ f'$ implies f = f'.

Definition 2.2 (Epi[1]). A morphism ν is epi when it is right cancellable, $f \circ \nu = f' \circ \nu$ implies f = f'.

2.2. Limit and Colimit.

Definition 2.3 (natural transformation[1]). Let \mathcal{D} be a category, T and S be two functors from \mathcal{D} to \mathcal{C} . Then a natural transformation $\tau: T \stackrel{\bullet}{\to} S$ is a function which send every object $D \in \mathcal{D}$ to a morphism $\tau_D: T(D) \to S(D)$ of \mathcal{C} in such a way that every morphism $f: D \to D'$ of \mathcal{D} makes the diagram(2.3) commute.

Let \mathcal{J} be a category, F a functor from \mathcal{J} to \mathcal{C} . Suppose that Δ is a diagnal functor[1]: $\mathcal{C} \to \mathcal{C}^{\mathcal{J}}$.

Definition 2.4 (Limit[1]). An object $\lim_{K \to \infty} F$ of $C_{\mathcal{H}}$ is the limit of F provided that for all $X \in C$ with a natural transformation $\tau \colon \Delta(X) \xrightarrow{\bullet} F$, there exists unique natural transformation $\pi \colon \Delta(X) \xrightarrow{\bullet} \Delta(\lim_{K \to \infty} F)$ such that the diagram(2.2) is commutative. The natural transformation $\omega \colon \Delta(\lim_{K \to \infty} F) \xrightarrow{\bullet} F$ is called limit cone[1].

$$\Delta(\varinjlim F) < - - - - \Delta(X)$$

Definition 2.5 (Colimit[1]). An object $\varinjlim F$ of $\mathcal{C}_{\mathcal{H}}$ is the colimit of F provided that for all $X \in \mathcal{C}$ with a natrual transformation $\tau: F \to \Delta(X)$, there exists unique natural transformation $\pi: \Delta(\varinjlim F) \xrightarrow{\bullet} \Delta(X)$ such that the diagram(2.3) is commutative. The natural transformation $\omega: F \xrightarrow{\bullet} \Delta(\liminf F)$ is called colimit cone[1].

2.3. **Functor** Hom(A, -). If $A \in C$, then Hom_C(A, -) is a functor from C to **Sets**[1].

Theorem 2.1 (Preserves monic[1]). The functor $Hom_{\mathcal{C}}(A, -)$ preserves monic for all $A \in \mathcal{C}$.

Proof. Let *B*, *C* ∈ *C*, *f* a monic morphism from *B* to *C*. Then *f* induces a morphism $f^* : Hom_{\mathcal{C}}(A, B) \to Hom(A, C)$ given by $f^* : u \mapsto f \circ u$. Hence for all $u, v \in Hom_{\mathcal{C}}(A, B)$, $f \circ u = f \circ v$ implies u = v. Therefore, f^* is monic.

Theorem 2.2 (Preserves limits[1]). The functor $Hom_{\mathcal{C}}(A, -)$ preserves the limits for all $A \in \mathcal{C}$.

Proof. Let \mathcal{J} be a category, F a functor from \mathcal{J} to \mathcal{C} . Then for every $A \in \mathcal{C}$ we have a functor $Hom(A, F-): \mathcal{J} \rightarrow \mathbf{Sets}$ what is composition of F and Hom(A, -).

$$\mathcal{J} \xrightarrow{F} \mathcal{C} \xrightarrow{Hom(A,-)} \mathbf{Sets}$$

Suppose that the limit of F exists in \mathcal{C} with limit cone $\omega: \Delta(\lim_{t \to F}) \xrightarrow{\bullet} F$ where the functor Δ is a diagonal functor. Hence for all $A \in \mathcal{C}$ with a natural transformation $\tau: \Delta(A) \xrightarrow{\bullet} F$, there exists unique natural transformation $\eta: \Delta(A) \xrightarrow{\bullet} \Delta(\lim_{t \to T} F)$ factors through τ . Hence for all $i, j \in \mathcal{J}$ and every morphism $\phi: i \to j$, the diagram(2.4) is

(2.3)

commutative in \mathcal{C} .

(2.4)

Hence the diagram(2.5) is commutative in **Sets**.

Suppose that X is a set and that $\lambda : \Delta(X) \xrightarrow{\bullet} Hom(A, F-)$ is a natural transformation. Then the diagram(2.6) is commutative for all $i, j \in \mathcal{J}$ and every $\phi : i \to j$.

Hence for every $x \in X$, we have $F(\phi) \circ \tau_i = \tau_j$ where $\tau_i := \lambda_i(x), \tau_j := \lambda_j(x)$. Since the diagram(2.4) is commutative, there exists unique $\eta \in Hom(A, \varinjlim F)$ such that $\omega_i \circ \eta = \tau_i, \omega_j \circ \eta = \tau_j$ and $F(\phi) \circ \omega_i \circ \eta = \omega_j \circ \eta = \tau_j$. Hence we may define a morphism $\pi: X \to Hom(A, \varinjlim F)$ given by $\pi: x \mapsto \eta$ for every $i \in \mathcal{J}$. The morphism π makes the diagram(2.7) commutative. It is obvious that π is unique such that the diagram(2.7) is commutative.

Hence for all $X \in$ **Sets** with a natural transformation $\lambda : \Delta(X) \xrightarrow{\bullet} Hom(A, F-)$, there exists unique natural transformation $\hat{\pi} : \Delta(X) \xrightarrow{\bullet} \Delta(Hom(A, \lim F))$ given by

 $(\pi: X \to Hom(A, \lim F))_{i \in \mathcal{J}}$ such that $\overset{\bullet}{\pi}$ factors through λ . Therefore,

$$Hom(A, \lim F) \cong \lim Hom(A, F-) \qquad \Box$$

2.4. Projective and Injective.

Definition 2.6 (Injective objective[1]). If $E \in C$ is an injective object, then for every morphism $f: A \to E$ and every monic $\mu: A \to B$ there exists $g: B \to E$ such that the diagram(2.8) is commutative.

$$(2.8) \qquad \begin{array}{c} A \xrightarrow{\mu} B \\ f \downarrow f \\ F \\ E \end{array}$$

Definition 2.7 (Projective object[1]). If $P \in C$ is a projective object, then for every morphism $f: P \to A$ and every epi $\nu: A \to B$ there exists $g: P \to B$ such that the diagram(2.9) is commutative.

$$(2.9) \qquad \qquad A \xrightarrow{g} I$$

2.5. Comma category.

Definition 2.8 (Comma category[1]). Let $A, B, C \in C$. Then $(A \downarrow C)$ is a comma category if

Object: (f, B), where $f: A \rightarrow B$. Morphism: $h: (f, B) \rightarrow (g, C)$ makes the diagram(2.10) commute in C.

(2.10)

2.6. Product and Coproduct.

Definition 2.9 (Product[1]). Let $A, B \in C$. Then for all $C \in C$ and for every morphism $C \rightarrow A, C \rightarrow B$ there exists an object $A \sqcap B \in C$ and unique morphism $C \rightarrow A \sqcap B$ such that the diagram (2.11) is commutative. We call $A \sqcap B$ product.

(2.11)

Definition 2.10 (Coproduct[1]). Let $A, B \in C$. Then for all $C \in C$ and for every morphism $A \to C$, $B \to C$ there exists an object $A \sqcup B \in C$ and unique morphism

 $A \sqcap B \rightarrow C$ such that the diagram (2.12) is commutative. We call $A \sqcup B$ coproduct.

2.7. Pullback and Pushout.

Definition 2.11 (Pullback[1]). Let $A \to C \leftarrow B$ be morphisms in C. For all $D \in C$, if the diagram(2.13) is commutative, then there exists an object $A \sqcap_C B \in C$ and unique morphism $D \to A \sqcap_C B$ such that the diagram(2.14) is commutative. That $A \sqcap_C B$ is the pullback.

Definition 2.12 (Pushout[1]). Let $A \leftarrow C \rightarrow B$ be morphisms in C. For all $D \in C$, if the diagram(2.15) is commutative, then there exists an object $A \sqcup_C B \in C$ and unique morphism $A \sqcup_C B \rightarrow D$ such that the diagram(2.16) is commutative. That $A \sqcup_C B$ is the pushout.

3. Hom-Set Category

We defined the category $\mathcal{C}_{\mathcal{H}}.$ Now, we prove that the definition of $\mathcal{C}_{\mathcal{H}}$ is well-defined.

Proof. There exists identity morphism $id: Hom_{\mathcal{C}}(A, B) \to Hom_{\mathcal{C}}(A, B)$ where $id := \langle id_A, id_B \rangle$. Suppose that Hom(A, B), Hom(C, D), Hom(E, F), Hom(G, H) are objects in $\mathcal{C}_{\mathcal{H}}$. Let $v_0: C \to A, \mu_0: B \to D, v_1: E \to C, \mu_1: D \to F, v_2: G \to E, \mu_2: F \to H$ be morphisms in \mathcal{C} . Then we have

$$Hom(A, B) \xrightarrow{\langle \nu_0, \mu_0 \rangle} Hom(C, D) \xrightarrow{\langle \nu_1, \mu_1 \rangle} Hom(E, F) \xrightarrow{\langle \nu_2, \mu_2 \rangle} Hom(G, H)$$

For every $f \in Hom(A, B)$, suppose that the diagram(3.1) is commutative.

We define the composition

(3.1)

(3.2)
$$\langle \nu_1, \mu_1 \rangle \circ \langle \nu_0, \mu_0 \rangle := \langle \nu_0 \circ \nu_1, \mu_1 \circ \mu_0 \rangle$$

Hence we have $(\langle \nu_2, \mu_2 \rangle \circ \langle \nu_1, \mu_1 \rangle) \circ \langle \nu_0, \mu_0 \rangle = \langle \nu_2, \mu_2 \rangle \circ (\langle \nu_1, \mu_1 \rangle \circ \langle \nu_0, \mu_0 \rangle)$ The

Hence we have $(\langle \nu_2, \mu_2 \rangle \circ \langle \nu_1, \mu_1 \rangle) \circ \langle \nu_0, \mu_0 \rangle = \langle \nu_2, \mu_2 \rangle \circ (\langle \nu_1, \mu_1 \rangle \circ \langle \nu_0, \mu_0 \rangle)$ Therefore, $C_{\mathcal{H}}$ is a category.

3.1. **Hom-Set of** $C_{\mathcal{H}}$. Let $Hom_{\mathcal{C}}(A, B)$, $Hom_{\mathcal{C}}(C, D) \in C_{\mathcal{H}}$. Suppose that $\langle \nu, \mu \rangle$ and that $\langle \nu', \mu' \rangle$ are morphisms of $C_{\mathcal{H}}$:

$$Hom_{\mathcal{C}}(A,B) \xrightarrow{\langle \nu', \mu' \rangle} Hom_{\mathcal{C}}(C,D)$$

We define a binary relation: $\langle \nu, \mu \rangle \sim \langle \nu', \mu' \rangle$ when $\mu \circ f \circ \nu = \mu' \circ f \circ \nu'$ for all $f \in Hom_{\mathcal{C}}(A, B)$. It is obvious that '~' is an equivalence relation. Then $Hom_{\mathcal{C}_{\mathcal{H}}}(Hom_{\mathcal{C}}(A, B), Hom_{\mathcal{C}}(C, D))$ is a quotient set of $Hom(C, A) \times Hom(B, D)$ by ~. These may arise some trouble, hence we suppose that $\mu \circ f \circ \nu = \mu' \circ f \circ \nu'$ for all $f \in Hom(A, B)$ if and only if $\nu = \nu'$ and $\mu = \mu'$ in \mathcal{C} . Hence we have the two hypotheses about the categroy \mathcal{C} , in this paper:

- The hom-sets is small.
- $\nu \circ f \circ \mu = \nu' \circ f \circ \mu'$ for all $f \in Hom(A, B)$ if and only if $\nu = \nu'$ and $\mu = \mu'$ in C.

3.2. Monic and Epi in $C_{\mathcal{H}}$.

Proposition 3.1. A morphim $\langle \nu, \mu \rangle$: Hom(A, B) \rightarrow Hom(C, D) is monic if and only if $\nu: C \rightarrow A$ is epi and $\mu: B \rightarrow D$ is monic.

Proof. Let $f, f' \in Hom(A, B)$ with $f \neq f'$. Suppose that $\nu: C \to A$ is epi and that $\mu: B \to D$ is monic. Then $f \neq f'$ implies $f \circ \nu \neq f' \circ \nu$ and $\mu \circ f \neq \mu \circ f'$. It follows that $\mu \circ f \circ \nu \neq \mu \circ f' \circ \nu$. On the other hand, Suppose that a morphim $\langle \nu, \mu \rangle$: $Hom(A, B) \to Hom(C, D)$ is monic. Hence we have that $f \neq f'$ implies $\mu \circ f \circ \nu \neq \mu \circ f' \circ \nu$. Hence $f \circ \nu \neq f' \circ \nu$ and $\mu \circ f \neq \mu \circ f'$. And the morphisms f and f' are not fixed. Therefore, that $f \neq f'$ implies $f \circ \nu \neq f' \circ \nu$ and $\mu \circ f \neq \mu \circ f'$.

Proposition 3.2. A morphism $\langle \nu, \mu \rangle$: Hom $(A, B) \rightarrow$ Hom(C, D) is epi if and only if $\nu: C \rightarrow A$ is monic, $\mu: B \rightarrow D$ is epi.

Proof. Let Hom(E, F) be a object of $C_{\mathcal{H}}$, $\langle \alpha, \beta \rangle$ and $\langle \alpha', \beta' \rangle$ morphisms from Hom(C, D) to Hom(E, F). Then we have

$$Hom(A, B) \xrightarrow{\langle \nu, \mu \rangle} Hom(C, D) \xrightarrow{\langle \alpha, \beta \rangle} Hom(E, F)$$

Suppose that ν is monic and that μ is epi. Then $\nu \circ \alpha = \nu \circ \alpha'$ and $\beta \circ \mu = \beta' \circ \mu$ implies $\alpha = \alpha'$ and $\beta = \beta'$, respectively. Hence $\beta \circ \mu \circ f \circ \nu \circ \alpha = \beta' \circ \mu \circ f \circ \nu \circ \alpha'$ for all $f \in Hom(A, B)$ implies $\alpha = \alpha'$ and $\beta = \beta'$. Hence if $\langle \alpha, \beta \rangle \circ \langle \nu, \mu \rangle = \langle \alpha', \beta' \rangle \circ \langle \nu, \mu \rangle$ then $\langle \alpha, \beta \rangle = \langle \alpha', \beta' \rangle$. Hence $\langle \nu, \mu \rangle$ is epi. On the other hand, Suppose that $\langle \nu, \mu \rangle$ is epi. Then $\langle \alpha, \beta \rangle \circ \langle \nu, \mu \rangle = \langle \alpha', \beta' \rangle \circ \langle \nu, \mu \rangle$ implies $\langle \alpha, \beta \rangle = \langle \alpha', \beta' \rangle$. Hence if $\beta \circ \mu \circ f \circ \nu \circ \alpha = \beta' \circ \mu \circ f \circ \nu \circ \alpha'$ for all $f \in Hom(A, B)$ then $\alpha = \alpha'$ and $\beta = \beta'$. And $\beta \circ \mu \circ f \circ \nu \circ \alpha = \beta' \circ \mu \circ f \circ \nu \circ \alpha'$

SHAO-DAN LEE

for all $f \in Hom(A, B)$ if and only if $\beta \circ \mu = \beta' \circ \mu$ and $\alpha \circ \nu = \alpha' \circ \mu$. Therefore, that ν is monic and μ is epi.

3.3. **Functor** Hom(A, -) from C to $C_{\mathcal{H}}$. Let $C, D \in C, \mu$ a monic from C to D. Then the functor Hom(A, -) sends C, D to Hom(A, C), Hom(A, D), respectively. And it sends μ to (id, μ) . Hence we have,

Proposition 3.3. The functor Hom(A, -) preserves all monic morphisms and limits in $C_{\mathcal{H}}$.

Proof. Immediate from theorems 2.1 and 2.2.

3.4. Injective and Projective Objects In $\mathcal{C}_{\mathcal{H}}\textbf{.}$

Proposition 3.4. An object Hom(P, E) is an injective object in $C_{\mathcal{H}}$ if and only if P is a projective object and E is an injective object in C,

Proof. Let $\langle \nu, \mu \rangle$: $Hom(A, B) \rightarrow Hom(C, D)$ be a monic in $C_{\mathcal{H}}$. By proposition 3.1, we have that $\nu: C \rightarrow A$ is epi and $\mu: B \rightarrow D$ is monic. Suppose that P is a projective object and that E is an injective object. Then we have P is a projective object if and only if for every morphim $\rho: P \rightarrow A$, there exists a morphism $\theta: P \rightarrow C$ such that the diagram(3.3) is commutative, and E is an injective object if and only if for every morphism $\pi: B \rightarrow E$, there exists a morphism $\phi: C \rightarrow E$ such that the diagram(3.4) is commutative.

(3.3)
$$\begin{array}{c} P \\ \theta \swarrow \phi \\ C \swarrow \phi \\ V \searrow A \end{array}$$
(3.4)
$$\begin{array}{c} B \longrightarrow D \\ \pi \downarrow \phi \\ E \end{array}$$

Then for all $f \in Hom(A, B)$ there exists a morphism $g: P \to E$ such that the diagram(3.5) is commutative.

(3.5)
$$P \xrightarrow{g} E \\ \varphi \xrightarrow{\rho} \eta \xrightarrow{q} \varphi \xrightarrow{\phi} Q \xrightarrow{$$

It follows that the diagram(3.6) is commutative.

Hence Hom(P, E) is an injective object in $C_{\mathcal{H}}$. On the other hand, suppose that Hom(P, E) is an injective object in $C_{\mathcal{H}}$. Then the diagram(3.6) is commutative. Hence there exists a pair $\langle \theta, \phi \rangle$ such that the diagram(3.5) is commutative for every pair $\langle \rho, \pi \rangle$. It implies the diagrams (3.3) and (3.4) are commutative. Hence *P* is a projective object and *E* is an injective object.

Proposition 3.5. An object Hom(E, P) is projective object in C_H if and only if E is an injective object and P is a projective object in C.

Proof. Let morphism $\langle \nu, \mu \rangle$: $Hom(A, B) \to Hom(C, D)$ be an epi. By proposition 3.2, a morphism $\langle \nu, \mu \rangle$ is epi if and only if $\nu: C \to A$ is monic and $\mu: B \to D$ is epi. Suppose that *P* is a projective object and that *E* is an injective object in *C*. Then for every morphism $\rho: P \to D$ there exists a morphism $\theta: P \to B$ such that the diagram(3.7) is commutative. And for every morphism $\pi: C \to E$ there exists a morphism $\phi: A \to E$ such that the diagram(3.8) is commutative.

(3.7)
$$\begin{array}{c} P \\ \theta \swarrow & \rho \\ B \swarrow & D \end{array}$$
 (3.8)
$$\begin{array}{c} C \swarrow & A \\ \pi & & \\ E \end{array}$$

Hence for all $g \in Hom(E, P)$, there exists a morphism $f \in Hom(A, B)$ such that the diagram(3.9) is commutative.

(3.9)
$$\begin{array}{c} C \xrightarrow{\nu} A \xrightarrow{f} B \xrightarrow{\mu} D \\ \pi_{\downarrow}^{\nu} & \downarrow^{\rho} \\ E \xrightarrow{g} & P \end{array}$$

It follows that for every morphism (π, ρ) there exist a morphism (θ, ϕ) such that the diagram(3.10) is commutative.

(3.10)
$$Hom(E, P)$$
$$\downarrow^{(\phi, \theta)} - \downarrow^{(\pi, \rho)}$$
$$Hom(A, B) \xrightarrow{(\nu, \mu)} Hom(C, D)$$

Hence Hom(E, P) is a projective object in $C_{\mathcal{H}}$. On the other hand, suppose that Hom(E, P) is a projective object. Then for every morphism $\langle \pi, \rho \rangle$ there exists a morphism $\langle \phi, \theta \rangle$ such that the diagram(3.10) is commutative. Hence the diagram(3.9) is commutative. It follows that the diagrams (3.7) and (3.8) are commutative. Hence P is a projective object and E is an injective object.

3.5. **Comma Category** $(Hom(A, B) \downarrow C_{\mathcal{H}})$. Suppose that $\langle \langle f, g \rangle, Hom(C, D) \rangle$ and $\langle \langle f', g' \rangle, Hom(E, F) \rangle$ are objects of comma category $(Hom(A, B) \downarrow C_{\mathcal{H}})$. Let $\langle \nu, \mu \rangle$ be a morphism from $\langle \langle f, g \rangle, Hom(C, D) \rangle$ to $\langle \langle f', g' \rangle, Hom(E, F) \rangle$. Then the morphism $\langle \nu, \mu \rangle$ makes the diagram(3.11) commute.

(3.11)
$$Hom(C, D) \xrightarrow{(f,g)} Hom(E, F)$$

Hence for all $u \in Hom(A, B)$, the diagram(3.12) is commutative.

Hence the digrams (3.13) and (3.14) are commutative.

(3.13)
$$E \xrightarrow{\nu} C \qquad (3.14) \qquad D \xrightarrow{g} B \qquad g' \qquad F$$

Hence we have that $\nu: \langle f, E \rangle \rightarrow \langle f', C \rangle$ in comma category $(\mathcal{C} \downarrow A)$ and that $\mu: \langle g, D \rangle \rightarrow \langle g', F \rangle$ in comma category $(B \downarrow \mathcal{C})$.

Proposition 3.6. There exists a bifunctor $T : (C \downarrow A)^{op} \times (B \downarrow C) \rightarrow (Hom(A, B) \downarrow C_{\mathcal{H}})$. And the bifunctor is bijective.

Proof. We define a bifunctor T given by

objects:
$$(\langle f, C \rangle, \langle g, D \rangle) \mapsto \langle \langle f, g \rangle, Hom(C, D) \rangle$$

morphisms: $(\nu, \mu) \mapsto \langle \nu, \mu \rangle$

It is obvious that $T(id, id) = \langle id, id \rangle$. Suppose that $\nu' : \langle f'', G \rangle \to \langle f', E \rangle$ in $(\mathcal{C} \downarrow A)$ and that $\mu' : \langle g', F \rangle \to \langle g'', H \rangle$ in $(B \downarrow \mathcal{C})$. By Equation 3.2, we have that

$$T(\nu \circ \nu', \mu' \circ \mu) = \langle \nu \circ \nu', \mu' \circ \mu \rangle$$

= $\langle \nu', \mu' \rangle \circ \langle \nu, \mu \rangle$
= $T(\nu', \mu') \circ T(\nu, \mu)$

Hence T is a bifunctor. And it is obvious that T is bijective.

3.6. Product and Coproduct in $\mathcal{C}_{\mathcal{H}}$.

Proposition 3.7. There exist the products in C_H if and only if there exist the products and coproducts in C. And

$$(3.15) \qquad Hom(A, B) \sqcap Hom(C, D) \cong Hom(A \sqcup C, B \sqcap D)$$

Proof. Suppose that there exist the products in $C_{\mathcal{H}}$. Let Hom(A, B), $Hom(C, D) \in C_{\mathcal{H}}$. Then for all $Hom(E, F) \in C_{\mathcal{H}}$ and for every morphism $\langle v, u \rangle : Hom(E, F) \rightarrow Hom(A, B)$, $\langle v', u' \rangle : Hom(E, F) \rightarrow Hom(C, D)$ there exists a morphism $\langle v, \mu \rangle$ such that the diagram(3.16) is commutative.

Then there exists $Hom(P,Q) \in C_{\mathcal{H}}$ such that $Hom(A,B) \sqcap Hom(C,D) \cong Hom(P,Q)$. Hence for all $g \in Hom(E,F)$, the diagram(3.17) is commutative.

It follows that the diagrams (3.18) and (3.19) are commutative.

Hence we have that $P \cong A \sqcup C$, $Q \cong B \sqcap D$. On the other hand, suppose that there exist the products and coproducts in C. Then the diagrams (3.18) and (3.19) are commutatives with $P \cong A \sqcup C$, $Q \cong B \sqcap D$. Hence for all $g \in Hom(E, F)$, the diagram(3.17) is commutative. Hence the diagram(3.20) is commutative.

Hence we have that there exist the product in $\mathcal{C}_{\mathcal{H}}$ and

 $Hom(A, B) \sqcap Hom(C, D) \cong Hom(A \sqcup C, B \sqcap D)$

Proposition 3.8. There exist the coproducts in C_H if and only if there exist the products and coproducts in C. And

 $(3.21) \qquad Hom(A, B) \sqcup Hom(C, D) \cong Hom(A \sqcap C, B \sqcup D)$

Proof. The proof of the proposition 3.8 is similar to the proof of proposition 3.7. \Box

Proposition 3.9. The products and coproducts exist in C_H simultaneously.

Proof. Immediate from propositions 3.7 and 3.8.

3.7. Pushout and Pullback in $\mathcal{C}_{\mathcal{H}}\textbf{.}$

Proposition 3.10. There exist the pullback in C_H if and only if there exist the pushout and pullback in C. And

 $(3.22) \qquad Hom(A, B) \sqcap_{Hom(E,F)} Hom(C, D) \cong Hom(A \sqcup_E C, B \sqcap_F D)$

SHAO-DAN LEE

Proof. Let $Hom(A, B) \rightarrow Hom(E, F) \leftarrow Hom(C, D)$ be morphisms in $\mathcal{C}_{\mathcal{H}}$. Suppose that there exist the pullback in $\mathcal{C}_{\mathcal{H}}$. Then for all $Hom(G, H) \in \mathcal{C}_{\mathcal{H}}$, if the diagram(3.23) is commutative then there exists a morphism $\langle \nu, \mu \rangle$ such that the diagram(3.24) is commutative.

And there exists $Hom(P, Q) \in C_{\mathcal{H}}$ such that $Hom(P, Q) \cong Hom(A, B) \sqcap_{Hom(E,F)} Hom(C, D)$. Hence for all $f \in Hom(G, H)$, if the diagram(3.25) is commutative then the morphisms ν , μ make the diagram(3.26) commute.

It follows that the diagrams (3.27) and (3.28) are commutative.

Hence there exist the pullback and pushout in C. Hence $P \cong A \sqcup_E C$ and $Q \cong B \sqcap_F D$. Hence we have that

 $Hom(A, B) \sqcap_{Hom(E,F)} Hom(C, D) \cong Hom(A \sqcup_E C, B \sqcap_F D)$

On the other hand, suppose that there exist the pullback and pushout in C_H . Then the diagrams (3.27) and (3.28) are commutative. Hence for all $f \in Hom(G, H)$, the diagrams (3.26) and (3.25) are commutative. Hence the diagram(3.24) is commutative. It follows that there exist pullback in C_H .

Proposition 3.11. There exist the pushout in C_H if and only if there exist the pullback and pushout in C. And

 $(3.29) \qquad Hom(A, B) \sqcup_{Hom(E,F)} Hom(C, D) \cong Hom(A \sqcap_E C, B \sqcup_F D)$

Proof. The proof of proposition 3.11 is similar to proposition 3.10.

Proposition 3.12. There exist the pushout and pullback in $C_{\mathcal{H}}$ simultaneously.

3.8. (Co)Limit In $C_{\mathcal{H}}$.

Definition 3.1. Let $T: C_{\mathcal{H}} \to C, S: C_{\mathcal{H}} \to C^{op}$ given by

Object:

$$T: Hom(P, Q) \mapsto Q$$
$$S: Hom(P, Q) \mapsto P$$

Morphism:

$$T: \langle \nu, \mu \rangle \mapsto \mu$$
$$S: \langle \nu, \mu \rangle \mapsto \nu$$

Let \mathcal{D} be a category, G and G' two functors from \mathcal{D} to $\mathcal{C}_{\mathcal{H}}$. Suppose that τ is a natural transformation $\tau: G \xrightarrow{\bullet} G'$. Then we have that

Proposition 3.13. That $T(\tau)$ is a natural transformation $T \circ G \xrightarrow{\bullet} T \circ G'$ and that $S(\tau)$ is a natural transformation $S \circ G \xrightarrow{\bullet} S \circ G'$. Hence

 $(3.30) \qquad Nat(G,G') \cong Nat(T \circ G, T \circ G') \times Nat(S \circ G, S \circ G')$

Proof. Let $D_1, D_2 \in \mathcal{D}$. Then there exist $Hom(A_1, B_1)$, $Hom(B_2, B_2)$, $Hom(A'_1, B'_1)$, $Hom(A'_2, B'_2)$ in $\mathcal{C}_{\mathcal{H}}$ such that $G(D_1) = Hom(A_1, B_1)$, $G(D_2) = Hom(B_2, B_2)$, $G'(D_1) = Hom(A'_1, B'_1)$, $G'(D_2) = Hom(A'_2, B'_2)$ in $\mathcal{C}_{\mathcal{H}}$. And for every morphism $f: D_1 \rightarrow D_2$ in \mathcal{D} the following diagram is commutative where $\tau_{D_1} = \langle v_1, u_2 \rangle$, $\tau_{D_2} = \langle v_2, u_2 \rangle$, $G(f) = \langle v, \mu \rangle$ and $G'(f) = \langle v', \mu' \rangle$.

Hence the following diagram is commutative for all $f \in Hom(A_1, B_1)$.

$$\begin{array}{c} A_{1}^{\prime} \longrightarrow A_{1} \xrightarrow{f} B_{1} \longrightarrow B_{1}^{\prime} \\ \uparrow \qquad \uparrow \qquad \downarrow \qquad \downarrow \\ A_{2}^{\prime} \longrightarrow A_{2} \longrightarrow B_{2} \longrightarrow B_{2}^{\prime} \end{array}$$

Then the following two diagrams are commutative.

By definition 3.1, we have that two natural transformations:

$$\omega: T \circ G \xrightarrow{\bullet} T \circ G' \text{ given by } \omega_D := T(\tau_D)$$
$$\eta: S \circ G \xrightarrow{\bullet} S \circ G' \text{ given by } \eta_D := S(\tau_D)$$

Therefore,

$$Nat(G, G') \cong Nat(T \circ G, T \circ G') \times Nat(S \circ G, S \circ G')$$

Let \mathcal{J} be a categroy, F a functor from \mathcal{J} to $\mathcal{C}_{\mathcal{H}}$. Suppose that there exists the limit of F in $\mathcal{C}_{\mathcal{H}}$. Then for all $Hom(A, B) \in \mathcal{C}$ with a natural transformation $\Delta(Hom(A, B)) \xrightarrow{\bullet} \lim F$,

there exists unique natural transformation $\eta: \Delta(Hom(A, B)) \xrightarrow{\bullet} \Delta(\lim F)$ given by $(\eta_j := \langle \nu, \mu \rangle)_{j \in \mathcal{J}}$ such that the diagram(3.31) is commutative. That Δ is a diagnal functor[1].

$$\Delta(\liminf F) \prec - - - - \Delta(Hom(A, B))$$

$$F \not= F$$

And there exists $Hom(M, N) \in C_{\mathcal{H}}$ such that $Hom(M, N) \cong \lim_{i \to \infty} F$. Hence for every $j \in \mathcal{J}$ with F(j) = Hom(P, Q), the diagram(3.32) is commutative.

$$Hom(M, N) < - - - - \frac{\eta_j}{P} - - - - Hom(A, B)$$

$$Hom(P, Q)$$

Hence for all $f \in Hom(A, B)$, the diagram(3.33) is commutative.

$$(3.33) \qquad \begin{array}{c} A \xrightarrow{f} B \\ A \xrightarrow{f} V \\ P \xrightarrow{f} V \\ P \xrightarrow{f} V \\ P \xrightarrow{f} V \\ V \\ M \xrightarrow{f} V \\ V \\ M \xrightarrow{f} V \\ V \\ M \xrightarrow{f} V \\ V \\ N \end{array}$$

It follows that the diagrams (3.34) and (3.35) are commutative.

Proposition 3.14. There exists the limit of F if and only if there exist the limit of $T \circ F$ and the limit of $S \circ F$.

Proof. Immediate from diagrams (3.31 to 3.35), definition 3.1 and proposition 3.13.

Proposition 3.15. There exists the colimit of F if and only if there exist the colimit of $T \circ F$ and the colimit of $S \circ F$.

Proof. The proof of proposition 3.15 is similar to the proof of proposition 3.14. \Box

References

[1] Saunders Mac Lane, *Categories for the working mathematician*, 2nd ed., Springer, 1971.

 \Box