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Abstract

We consider the motion on particles on a circle. Application on initial value problems

with nonlinear boundary conditions will be done. .

1 Introduction

We begin with the Riemann mapping theorem which asserts that if D is a simply connected
domain C whose boundary contains at least two points, there is a conformal mapping ψ of
the open unit disk ∆ onto D. We can map 0 to any �xed point of D, and also specify the
argument of ψ′(0), and then the Riemann mapping is unique (see, [2].

The paper based with the iterations fn(z) (f2(z) = f(f(z)), f3(z) = f(f2(z)))) etc. of
various classes of regular functions along with lines of the theory initiated by Fatou and
Julia for entire or rational f(z). H. Rodströ showed that a theory of the Fatou � Julia type
exist precisely for the ration and entire cases considered by them. Now such function have
applications in physics of Mandelbrot fractals (see, for example, [12, 16]).

The main objects of the theory is the non-empty perfect J(f) of points where sequence
fn(z) is not normal (in the sense of Montel). Now J(f) is called the Jukia set. Hence, C(F)
is the complement of J , so that C(F) splits into components (domains of normality). The
situation is similar to the one�dimensional theory of the unimodal maps with one extremum,
where an analog of a Julia set is formed by the so-called separator of the map, which contains
the pre-images of repelling �xed points (see, [22]).

As in 1D case, we must know the �xed points of f(z) and the limit subsequences of
fn(z). Components of C(J contain attractive �xed points with f(α) = α and |f ′(α)| < 1.
We call such domains the 'immediate domains of attraction'. It can be proved that an entire
function of order < 1

2
has no unbounded domain of attraction for of its �xed points. Thus,

such type of function describe localized complex structures in C in physics (see, for example,
[12, 16]).

Further, estimations for the growth of functions with large in�nite domains of attraction
(particularly, including half�planes) are obtained. It is shown that if an attractive �xpoint
of order 1 has bounded domain of attraction, then the boundary D contains repulsive � �x
points of every order. As noted by P. Hhattacharyya [34]:'There are accessible boundary
points � in general boundary may be very wild' [1969]. Some results about completely
invariant domains of normality are obtained. These are components of C(F) invariant under
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z → f(z) and z → f−1(z). These domains usually form bounded clusters. There are
boundaries between clusters which form Jordan curve. In some cases, such boundary curve
in C - space may be even non-di�erentiable. But in normal domains on C(F) dynamics is
simple.

Often the half-plane can be transformed to a circle by a homeomorphism, so that we
can study the dynamics of transformation of the circle to itself. The number of components
C(F) is 0, 1 or∞ in the entire case. If there is a completely invariant domain it is conjectured
that there no other domains and some results in this direction. The situation is very simple
because we have two attractive �xpoints 0 and +∞, and one repelling �xed points.

Harmonic measure arise in a natural way for Julia sets of polynomial. If P (z) is a
polynomial, we denote by ∞ its domain of attraction to in�nity. The Julia set of P is then
the boundary of F∞. It was demonstrated by Brolin [29, 11] that harmonic measure on
F∞ is balanced (has constant Jacobian under mapping P (p)(...P )z). Carleson and Jones
studed numerically the thermodynamical pressure β (which characterize the spectrum of the
dynamical system) for domains of attraction to in�nity for quadratic polynomials f(z) =
z2 + c. Non-rigorous estimation is β = 0.24 for c = −0.560 + 0.6640 [Smirnov].

Revolutionized study of topology in 2 and 3 dimensions, showing interplay between
analysis, topology, and geometry. The central new idea is that a very large class of closed
3-manifolds should carry a hyperbolic structure - be the quotient of hyperbolic space by a
discrete group of isometries, or equivalently, carry a metric of constant negative curvature.
Although this is a natural analogue of the situation for 2 -manifolds, where such a result is
given by Riemann's uniformisation theorem, it is much less plausible - even counter-intuitive
- in the 3-dimensional situation (see, [?, 34]).

The iteration dynamics could be used in the study of complex dynamical systems (in
particular, condensed matter physics). This lead to a interest the classical work of Gaston
Julia, Pierre Fatou and Paul Montel on complex analytic dynamics. The work of Benoit
Mandelbrot on 'fractal geometry' and the realization of the importance of fractal geometry
in physics (see, [12]) leads to famous Mandelbrot's works which involve earlier mathematical
Cantor's and Hausdor�'s works.

Here, we shall state a few important results without proofs and show how these abstract
results may be applied, for example, to the motion of electron along equatorial orbits (see,
[11]. Recall that important physical �ttings work on equatorial orbits as noted by Victor
Maslov. The type of dynamics we are interested in initially has been considered by Back
[12] for the 'determinislic' Langevin problem as the velocity of a particle, though other
interpretations are possible as well.

2 The physical meaning of the Mandelbrot set

There is a theorem of Douady and Hubburd assuring that the Mandelbrot set is connected.
There is also the Böttcher � Fatou lemma.

Assume that

f(z) = zk + ak+1z
k+1 + ... (1)

with k ≥ 2 is anaclitic near 0. De�ne
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φn(z) = (fn)(z)1/kn = z + a1z
2 + ..... (2)

At a neighbourhood U of z = 0 the homeomorphism

φ(z) = lim
n→∞

φn(z) : U → Br(0), (3)

where Br(0) is a disk centered at 0, we have locally

φ ◦ f ◦ φ−1(z) = zk (4)

and φ(0) = 0 and φ′(0) = 1.
The function

h(z) := log

(
bf(z)1/k

z

)
(5)

with the chosen root

f(z)1/k = z +O(z2) (6)

3 Postulation of the classical problem

Below it will be used an example, which has been considered in [12]. It is most convenient
to interpret the dynamical variable as the 'velocity' of in classical mechanics. For example,
let v(t) := (u1(t), u2(t)) be the velocity (particular, charged) of particle.

Let

z(t) = u1(t) + iu2(t) (7)

be the complex variable. Then the expression |z(x, t, h)|2 is vied as probability density in
quantum mechanics. The measure depends on a small parameter h (or on a large parameter
ω.

Consider the following dynamics [12]. At points tn the particle gets a kick of strength
c = a1 + ia2, where a1 is the kick strength in x1 - direction, a2 that in x2 - direction. Then
we can consider the velocity v−n = (u−1,n), u−2,n and v−n = (u+

n,1, u
+
n,2 before and after the kick.

As a result, we have

u+
n,1 = u−n,1 + a1 and u+

n,2 = u−n,2 + a2 (8)

that is equivalently

z+
n = z−n + c (9)

where index (±) labels values before (−) and after (+) the kick.
Next, we assume that there is independent magnetic �eld in x3 - direction, which is

constant with respect to space. It means that at points tn the �eld change its value, but
on interval tn < t < tn+1 it is constant, i.e., B := (0, 0, Bn). Assume that there is a forth
A := A(v) which ia acting on the particle in v - direction, so that v̇ = A(v). The example
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is a linear damping force A(v) := −v or A(v) := −v+ v3, which is acting and arising from a
well- known double - well potential. These are typical potential.

Consider the following dynamics [12]. At points where the particle gets a kick of strength
c = a1 + ia2, where a1 is the kick strength in x1 - direction, a2 that in x2 - direction. Then
we can consider the velocity v−n = (u−1,n, u

−
2,n) and v+

n = (u+
n,1, u

+
n,2 before and after the kick.

As a result, we have that

u+
n,1 = u−n,1 + a1 and u+

n,2 = u−n,2 + a2 (10)

that is equivalently

z+
n = z−n + c (11)

where index ± labels values before (−) and after (+) the kink.
Next, we assume that there is independent magnetic �eld in x3 - direction, which is

constant with respect to space. It means that at tn �eld changes its value, but on interval
tn < t < tn+1 it is constant, i.e. B = (0, 0, Bn). Further, we assume that there is a force
A := A(v) which is acting, but also the Lorentz force F = qv × B (labels of vectors we
omitted). The from [12] it follows that

τn = f(v+
n , ϕ

+
n ) (12)

where τn = tn+1 − tn, and

Bn = h(v+
n , ϕ

+
n , τn). (13)

Let g(v0, t) be a solution of the initial value problem

ġ = A(g), g(v0, 0) = v0. (14)

Then integration of equations of motion gives that (between two successive kicks) the velocity
of the particle obey the following decreet dynamics [12]:

v−n+1 = g(τn, v
+
n ), (15)

ϕ−n+1 = ϕ−n + ωnτn (16)

where v−n+1 and ϕ−n+1 denote the modulo value and the angle of the velocity before the next
kick.

We see that this system produce the discrete dynamical system which may be solved step
by step by iterations of initial data. We can say that the system is produced by 'boundary
conditions' that are formed by the continuous analogies at points of kicks between particles.
Iedeed, if the decreet system may be prolonged on the continuous case then we can use Beck's
method. Now instead of evolution equation (102) we use the linear Shr0̈dinger equation.
Then the Shr0̈dinger equation will be reduced by Maslov's method [11] to the canonical
system of the transport equation for the amplitude and to the Hamilton -Jacobi equation
for the phase (see, [26]). Next, using functional boundary conditions the such boundary
problem with additional initial conditions can be reduced to a system of di�erence equations
with continuous time.
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The careful method of reduction may be �nd in [16, 22]. The method is similar as in [12].
Indeed, in [12] it is shown that (independently on v) the angle ϕ rotates with ωn = − qBn

m
,

where we put q = −1 and mass m = 1. It means that ωn = Bn. Further, putting τn and Bn

from (100),(235) into equations (103),(104) we arrive at [12]:

v−n+1 = g(f(v+
n , ϕ

+
n ), v+

n ), (17)

ϕ−n+1 = ϕ+
nh(v+

n , ϕ
+
n , τn)f(v+

n , ϕ
+
n ). (18)

Substituting (100) into (18) from (17),(18) it follows that

v−n+1 = g(f(v+
n , ϕ

+
n ), v+

n ), (19)

ϕ−n+1 = ϕ+
nh(v+

n , ϕ
+
n , τn)f(v+

n , ϕ
+
n ). (20)

We see that this system produce decreet dynamical system which can be solved step by step
by iteration of initial data.

Since at time tn+1 a kick of strength c is acting the change z−n to z+
n according to

z+
n = z−n + c (21)

gives

v+
n+1e

iϕ+
n+1 = v−n+1e

iϕ−n+1 + c. (22)

As a result, we obtain non-trivial case of coupled analytic relation

v+
n+1e

iϕ+
n+1 = g(f(v+

n , ϕ
+
n ), v+

n )× ei(ϕ
+
n+h(v+n ,ϕ

+
n ,f(v+n ,ϕ

+
n ))) + c. (23)

Now we consider time di�erence τn between kicks that are large if the velocity is small
and small if the velocity is large, and that do not depend on the angle ϕn. A possible example
is

τn = f(v+
n , ϕ

+
n ) =

1

2
ln

(
1 +

1

(v+
n )2

)
. (24)

Next, if the force is produced by a potential V (v) = 1
2
v2− 1

4
v4 then the solution of the initial

value problem is

g(t, v0) =
v0

(v2
0 + (1− v2

0)e2t)1/2
. (25)

Putting (242) into (25) one obtain that

g(τn, v
+
n ) = (v+

n )2. (26)

Further, substituting (242)(that is now non-dependent on ϕ+
n and τn) into (242) we obtain

that

v+
n+1e

iϕ+
n+1 = g(f(v+

n , ϕ
+
n ), v+

n )× ei(ϕ
+
n+h(v+n ,ϕ

+
n ,f(v+n ,ϕ

+
n ))) + c. (27)
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4 Rotation on charged particle on the circle

Let f be a circle map. Instead of work up with f itself we shall use a lifting on f . A
continuous map F : R → R is called a lifting of f if e ◦ F = f ◦ e, where e(u) = e(2πiu) is
the natural projection from R to S1. If F is a lifting of f then F ∈ m is also a lifting of f
for each m ∈ z and F n is a lifting of fn. There is an integer d such that

F (u+ 1) = F (u) + d, (28)

for each n ∈ R. The number d is calleâ the degree of f and is denoted by def(f). We can
show that def(fn) = def(f)n. We say that a point u ∈ R is periodic (mod 1) of period q for
F if F q(u)− u ∈ Z but F i(u)− u 3 Z for j = 1, 2, ..., q − 1. Clearly, u is a periodic (mod 1)
point of F of period q if and only if e(u) is a periodic point of f of period q.

Let F be a lifting of a circle map f . We shall denote by Per (f) the set of periods of all
periodic (mod 1) points of F . Clearly, Per (f) = Per (F ). Let f be a circle of degree 1 and
let F be a lifting of f . For u ∈ R we de�ne its F - rotation number as

lim sup
n→∞

F n(u)− u
n

(29)

and denote it by %F (u). Since f has degree 1, we have that

%F (u) = %F (u) +m (30)

for all m ∈ Z. If f is a periodic point (mod 1) of period q of F then

%F (u) =
F q(u)− u

q
∈ Q. (31)

The set

{%F (u) : u ∈ R} = {%F (u) : uß[0, 1]} (32)

is denoted by FF . In [?] is proved that FF is a closed interval (perhaps, degenarated to a
point) of R. Thus, LF will be called the rotation interval of F . The rotation interval of
a lifting of a circle map of degree 1 capture a lot of its dynamical properties and plays a
fundamental role in there study.

4.1 Main properties of the rotation interval

From [13] it follows that if f be a circle map and if F be a lifting, then one of the following
properties hold: (a) f has a horseshoe. (b) There exist q ∈ N, p ∈ Z and I = [n, n+ 1] ⊂ R
such that (F q − p)(I) ⊂ I. (c) Per(f) = φ.

Now we use the following result [13]. Let f be a continuous map of the interval I =
[a.a+ 1] into itself such that with d = −1, 0, 1. Assume that $ - limit set $u(f) is a simple
set for any u ∈ I and that a ∈ $u(f) and a + 1 ∈ $u(f) for each u, y ∈ I . Then the
following statement is hold. (a) If $u(f) 6= $y(f) then $u(f) and $y(f)are �xed points of
f . (b) If $y(f) = $u(f) then $u(f) is a periodic orbit of period 2.
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4.1.1 Case 1

If d = 0, the we shall prove that (a, a + 1) 3 $(f), and the above statement hold. Indeed,
from ([13], Theorem A) it follows that for each interval map f satis�es one and only one
of the following conditions: (a') f has a horseshoe. (b') The chain recurrent set of f is the
union of all simple sets of f .

5 Remark 1

The same is true for a frequency of the motion of the charged particle with double potential
for the Beck problem [12]. �

To extend Theorem A to circle maps we have to reformulate the above notation in this
context. We shall represent the circle S1 as the set {z ∈ C : |z| = 1}. Any continuous map
which form S1 into itself will be called a circle map. (For example, a map z → z2 forms
a circle map. But it is generally not true for z → z2 + c, where c 6= 0). We note that the
notation of a simple set and of horseshoe extends naturally to circle maps by simply replacing
closed intervals by closed arcs of the circle (that is, subsets of S1) which are homeomorphic
to closed intervals of the real line.

We note also that if an interval map f has a horseshoe I1, I2 then we always have that,
for each i, j = 1, 2 there exist a closed interval I ij ⊂ Ii such that fn(I ij) = Ij. However, this
is not (see, [13]). In this sense, there is di�erence between the circle and interval.

6 The theory for a circle

Let f : X → X be a map from X into itself and u ∈ X, where X is a topological space.
If u ∈ X we shall denote by $(f) the $ - limit set of u which is de�ned to be the set
of all accumulation points of {fn(u) : u ≥ 0}. We also use the notation $(f) to denote⋃
u∈X $(f).

Then as follows from [13]: (a�) f has a horseshoe. (b�) There exist n > 0such that
$u(f

n) is a simple set for each u ∈ S1. (c�) Per(f) = φ.
An interval map having a horseshoe was called turbulent by Block (see, [?, ?]). A

similar notion was called an L - schema. If I1, I2 ⊂ S1 is a horseshoe of a circle map g
it may be happen that gn(I1) = S1 in such a way that gn( Int(I1)) is injective on I1 and

gn(a) = gn(b) ∈ Int(I2) where a and b denote the two endpoints of I1. Then clearly does not

hold for each i, j = 1, 2 there exist a closed arc ˇ(I ij) ⊂ arc ˇ(I2) such that gnarc ˇ(I ij) = arc ˇ(Ij).

6.1 Di�erence between circle and interval maps

We note that above conditions type (a) that f has a horseshoe are transformed in the space
of circle maps with help of lifting F . A criterion for positive topological entropy. On another
hand, conditions of type (b) (that is, there exist n > 0 such that $u(f

n) is a simple set for
each u ∈ S1) in the case of interval map, is equivalent of condition of type (b) of Theorem
A (see, also, Theorem 2 of cite7). that is, the chain recurrent set of f is the union of all
simple sets of f). Hence, only for n = 1 these conditions for interval map and circle map,
respectively, are equivalent. However, for circle maps it is, generally, not. It is connecters
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with geometry on circle and interval. In this case, the topological picture of the chain
recurrent set can be described in detail (see, [13]).

7 Topology of a circle map for charged particle in mag-

netic �eld on a plane

For the Beck's problem [12, 16], there is the following dynamics:

v−n+1 = g(τn, v
+
n , ϕ

−
n+1 = ϕ−n+1 + ωnτn), (33)

where g is a given function, τn and ωn ate known parameters. If we consider a problem in C
then z = |z|eiϕ, where v = |z|.

7.1 The separating case

De�ne dn = ωnτn. Assume that dn := {−1, 0, 1}. Let f be f be a continuous map of the
interval I = [n, n+ 1] onto itself. Then

f(n+ 1) = f(n) + d. (34)

We say that there are the simple interval maps if this set either consists of a unique periodic
orbit or does not contain any periodic orbit.

Recall the set of chain recurrent points of f is denoted by CR(f) and is de�ned to be of
all u ∈ X for f : X → X such that for each ε > 0 there exists }(ui)ni=0 such that

|f(ui)− f(ui+1)| < ε, i = 0, 1, ..., n− 1. (35)

7.2 f has a horseshoe

If deg(f) 3 (−1, 0, 1) then clearly f has a horseshoe. Assume now that deg(f) = 0.Then

F (n+ 1) = F )n), u ∈ R. (36)

Hence, F (R) = F ([0, 1]) = [a, b]. If b < a + 1 then we set q = 1, p = 0 and I = [a, a + 1].
And there exists q ∈ N, p ∈ Z and I = [n, n+ 1] ⊂ R such that

(F q − p)(I) ⊂ I. (37)

Further, assume that b > a+ 1. Let c ∈ R be such that F (c) = a. Clearly, F (c+ 1) = q and
there exist d ∈ (c, c+ 1) such that F (c) = a, F (c+ 1) = q and there exist d ∈ (c, c+ 1) such
that F (d) = b.

The main moment is the following. Set I1 = e([c, d]) and I2 = e([d, c + 1]). Clearly, I1

and I2 are arcs of S1. Now we obtain the horseshoe as above.
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8 An application to Beck's problem

Remind the above formulation in more convenient form for to an application to the physical
Beck problem [12]. Let e : R → S1 be the 'exponential map'. If we view D1 as a unit disk
in C then on the boundary S1 we obtain

e(t) = ei2πt (38)

We view also S1 as (x, y) ∈ R2 such that x2 + y2 = 1. Then

e(t) = (cos 2πt, sin 2πt). (39)

Moreover,

e(t1) = e(t2)⇔ t1 − t2 ∈ Z. (40)

De�ne e0 : I → S1 the restriction of e on I. Since the trinogonometrc functions are periodic
of period 1, we have

e(t+ C) = e(t), where C ∈ Z. (41)

Now consider the Path-Lifting Lemma: Let g : [0, 1] → S1 be a continuous map, and
let x ∈ R such that e(x) = g(0). Then there is a unique continuous map g̃ : [0, 1]→ R such
that

e(g̃(t)) = g(t), t ∈ [0, 1], (42)

where g̃(0) = x.
A map g̃ is called a lift of g. For the 'initial conditions' g̃(0) = x, we get the unique lift

of g at x.

8.1 The degree of a circle map

Example 1. Let us consider the linear expending map E2 : S1 → S1 (noninvertible) map,
so that

E2(x) = 2x ( mod 1), (43)

(see, Figure 1 and Figure 2).
The number of periodic points

Pn(f) = {�xed points offn}. (44)

Thus, number of �xed point Pn(E2) = 2n − 1 and periodic points of E2 are dense in S1 �.
We remember that S1 = R/Z and there is a projection π : R→ S1 that

x→ [x]. (45)

then

π ◦ F = f ◦ π, (46)
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where F is called a lift of f , and f : S1 → S1 is continuous, F : R1 → R1 is continuous. F
is unique up to integer translation.

It is important that F (x+ 1)− F (x) is an integer independent on F and x together. If
f is a homeomorphism, then degree |deg(f)| = 1. Further, F (x+ 1) is also a lift of F . Since

π(F (x+ 1)) = f(π(x+ 1)) = f(π(x+ 1)) = f(π(x)), (47)

F (x+ 1)− F (x) is an integer independent on x.
If F and G are lifts, then

F (x+ 1)− F (x)− (G(x+ 1)−G(x)) = k − k = 0. (48)

Next, if deg(f) = 0, then F (x+ 1) = F (x) for all x ∈ R, where F is not monotone and f is
not monotone. If |deg(f)| > 1, then |F (x+ 1)−F (x)| > 1. There is y ∈ (x, x+ 1) such that
|F (y)− F (x)| = 1 and f is not monotone.

Example 2. For linear expending map for each integer m 6= 1

Em(x) = mx (mod 1), (49)

periodic points are Pn(Em) = |mn − 1| and periodic points of Em are dense on S1.

9 Example.Donady's Rabbit

.
The Julia set of the map z → z2 + c, where c satis�es c3 + 2c2 + c+ 1 and = (c) > 0 has

been obtained by Blanchard (see, [?], Figure 2.1), where c ≈ −0.12256117 + 0.74486177i.
This Julia set is connected, and the Fatou set consists of in�nitely many, simply connected
domains.

10 Reduction to real and complex planes

Recall that if c = 0 then relation (60) in complex space C can be reduced to the system of
discrete di�erence equations in R2, so that

eiϕ
+
n+1 = ei(ϕ

+
n+h(v+n ,ϕ

+
n ,f(v+n ,ϕ

+
n ))), (50)

v+
n+1 = g(f(v+

n , ϕ
+
n ), v+

n ), (51)

i.e.,

ϕ+
n+1 = ϕ+

n + h(v+
n , ϕ

+
n , f(v+

n , ϕ
+
n ))), (52)

From the above assumptions it follows that the system can be reduced to

v+
n+1 = (v+

n )2, (53)

i.e.,
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ϕ+
n+1 = ϕ+

n + ωn
1

2
ln

(
1 +

1

(v+
n )2

)
, (54)

10.1 Dynamic of charged particle on a circle

If v+
n = ∞, then we have a circle S1 as the quotient space of the real line by the group

of transformations by integers S1 := R/Z, and we consider the circular ordering S1. Let
π : R ↔ S1 be the quotient map. In S1, we consider the metric and orientation which are
induced by the metric and orientation of the real line π. We are interested by the dynamics
of the homeomorphism f : S1 → S1. The simplest homeomorphism is rotation: those are
the orientation which presents isometries on the circle. If y1 is a periodic point of period n of
a rotation f then any other point y is also periodic point on the same period. If a rotation f
does not have a periodic point then the orbit Of (y) = {fn(y), n ∈ Z} is dense on the circle.

It means that the transition from v+
n < ∞ to v+

n = ∞ (or from Bn = 0 to Bn 6= 0)
changes catastrophically behavior of trajectories of the considered dynamical system. The
same is true when the kicks includes in the Beck problem.

We must discuss a result of Poincaré: (1) If f : S1 → S1 is a homeomorphism with a
periodic point then any orbit is asymptotic to a periodic orbit and (if f preserves orientation)
any two periodic orbits have the same period. (2) If f does not have a periodic point then
there exist a rotation g : S1 → S1 such that any orbit of f has the same order as any orbit
of g. The map h : Of (y)→ Of (y

′) de�ned by h(fn(y)) = gn(y′)), n ∈ Z is monotone.
From this fact it follows (since any orbit of g is dense on the on the circle) that h extends

continuously to a monotone map h : S1 → S1 which satis�es to the equation h ◦ f = g ◦ h.
We say that h is a semi - conjugacy between f and g. From the above equation it follows
that h ◦ fn = gn ◦ h, that is, h sends orbits of f into orbits on g. In general h is not a
conjugacy because the inverse image of some point may be an interval.

In this situation there is a very simple observation of the dynamics of an invertible
continuous map of an interval. Let I be a closed interval and f : I → I be a continuous
injective map, and f is orientation preserving (i.e., monotone increasing). Then any orbit
of f is asymptotic t a �xed point. If f is orientation reversing (i.e., monotone decreasing),
then the iterate f 2 = f ◦ f is monotone increasing. We get that any orbit of f ia asymptotic
to either the �xed point of f or to a oeriodic orbit of period 2.

11 Circle homeomorphisms

De�ne y+
n = 1

(v+n )2
(below indexes for 1

(v+n )2
= y+

n will be omitted) and use the series

ln (1 + y) =

∫ y

0

ds

1 + s
=
∞∑
n=0

(−1)nyn+1

n+ 1
(55)

has radius of convergence to 1 so that y converges absolutely for |y| < 1 (i.e., for (v+
n )2 > 1).

For y = 1 (i.e., for (v+
n )2 = 1) we obtain the series

∑∞
n=0

(−1)nyn+1

n+1
.

Thus, the problem is reduced for the system

v+
n+1 = (v+

n )2, (56)
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ϕ+
n+1 = ϕ+

n +
ωn
2

∫ y+n

0

ds

1 + s
. (57)

But we con�ned itself only the case n = 0. Then the last system may be written as

v+
n+1 = (v+

n )2, (58)

ϕ+
n+1 = ϕ+

n +
ωn
2

1

v+
n )2

, (59)

where

ωn = −qBn

m
. (60)

Here, the particle is with charge q = 1 and mass m = 1, which means that ωn == Bn.
Here also it is assumed by Beck [12] that there is a time - dependent magnetic �eld in x3 -
direction, which is constant with respect to space. So that at time points tn the �eld changes
its value, for t ∈ (tn, tn+1) it has constant value B = (0, 0, Bn) (where vectors here omitted).
Thus, between kicks, not only the force A(v), but also the Lorentz force F = qv×B is acting
on the particle, with v = (u(t), w(t), 0).

12 A simple model produce fractal?

13 Example

As an example, it will be studied the limit case (60, 59). Initially, let us consider the real -
valued family of quadratic maps

ϕ;x→ x2 + α, (61)

where α ∈ R. We begin with c = 0. If −2 ≤≤ 1/4 then ϕ(Î) ⊆ Î, where Î = [−β0, β0], and

β0,1 =
1

2
±
√

1

4
− α, (62)

where β0 is the repelling �xed point, and β1 is attractive �xed point. Then interval I :=
(−β0 + ε, β0 − ε) for small 0 < ε < α + β0 is invariant and, moreover, ϕ̄I ⊂ I.

14 Quantum initial value boundary problem

In this paper it will be considered complex solutions of real analytic equations with functional
two point boundary conditions and with special initial conditions of theWKB type. It turns
out that for the such problem it is possible to apply the known Maslov technique of reduction
of PDR′s of quantum mechanics to a so called canonical system which contains to connected
PDE ′s that are approximating the general system with accuracy O(h2), where h is a small
positive parameter. A �rst goal is to �ned an asymptotic of solutions as h→ 0. This problem

12



has been solved by Maslov in special classes of initial conditions on each �nite time internal
[0, t(h), where t = t(h).

It turns out that for the such problem it is possible to apply the known Maslov's tech-
nique of reduction of PDE ′s of quantum mechanics to the so called canonical system which
contains (with accuracy O(h2)) both the Hamilton - Jacobi and transport equations. The
Maslov method allow to reduce the quantum problem to the solutions of equations of clas-
sical mechanics and hence to �nd the quasi-classical asymptotic as h→ 0 for initial data of
the WKB type.

We prolong this method on initial boundary value problem on the example of the
Shrödinher linear equation with non-linear boundary conditions (particular, periodic condi-

tions). As known, the Shrödinher equation without potential with Hamiltonian H(p, q) = p2

2

in the �rst approximation on h can be reduced to the Hamilton - Jacobi equation

St +
1

2
S2
x = 0 (63)

and to the transport equation

ϕt + Sxϕx +
1

2
Sxx = 0, (64)

where ϕ is a phase and S is an amplitude. If we con�ned itself only by the linear phase

S(x, t) = λ1x+ λ2x (65)

then equations (63), (67) become

St +
1

2
S2
x = 0 (66)

and to the transport equation

ϕt + Sxϕx +
1

2
Sxx = 0, (67)

Let us consider for the �rst equation the periodic boundary conditions

eiS(0,t)/h = eiS(l,t)/h (68)

and the initial condition

S(x, 0) = λx. (69)

Boundary conditions describes the motion of a particle on circle S1.
A solution of equation (67) with an initial condition (69) is S(x, t, λ) = λ

(
x− 1

2
λ
)
. Here,

λ = p, where p is an impulse of the particle. Then from the periodic boundary conditions
on the phase, which is independent on the amplitude, we arrive at

p

l
=
π

2
± 2πk, k = o, 1, .... (70)
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15 The boundary conditions on circles

It is known that any quantum equation can be reduced in the WKB approximation (with a
given accuracy O(h2), where h > 0 is a small parameter) to a system of two PDE ′s equations
� the transport di�usion equation for amplitude and the Hamilton - Jacobi equation for
phase(see, [11]). Such equations will be called by the canonical system.

We consider only the linear Shrödinger equation without potential on interval (0, l) with
functional nonlinear boundary conditions of the form:

ψ(0, t) = Φ(ψ(l, t)), (71)

where ψ ∈ C and Φ : C → C is an analytic function.
Then (as it will be shown below) the linear Shrö equation of quantum mechanics (without

potential) with nonlinear boundary conditions (71) admits the reduction to the corresponding
canonical system of classical mechanic (with accuracy O(h2)), which have the form:

ϕ(0, t) = Φ1(ϕ(l, t), S(l, t)), (72)

S(0, t) = Φ2(ϕ(l, t), S(l, t)), (73)

where ϕ is the amplitude and S is the phase of the wave function ψ that is found in the
WKB approximation in the linear approximation on small positive parameter h.

15.1 Discussion on structural stability of the boundary conditions

It will be shown that the quantum boundary problem is to study of the analytic dynamical
system Ra : z → Φ(z) on the Riemann sphere S̄ to Ra → Φ(z), where a is depending on
a parameter a. The following happens: before perturbation the round (unit) circle C is
invariant under iterations of R is expending on S so that |Ṙ(z)| > 1. The map R has dense
orbits, and is even ergodic on S with respect to linear measure.

This situation strongly remind one of Poincarŕ's original perturbations (see, [15]). For
example, for the map R : z ↔ z2 + az for small a. The Poincarŕ limit set then changes
from a round circle to a non-di�erentiable Jordan circle. Fatou and Julia (see, [15]) where
well aware to the analogy with Poincaré′s work. Sullivan continue this analogy and it has
been considered the modern theory of quasiconformal mapping into the dynamical theory
of iteration of complex analytical mapping. But we can not study here this very exotic and
complex situation when the map Ra : C → C is quasiconformal deformations for the simplest
map z → z2 + az on the entire sphere for 0 < |a| < 1, since in this case we have deal with
non-di�erentiable homeomorphisms h.

Bellow it will be considered only more simpler and clear di�erential dynamics with
di�erentiable homeomorphisms h conjugating one system R1 to another R2 so that h ◦R1 =
r2 ◦ h. Such h is Lipschitz. An important point is that nearby complex analytic dynamical
system tend to be conjugate using homeomorphisms which are Lipschitz and quasi-conformal.
Such situations has been studied, for example,

14



16 The Shrödinger equation in the dimensionless form

We begin with the clear method of reduction Since in literature there are no of the clear
description of reduction of the Shröedinger equation to the dimensionless form:

− i~∂ψ
∂t

=
~2

2m

∂2ψ

∂x2
. (74)

Here, ψ := ψ(x, t) : R2 → C, where C is a complex space, ~ is the Planck constant. Let us
divide the two parts of equation on a value mv2, where m is the mass of particles, v is their
velocity and p = mv is an impulse. Introduce scaling time t̄ = t/τ and relaxation time τ ,
and consider a dimensionless constant h = λ

vτ
. Then

− ih∂ψ
∂t̄

=
1

2
h2∂

2ψ

∂x2
, (75)

17 Postulation of the problem

Let us consider equation (74) with the two-point boundary conditions

ψ(0, t) = Φ(ψ(l, t)), t > 0, (76)

an initial condition are

ψ(x, 0) = ψ0(x)), 0 < x < l. (77)

Here, Φ is the real function such that Φ : C→ C, where C is a complex space.
It will be proved that solutions of initial value boundary problem (74), (77), (77) can

be approximated the function ψ = ϕeiS/h, where h→ 0, and S is a real function in (x, t, p)
� space, where p = ∂S

∂x
.

18 Postulation of boundary conditions

We consider the boundary conditions

z|x=0 = Φ(z)|x=l, (78)

where z ∈ C, Φ ∈ C, and Φ is an analytic function from D on D, so D is the closed disk
(particular, a circle). The map Φ may be polynomial of order n or the rational function.

Here, we con�ned itself by a case when Φ : S1 → S1, where S1 is a circle, and assume
that Φ is the conform mapping, so the boundary conditions become

ψ = ϕeiS|x=0 = Φ(ϕeiS)|x=l = Φ1(ϕ)eiΦ2(S))|x=l, (79)

so that now we have uncoupled boundary conditions.
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18.1 The boundary conditions

Let us consider for the Srödinger equation instead of the general boundary function Φ(z)
(see, (77) a polynomial w(z) of degree n which maps z� plane conformably upon n � sheeted
Riemann surface w, exempt at branch points of w which de�ned by the vanishing of dw

dz
where

angle fail to be preserved. The unit circle in the z � plane is mapped upon a curve C, so that
the shape is determined exempt perhaps of a translation and rotation, and magni�cation
when the positions of the roots of w(z) is known.

We assume that

w(z) = czk(z − zk+1)(z − zk+2)...(z − zn), (80)

where zk+1, ..., zn are the roots of the polynomial other than 0. Then it is evident that the
change in the argument of w as z varies from z′ to z′′ is equal to the sum of the angles which
are generated at the roots of w by vectors joining the latter to z, each root being counted
with its proper multiplicity (see, [25].

The ratio between the length of an element of arc in the w plane and the corresponding
element in the z plane, or the distortion of the map, is dw/dz. The angle between the two
elements (or the twist) is arg dw/dz. If we know dw/dz then we can to draw the perturbations
at each point, and hence the way which describes how the twist varies when z moves from
z′ to z′′.

If roots of the polynomial are on the same side of a straight line then the line is trans-
formed into a curve which turns continuously about the origin 0. If roots of the derived
function dw/dz places at the same side of a straight line, then the line is transformed about
the origin 0 into a curve with curvature that is either positive or negative.

Let us determine in the z� plane a region Rn such that the polynomial has roots, which
are placed within or on the boundary of Rn. Then the unit circle is transformed upon a
simple region. By observing values of a for which the function

w(z) = (a− z)n (81)

fails to have this property, we can �ns the boundary of the region Rn.
Thus we study asymptotic solutions of the Srödinger equation as h → 0. The Caushy

problem for equation (74) with an initial condition

ψ(x, 0) = ϕ(x, 0)eiS(x,0)/h, (82)

where ϕ(x, 0) and S(x, 0) has been solved by Maslov [?] on each �nite interval 0 < t ≤ t0,
where t0 = t(h0).

Asymptotic of this type is known in quantum mechanics as the WKB � method. Fur-
ther, substitution WKB � function into (74) for Hamiltonian H(p, q) = p2

2
, we obtain the

exact equation:(
St +

1

2
S2
x

)
ϕ+ (−ih)

(
Sxϕx + ϕt +

1

2
Sxxϕ

)
+

(ih)2

2
ϕxx = 0. (83)

Next in order that ψ(x, t) be an asymptotic solution of (74) modulo )(h2), it is su�cient
that S(x, t) be a solution for the Hamilton � Jacobi equation
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St +
1

2
S2
x = 0, (84)

and ϕ(x, t) satisfy to the transport equation

ϕt + Sxϕx +
1

2
Sxxϕ = 0. (85)

18.2 An initial problem for the Hamilton - Jacobi equation

We begin with an initial problem for the Hamilton - Jacobi equation

∂S

∂q
+

1

2

(
∂S

∂q

)2

= 0, (86)

with an initial data S(0, t) = ζq, where ζ is a parameter.
Here, H(q, p, t) = 1

2
p2 and the corresponding hamiltonian system has the form:

q̇ = p, q̇ = 0 (87)

and we arrive at q = q̃(q0, p0, t) and p = p̃(q0, p0, t) = p0, where (p0, q0) are initial values of
impulse and coordinate.

For S|t=0 = ξq initial data have the form q|t=0 = q0, p|t=0 = ξ, and the trajectories are

q = q̃(q0, t) = ξt + q0 and p = p̃(q0, t) = ξ. The Jacobian is J = ∂q̃(q0,t)
∂q0

= 1 and a solution

S(q, t) exist for any t ∈ [0,+∞). Since

q0 = q − ξt and p
∂H

∂p
−H =

1

2
p2, (88)

From mechanics it is known that solution S(x, t) can be written as

S(x, t) = S0(x0) +

∫ t

0

(pdx−Hdt)|x0=x0(x,t) (89)

Here, x := x(x(p, t) is a solution of the equation p = ∂S
∂x
, where p can be considered as

the additional coordinate in (x, p, t) � space. Then on characteristics dx(p,t)
dt

= p we have

dS

dt
=
∂S

∂t
+
∂S

∂x

dx

dt
= −H(p) + p

dx

dt
. (90)

The Hamiltonian is H = p2

2
. Hence, integratinf (234) from a point (0, t0) to a point (0, t1)

we obtain

S(x(t), t) = S(x(t0), t0)− p2

2
(t− t0) + p(x(t)− x(t+ 0)). (91)

Integrating from the boundary x(t0) = 0 to the boundary x(t1 = t0 + l/p) = l, from (95) it
follows that

S(l, t0 + l/p) = S(0, t0)− p2

2

l

p
+ pl = S(0, t0) +

pl

2
. (92)
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19 Boundary conditions for the Shrödinger equation

Now we consider the boundary conditions for equation (74) of the form

ψ(0, t) = Φ(ψ(l, t)), (93)

where Φ : C → C is an analytic mapping. As example, we think that Φ is the real function
z → z2 on the Riemenn sphere C so that z → z2 + az. But this example is very complex,
and we assume that it is possible to use the circle C of radius ϕ, so that there is the WKB
� approximation ψ = ϕeiS/h.

Then from (93) it follows that

ϕ(0, t)eiS(0,t)/h = Φ
(
ϕ(l, t)eiS(l,t)/h

)
. (94)

Further, it will be considered only analytic dynamical system which admits the decomposi-
tion, so that

Φ(ϕeiS/h) = Φ1(ϕ)eiΦ2(S/h). (95)

Then from (93) and (95) we see that the functional boundary conditions an be separated,
so that

ϕ(0, t)eiS(0,t)/h) = Φ1(ϕ(l, t))eiΦ2(S(l,t)/h). (96)

From (96) it follows that for the transport equation the boundary conditions are

ϕ(0, t) = Φ1(ϕ(l, t)), (97)

and for the Hamilton � Jacobi equation the boundary conditions are

eiS(0,t)/h) = eiΦ2(S(l,t)/h). (98)

From (98) it follows that

S(0, t)) = Φ2(S(l, t)) = Φ2(S(0, t− l/p) + pl/2). (99)

Substituting (99) into (98) we obtain

eiS(0,t)/h) = eiΦ2(S(0,t−l/p)/h+pl/2h). (100)

Particularly, if Φ2 := Id, where Id is the identical map, from (100) it follows that

eiS(0,t)/h) = ei(S(0,t−l/p)/h+pl/2h). (101)

This boundary conditions on the phase is satis�ed if and only if e
pl
2h = 1, that is

pl

2
= πh

(
1

2
+ k

)
, k = 0, 1, ... (102)
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19.1 Bohr quantization condition

Let we have the one � parameter family of closed curves Λ1(E), where E ⊂ R1, in the phase
space Rp ×Rx. Then the Bohr quantization condition is∫

Λ1(E)

= πh

(
1

2
+ k

)
(103)

gives quasi-classical energetic levels of the problem to which responde the curves Λ1(E).
From (103) and (102) it follows that for our concrete problem we have

pl

2
=

∫
Λ1(E)

pdx = πh

(
1

2
+ k

)
. (104)

20 Interpretation of the boundary conditions

A setW ∈ Rn is called a star�shaped region or star convex set if there is x0 ∈ S such that for
each x]inS the segment x0, x] ∈ S. In our case, W := (x1, x2), where x1 = ϕ and x2 =S are
amplitudes and phases of the wave function, respectively. Recall that ϕ and S are solutions
of the canonical system to which in WKB approximation is reduced the Srödinger equation.
Thus, we consider the problem for n = 2.

For example, if A ∈ Rn then the set

B := {at | a ∈ A, t ∈ [0, 1]} (105)

which is produced by connecting all points from A to the origin 0 is a star region. Assume
that there are polar coordinates (ϕ, S) ∈ R2, where ϕ is an amplitude and S ∈ [0, 2π) (with
accuracy to shift) is the phase, so that ϕ ∈ B. Next, we assume that the function

Φ := ϕeiS → Φ1(ϕ)eiΦ2(S) (106)

is star convex. For instance, annulus is not a star domain, but ones may be prolonged to the
star domain if we include the origin 0. Thus, we assume that the map Φ in the boundary
conditions for the quantum problem may be considefred as the mao Φ : R2 → R2, which is
constructed by a transformation (106).

It is very important that 'For conformal transformations the non-linearity problem is
similar to the non-linearity problem in dimension-one' [15]. The mail questions as to whether
the images of an initial neighborhood return in�nitely, often to intersect the initial neighbor-
hood or whether the iterated images wander o� to accumulate elsewhere. This is the basic
questions of topo logical dynamics.

For these conformal dynamical systems the linear distortion simpli�es to the problem
of determining the scalar multiples or conformal factors. It is a case so called abelian
computations as for dimension 1. And we shall see common features of 1-dimensional systems
and conformal systems in higher dimensions.

There is a rich supply of dynamical examples when all the derivatives encountered
are scalar multiples of orthogonal transformations (i.e. conformal transformations). For
example, these include all di�erentiable examples in a space of 1 real dimension, and all
complex analytic examples on a 1 complex dimensional manifold.
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When we use terms with the linear part of the distortion of an iterated composition (i.e.
the so called tangent map), then there arise a di�cult problem of non-linearity, the there
are unbounded deviation of the iterated compositions at a neighborhood from any linear
approximation.

We con�ned itself only by conformal transformations when the non-linearity problem
is similar to the non-linearity problem of dimension 1. In this case, a natural measure of
non-linearity of a transformation f is

L(f) = ln f ′
′
. (107)

Here,

L(f ◦ g) = (L(f) ◦ g ◦ g′ + L(g), (108)

where (◦) is the composition of the corresponding mapping.
Note that in dimension 1 a natural measure of non - projectively of a transformation on

f is the well - known Swartzian derivative

L(f ◦ g) = (L(f) ◦ g ◦ g′ + L(g), (109)

Next, to understand distortion lemmas of C2 Denjoy theory, we remined some well -
known results. Let

gn = fn ◦ fn−1 ◦ ... ◦ f1(f ◦ g) = (L(f) ◦ g ◦ g′ + L(g), (110)

be the non-linear geometric distribution in an iterated composition. Let f ′ a numerical
composition which denotes a numerical measure of distribution that multiplies under com-
position.

Then linear distortion for conformal maps admits the estimation

(x1, y1)(gi(x0), gi(y0)), (111)

where x0 and y0 are two initial points,

grad (lg f1)) ≤ N (112)

for each of generated transformationfi and that

n∑
i=0

ρ(xi, yi) ≤ L (113)

and

(x1, y1) = (gi(x0), gi(y0). (114)

From these estimations it can be shown that

| lg g′n(x0)/g′n(y0)| ≤ NL (115)

is bounded independently of n by LN . This is a main coroll for one - dimensional transfor-
mation. It means that gn ∈ C implies that gn=1 ∈ C, where C be a collection of compositions
(or words).
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20.1 1

From this main statement it can be proved the very important result: {x|
∑

gn∈C g
′
n(x) <∞}

is an open set (see, [15], Lemma 2).

21 Applications to the quantum boundary conditions

We begin for a case which has been proved by Denjoy: (i) C2 di�eomorphism of the cir-
cle without a periodic point has only dense orbits (and thus by Poincare is topologically
conjugate to a rotation).

Next, there is the following statement (Rosenberg and Sullivan): (ii) A complex analytic
homeomorphism of a neighborhood of an invariant recti�able closed curve in with no periodic
points on the curve has only dense orbits on the curve.

From (ii) it follows that in principle we can solve the quatre problem for general analytic
boundary conditions with the mapping u → Φ(u), where u ∈ which is idiomorphic to the
conform mapping. Of coarse, it is possible only in very special cases (see, [?]). The case (i)
can be also applied for the amplitude of the wave function.

To conclude, we considered the main statement: (iii) (Sacksteder): In a C2-codimension
one foliation of a compact manifold by simply connected non-compact leaves all leaves must
be topologically dense. The statements (i)�(iii) represent main results of topological dynam-
ics. As noted by Sullivan [15]: ' There are also direct corollaries in these three cases relative
to the natural one-dimensional 'measure and measurable dynamics.

22 Example 1. A Siegel disk

A Siegel disk is a stable regions which is cyclic and on which the appropriate power of f is
analytically conjugate to a rotation of the standard unit disk. A situation that describes
the boundary problem of quantum mechanics. Siegel [1942] proved these there occur near a
non-hyperbolic periodic point if 1/R - argument of the derivative is far from the rationals.
Far from the rationals means |θ − p/q| >> c/qν for some c > 0, v > 0, and all p/q reduced
fractions. The Siegel disk is a good candidate for the quantum boundary conditions.

23 Example 2. Transitive boundary conditions

Look for invariant sets. That is S ⊂ X such that f(S) = S, where f :=
∐

Φ2 in the
decoupled boundary conditions in the Shrödinger equation for the phase. Decompose X into
invariant sets S1, ..., Sk and wandering components (i.e. points that under a forward orbit
approach one of the invariant sets and under backward iterates approach another set). Then
a system (X, f) is transitive if there exists some x ∈ X such that O+(x) is dense in X, where
O+(x) = {fn(x) |n ∈ N}. This implies that there is a decomposition of the space into one
invariant set and wandering components. In other words, the f is transitive if and only if
for any open set U and V in there exist n ∈ N such that fn(U)

⋃
V 6=.
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24 Behaviour of phase of wave function for the quantum

problem

It is obvious that the evolution with time of phase of wave function repeat properties of a C2 -
di�eomorphism Φ2 for the separated boundary conditions on the circle. This di�eomorphism
has an invariant Cantor set such that the complementary intervals have �nite total length,
and for the Cantor set these intervals wandering. The deviation of n - fold composition at
points on interval are commensurable.

The main property of such di�eomorphism is that the total sum of derivatives along
one orbit is comparable to the total sum of derivatives along one orbit to the total length of
intervals and so is �nite. It has been proved by Denjoy (see, [15]). In fact from the proof
for an interval I about x0|(fn)′y| is bounded by a constant times, and so it tends uniformly
to zero. By recurrence at x0 some fn(x0) lies close to x0. Thus we can assume fn(I) ⊂ I
and we have a periodic point. This contradicts the assumption, proving f is topologically
transitive.

25 Boundary conditions homeomorphic the circle

We recall the de�nition of external rays: For any compact and full subset K ⊂ C consisting
on more than a single point, there is a unique conformal isomorphism Φ : C − K → C − K
�xing ∞, normalising so as to have positive real derivatives at ∞. Inverse images of radial
line in C− D̄ are called external rays, and an external ray at some angle θ is said to land if
the limit limr→1 Φ−1

(
reiθ
)
exist.

The impression of this external ray is the set of all limit points of Φ−1
(
r′eiθ

′)
for r′ → 1

and θ′ → θ. rays on the forvard orbit of the ray pair. As noted in [5] and [?], we will
denote external rays of the Multibrot set by parameter rays in order to distinguish them
from dynamic rays of Julia sets. All the parameter rays at rational angles are known to land
(see, Milnor [?]). Array pair is a collection of two external rays which land at a common
point. A dynamics ray pair is characteristic if it separates the critical value from the critical
point and from the other rays on the forward orbit of the ray pair. The landing point of a
periodic or preperiodic dynamic ray pair is always on a repelling or preperiodic orbit. If a
preperiodic dynamic is characteristic, then its landing is necessary on a repelling orbit.

From [5] and [?] (see, also, [31], Theorem 2.3) it follows Theorem about Correspondence
of Ray Pairs: For every d ≥ 2 and every unicritical polynomial z → zd+c there are bijections:
• between the ray pairs in parameter space at periodic angles, separating 0 and c, and

the characteristic periodic pairs in the dynamic plane of c landing at repelling orbit; and
• between the ray pairs in parameter space at preperiodic angles, separating 0 and c,

and the characteristic periodic pairs in the dynamic plane of c.
• this bijection of ray pairs preserves external angles.
It is assumed that the separating ray pairs do not go through the point c (the critical

value or the parameter). The critical value is never on a periodic ray pair because, depending
on whether the corresponding Julia set is connected or not. It would either be periodic and
thus super attracting and could not be the landing point of the dynamic rays.

All the rational rays landing at Misiurewicz cut the complex plane into as many open
parts as that are rays. Note that Misiurewicz originally investigated maps in which all critical
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points are non-recurrent. That is, there is a neighbourhood of every critical point that is
not visited. A parameter C be a Misiurewicz point Mk,n if

fkc (zc) = f (k+n)
c (zc) (116)

and

f (k−1)
c (zc) = f (k+n−1)

c (zc) (117)

for all c ∈ Mk,n, where k, n are positive integers. So for a quadratic polynomial a unique
critical point is pre-periodic.

26 Polynomials of degree d

For any P ∈ Pd de�ne the real valued function hp on K by

hp(z) = lim
n→∞

lg+ |P n(z)|
dn

, (118)

where lg+ is the supremum of lg and 0.
Remind that key di�erence from the close connection between holomorphic and harmonic

functions in the plane is the following: A real � valued function on Ω ⊂ R2 is harmonic if
and only if it is locally the real part of a holomorphic function. If a complex function
f(x+ iy) = u(x, y) + iv(x, y) is holomorphic, then there are Cauchy� Riemann equations

ux = vy, uy = −vx (119)

or, equivalently, the Wintinger derivative is zero, i.e.,

fz̄ = 0. (120)

For example, the function f(z) = |z|2 is complex di�erentiable at exactly one point (z0 =
0). It is not holomorphic because there is no open set around 0 on which f is complex
di�erentiable.

26.1 Mandelbrot and Multibrot Sets

We discuss polynomials of the form z → zd + c with z ∈ C and c ∈ C of degree d ≥ 2. We
consider, up to normalization, only those polynomials which have a single critical point. We
call these polynomials unicritical or unsingular. We de�ne the Multibrot set of degree d as
the correctness locus of these families (see, [31]).

Remind that the Julia set of f(z) = z2 +c is the set of all that z ∈ C where the behavior
of iterates is 'chaotic'. The Fatou or set is the set of z ∈ C where iterations are 'normally'.
The unit disk is thus the locus of chaotic behaviour, where |z > 1|.

When in the WKB - method the boundary functions ϕx, teiS, where S is real, we
consider only separated boundary conditions

ϕ(0, t) = Φ1(ϕ(l, t)) (121)
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S(0, t) = Φ2(S(0, t)), (122)

then the quantum problem is reduced to the canonical system of the two couple equations
with uncoupled boundary conditions.

27 The classi�cation of conformal boundary conditions

Here we classify boundary conditions for the Shrödinger equation with nonlinear boundary
conditions that are produced in the problem by some nonlinear mapping Φ : C → C. Now
let f : C → C be a rational map with iterates fn = f ◦ f ◦ ... ◦ f . We will assume that there
are the Julia set J and the Fatou set Ω according to the dynamics of f . The Julia set is a
closed, perfect set, de�ned as • the smallest closed set with f−1(J) = J and |J | > 2 • the
set of accumulation points of any orbit Γ(x) ⊂ C • the closer of the set of repelling �xed
points of γ ∈ Γ • the set of points near which Γ does not form a normal family.

For us it is convenient to consider the Julia set J as the closer of the set of repelling
periodic points of f because the dynamics of a single conformal endomorphism can exhibit
similar structure as the dynamics of 1 - dimensional map on circle S1 or an interval I.
Then the Julia set has the similar structure as the so called separator of one - dimensional
di�eomorphism which is de�ned as

D =
⋃
n≥0

f−n(P̄−), (123)

where P̄−) is the closer of repelling �xed points. It is a closed set of zero measure nowhere
dence on I. It ca be �nite (in particular, empty), countable or uncountable.

28 Iterations

The �lled�in Julia set Kf is the polynomial like mapping is de�nes

Kf = {z ∈ U ′|f on(z) ∈ U ′ for all n}. (124)

When z ∈ Kf then we say that a point z in U ′ does not escape under iterations by f . Let
P be cubic polynomial with critical points ω1 and ω2 such that hp(ω2) < hp(ω1).

Here,

hp(z) = lim
n→∞

1

3n
ln+ |P0n(z)|. (125)

is called by the potential. Then we can determine the �lled�in Julia set as

Kp = {z ∈ C|hp(z) = 0}. (126)

For any z0 ∈ C let

Up(z0) = {z ∈ C|hp(z) > hp(z0) = 0} (127)

so that
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Up(z0) = C −Kp if z0 ∈ Kp. (128)

Assume that the polynomial P (z) has a critical point ω1 which escape to in�nity, that is
hp(ω1) > 0, and another critical point ω2 escaping to in�nity more slowly than ω1, i.e.
hp(ω2) < hp(ω1). Note that hp(ω2) = C − Kp if ω2 does not escape. Then the boundary
∂hp(ω2) given by transcendental equation if hp(ω2) > 0, and ones is given by fractal if
hp(ω2) = 0. They are fairly complected, depending on a complex number ξ ∈ C − D̃, a real
number h < ln |ξ| and many (sometimes in�nitely) combinatorial date.

Note that polynomial P of degree d can be analytically conjugated to z → zd at a
neighboured of∞. There is the conjugating map ϕp and polar coordinate at a neighbourhood
∞.

29 Symmetries of the Mandelbrot set

We de�ne Mandelbrot set of degree d as a connectedness locus of these families, that is

Md = {c ∈ C : the Julia set of z → z2 + c is connected}. (129)

Then M2 is the familiar Mandelbrot set. It is known that all the Mandelbrot sets are
connected and symmetric with respect to the real axes, and they have (d− 1) - fold rotation
symmetries (see, [?]).

In [25], Alexander, Giblin and Newton describe the symmetry groups of certain Jukia
set. As they call them, generalized Mandelbrot and Mandelbar sets. They give proves
that these 'fractal' are invariant under certain symmetry groups and conjecture that other
symmetry. All of these 'fractal' come from interacting polynomials of the type

z → zd + c or z → z̄d + c (130)

on the C. For each d ≥ 2, there are one holomorphic and one untiholomorphic family of
polynomials.

If |z| > max (|c|, 21/(d−1), then iterations toward in�nity. The complex number 0 is the
only critical point in C. This is a unique point at which this map is not locally injective,
i.e., where their derivatives vanish. This illustrate many important principle in complexe
dynamics for a holomorphic map which is closely related to the orbits of the critical point.

By the symmetry of a subset we have a rigid motion of this subset into itself, orientation
� preserving or not. Symmetries are translation, rotations, line re�ections, and composition
thereof. All such set to be compact. They therefor have unique (smallest) circumscribed
circles which have to remain invariant under the symmetries. All rotations have a common
center. We see that each of sets have a rotational symmetry around the origin (except M2).
Hence all their symmetries leave the origin �xed.

29.1 Symmetries of Julia sets

The �lled - in Julia sets are closed sets. So their topological boundaries (the actual Julia
sets) have exactly the same symmetries and it is su�ces to investigate the symmetries of the
�lled Julia set. Two of them are shown in ([?], Figure 1).
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If c = 0, then �lled - in Julia set is the �lled unit disk |z ≥ 1|. For c 6= 0, the rotational
symmetry of every �lled - in Julia set Kd,c or K

∗
d,c around the origin is exactly d - fold, so

their symmetry groups are either Cd or Dd. In the holomorphic case Kd,c, there are re�ection
symmetries if and only if cd−1 is real. In the antiholomorphic case, re�ection symmetries
exist if and only if cd+1 is real. In both cases, if axes of re�ection exist, there are of than of
original angles. On of them is line trough 0 and c.

Further we consider the problem with accuracy O(h2), where O(h2) → 0) as t → +∞,
and we �nd solutions in the form

ψ(x, t, h) = eiS(x,t)/hϕ(x, t, h). (131)

Here, S(x, t) and ϕ(x, t, h) are real phase and amplitude, respectively. Below, where it will
not cause misunderstandings, h will be omitted.

Assume that C0([0, l] × [0,+∞) is the space of bounded continuous functions and C2

is the space of twice di�erentiable functions with the norm ||f ||C2 =
∑2

k=0 sup ||fk||, where
||f 0|| is the norm in C0([0, l] × [0,+∞. The function ψ ∈ C2 belongs to if its real and
imaginary parts belong C2([0, l]× [0,+∞. Then in C2 - norm there is the convergence

||S(x, t)||C2 ⇒ ||Φ1[p1(t− x/p)||C2 , (132)

where p1(ζ) is 2N l/p is some periodic piecewise constant function with �nite number Γ of
points of discontinuities on the period. Further

||ϕ(x, t)||C2 ⇒ ||Φ2[p1(t− x/p)||C2 , (133)

where p1(ζ) is 2N l/p. By de�nition, Γ = %−1(D), where D =
⋃
n≥0G

−n(A±), A± is a set of
saddle points of codimension one and %(ζ) = (S0(ζ), ϕ0(ζ)) is an initial curve in R2, which
is determined by initial data of the boundary problem, and N is least common multiple of
the map G : (S, ϕ)→ (Φ1(S, ϕ),Φ2(S, ϕ)) [22].

30 Method of reduction of problem to system of integro-

di�erence equations

In these section, it will be shown that the boundary problem can be reduced to a system of
transport equations for amplitudes |ψ(x, t) and to a system of the Hamilton-Jacobi equations
for the phase S(x, t) with some boundary conditions. These equations may be coupled
or uncoupled. We con�ned itself only a case when asymptotically (for large times) these
equations are decomposed on two independent boundary problems for the amplitudes and
the phases, respectively.

Indeed, substituting (131) into equation (75), we obtain that(
∂S

∂t
+

1

2
(∇S)2

)
ϕ+ (−ih)

(
∂S

∂x

∂ϕ

∂x
+
∂ϕ

∂t
+

1

2
ϕ4S

)
+

(−ih)2

2
4ϕ = 0. (134)

Next, we �nd solutions with accuracy O(h2) so that

(
∂S

∂t
+

1

2
(∇S)2

)
ϕ+ (−ih)

(
∂S

∂x

∂ϕ

∂x
+
∂ϕ

∂t
+

1

2
ϕ4S

)
= 0. (135)
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As a result, we obtain the classical Hamilton-Jacobi equation

∂S

∂t
+

1

2
(∇S)2 = 0 (136)

ϕ2
x=0 = Φ2(S, ϕ)x=l, (137)

Sx=0 = Φ1(S, ϕ)x=l. (138)

Let, for simplicity, Φ2 := Φ2(ϕ) and Φ1 := Φ1(S). Then we have two-point boundary
conditions

S(0, t) = Φ1[S(l, t)]. (139)

Similarly, we have the transport equation

∂ϕ

∂t
+ p

∂ϕ

∂x
+
∂2S

∂x2
ϕ = 0 (140)

with the boundary conditions

ϕ(0, t) = Φ2[ϕ(l, t)]. (141)

Here, the maps Φ1, Φ2 ∈ C1(I → I) are assumed structural stable , where I is an open
closed interval. Note that the structural stable maps form an open dense subset (see, [22],
p.233).

30.1 Reduction of the problem to integro-di�erence equations of

the Volterra type

In order to solve these equations, we use the method of characteristics. Initially, we consider
the Hamilton system of ODE with hamiltonian H(x, p) = 1

2
p2 as

ẋ =
∂H

∂p
= p, ṗ = −∂H

∂x
(142)

with the initial conditions

x(0) = x0, p(0) =
∂S

∂x
(x0) = p. (143)

For a constant p, the function x := x(p, t) is a solution of equation

p− ∂S(x, t)

∂x
= 0, (144)
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where p can be considered as additional coordinate in (x, p, t) - space. Then on characteristics
dx(p, t) = p we have the equation:

dS(x(t, p), t)

dt
=
∂S(x(t, p), t)

∂t
+
∂S(x(t, p), t)

∂x

dx(t, p)

dt
= −H(p) + p

dx(t, p)

dt
. (145)

Next, by integration along characteristics dx/dt = p with help of boundary conditions
the problem can be reduced to the system of integro-di�erence equations:

S(x, t) = Φ1[S(x, t− x/p)] +
p

2
l +

p

2
(l − x), (146)

ϕ(x, t) = ϕ(0, t− x/p) +

∫ t

t−x/p

∂2S

∂x2
[(p(s− t) + x, s]ϕ[(p(s− t) + x, s)]ds = (147)

Φ2[ϕ(l, t− x/p)] +

∫ t−x/p

t−l/p

∂2S

∂x2
[(p(s− t+ l/p) + x, s]ϕ[(p(s− t+ l/p) + x, s)]ds

]
(148)

+

∫ t

t−x/p

∂2S

∂x2
[(p(s− t) + x, s]ϕ[(p(s− t) + x, s)]ds. (149)

Indeed, the �rst equation follows from the relation

S(x, t) = S(0, t− x/p) +
p

2
l = Φ1[S(l, t− x/p)] +

p

2
l = Φ1[S(x, t− l/p)] +

p

2
(l − x) +

p

2
l,(150)

which can be obtained from (145) with help of the boundary conditions for the phase.
Further, we de�ne an initial function S(x, 0) = S(0, t − x/p) + p

2
l, where S(0, t − x/p)

is determined on interval −l/p < t − x/p < 0 from initial data of the boundary problem.
De�ne the map

Φ1,µ = Φ1[S(l, t− x/p)] +
p

2
l +

p

2
(l − x), (151)

where, µ := µ(l, x, p) and µ(l, x, p) = p
2
l + p

2
(l − x). As the above, we assume that the map

Φ1,µ ∈ C2(I, I) is structural stable. As a result, we obtain the di�erence equation

S(x, t) = Φ1,µ[S(x, t− x/p)], (152)

depending on x and µ ∈ R as parameters. Then solutions of the DE can be �nd, step
by step, with help of iterations of the initial function S0(x, t), which is given on interval
−l/p < t−x/p < 0. Indeed, if Φ1,µ ∈ C2(I, I), then, as noted the above, the map is structural
stable. If a set Fix (Φ1,µ) of �xed point is �nite then there is a set of initial functions S0(t)
on [−l/p, 0) such that solutions of the di�erence equation are asymptotic 2N1l/v - periodic
piecewise constant functions with �nite points of discontinuities on a period, as shown in
[22], where, N1 is least common multiple of periods of attractive circles of the map (Φ1,µ).
Further, from (153) it follows that the phase depends on ζ = t − x/p. As a result, a limit
function is p1,µ(ζ) as ζ → +∞.
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30.2 Reduction of the problem to transport equations

The second equation follows from the integration of transport equation (140) so that along
characteristics we have the ODE

dϕ

dt
= −1

2

∂2S

∂x2
ϕ. (153)

Integration of this equation from a point (x, t) to a point (x, t− l/p) (see, Fig.3) with help
of the boundary conditions for amplitude leads to equation (167). On the other hand, this
equation has a solution

dϕ

dt
= −1

2

∂2S

∂x2
ϕ at dx/dt = p. (154)

After multiplying on ϕ this equation can be written as

ϕ(x(t), t) = ϕ(x(t0), t0)e
−

∫ t
t0

∂2S
∂x2

[p(s−t)+x,s]ϕ[p(s−t)+x,s]ds
. (155)

30.3 Determination of phase in the transport equation from the

Hamilton-Jacobi boundary problem

Now we can �nd the phase S(x, t) in this equation. Indeed,

S(x, t) = S(0, t− x/p) +
1

2
px. (156)

Further, using the boundary conditions for the phase, from (170 we obtain that

S(l, t) = S(l, t) +
p

2
l = Φ1[S(l, t− l/p)] +

p

2
l. (157)

This equation has asymptotic solution S(l, t) ⇒ p1(l, t). Then from (170) we obtain that
S(x, t)⇒ Φ1[p1(l, t− x/p)] + 1

2
px. Then

p2∂
2S

∂x2
= Φ′′1[S(l, t− x/p)][S ′(l, t− x/p)]2 + Phi′1[S(l, t− x/p)][S ′′(l, t− x/p)] (158)

where we used the relation

∂2S

∂x2
[p(s− t) + x, s] = S ′′(0, t− x/p) = Φ′′1[S(l, t− x/p)][S ′(l, t− x/p)]2 + Φ′1[S(l, t− x/p)][S ′′(l, t− x/p)](159)

where S(l, t− x/p) tends to a 2N1(t− x/p) periodic function p1(l, t− x/p) ∈ A+
1 , where A

+
1

is a set of attractive points of the map Φ1. (Here, the index µ is omitted in the map Phi1,µ).
Then we obtain the equation
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ϕ(x(t), t) = ϕ(x(t0), t0)e
−S′′(0,t−x/p)

∫ t
t0
ϕ[p(s−t)+x,s]ds

. (160)

1.1hf�
We assume that S(l, t) = A+

1 + ε ˜S(l, t), where ε > 0 is a small parameter. Then
lumbarization of di�erence equation (170) at each point a ∈ A+

1 leads to the equation

˜S(l, t) = Φ′1(a) ˜S(l, t− l/p) (161)

where |Φ′1(a)| < 1. Solutions of this equations are S(l, t) = ekt, where k = p
l

ln |Φ′1(a)|.
Equation (161) has exponentially decreasing explicit solutions, which tends to zero as t →
+∞. Hence, at a neighbourhood of the point a ∈ A+

1 = 0 equation (160) can be written as

ϕ(x(t), t) = ϕ(x(t0), t0) exp−k2ek(t−x/p)
∫ t

t0

ϕ[p(s− t) + x, s]ds. (162)

Since k < 0, we can us the approximation ez ≈ 1− z and rewrite equation (??) in the form

ϕ(x(t), t) = ϕ(x(t0), t0)(1 + k2ek(t−x/p)
∫ t

t0

ϕ[p(s− t) + x, s]ds). (163)

Then, in class of functions ϕ ∈ C2, the last term in equation (163) can be neglected, because

|k2ek(t−x/p)
∫ t

t0

ϕ[p(s− t) + x, s]ds| ≤ k2ek(t−x/p)(t− t0)M, (164)

where M = sup |ϕ(x, t)| at (x, t) ∈ [0, l]×R+, and k2ek(t−x/p)(t− t0)→ 0 as t→ +∞. It
means that the function ϕ(x(t), t) = ϕ(x(t0), t0) asymptotically. As a result, we have

ϕ(l, t) = ϕ(0, t− l/p) = Φ2[ϕ(l, t− l/p)]. (165)

This equation has asymptotically 2N1l/p - periodic piecewise constant solutions p2(t) ∈ A+
2 ,

where A+
2 is a set of attractive points of the map Φ2 ∈ C2(I, I).

This statement can be proved as follows. Integrating the transport equation, we obtain
the integro-di�erence equation

ϕ(l, t) = Φ2[ϕ(l, t− l/p)] +
1

2

∫ t

t−l/p

∂2S

∂x2
[(p(t− s) + l, s]ϕ[(p(t− s) + l, s]ds. (166)

Then
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ϕ(x, t) = ϕ(0, t− x/p) +

∫ t

t−x/p

∂2S

∂x2
[(p(s− t) + x, s]ϕ[(p(s− t) + x, s)]ds = (167)

Φ2[ϕ(l, t− x/p)] +

∫ t−x/p

t−l/p

∂2S

∂x2
[(p(s− t+ l/p) + x, s]ϕ[(p(s− t+ l/p) + x, s)]ds

]
+

∫ t

t−x/p

∂2S

∂x2
[(p(s− t) + x, s]ϕ[(p(s− t) + x, s)]ds.

Let S ∈ P+
1 , ϕ ∈ P+

2 , where P+
1 , P

+
2 are sets of attractive �xed points. Let S = P+

1 + εS̃
and ϕ = P+

1 εϕ̃. Substituting these functions into equation (178), we obtain

ϕ̃(l, t) = Φ′2(P+
2 ) ˜ϕ(l, t− l/p) +

P+
2

2

∫ t

t−l/p

∂2S̃

∂x2
[(p(t− s) + l, s]ds. (168)

Further, from the relation

S(x, t) = S(0, t− x/p) +
p

2
x. (169)

it follows that

∂S

∂x
(x, t) =

1

p
S ′(0, t− x/p) +

p

2
, (170)

∂2S

∂x2
(x, t) =

1

p2
S ′′(0, t− x/p). (171)

Then from (172) we arrive at

S̃](x, t) = Φ′2[S̃(x, t− l/p)]S̃ ′(x, t− l/p). (172)

Now, we assume that S̃ = S + εŜ. Then for Ŝ we have the linear di�erence equation

S̃(x, t) = λ1S̃
′(x, t− l/p) (173)

where λ1 = Φ′1(P+
1 ). Since S̃(x, t) = S̃(0, t − x/p) + 2

p
x, we obtain that a solution of the

equation is S̃ ′(x, t) = S̃ ′(0, t− x/p) + 2
p
. Hence

S̃ ′(0, t− x/p) = λ1S̃
′(0, t− x/p− l/p). (174)

Let ζ = t− x/p). Then from (174) we get

S̃ ′(0, t− x/p) = λ1S̃
′(0, t− x/p− l/p). (175)
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A solution of the equation is S ′(ζ) = ekζ , where k = 2
p

lnλ1|, where |λ1| < 1. Further

∂2S̃

∂x2
[(p(t− s) + l, s] =

1

p2
S ′′(0, t− x/p), (176)

where x(s, t) := p(t − s) + l. Then t − x/p = s − l/p. As a result, equation (178) can be
reduced to the equation

ϕ̃(l, t) = Φ′2(P+
2 ) ˜ϕ(l, t− l/p) +

P+
2

2

1

p2
ek(t−l/p)(1− ekl/p. (177)

Now we introduce a variable y(t) = ekt. Then y(t) = ekl/py(t− l/p). As a result, we obtain
the system of two di�erence equations

ϕ̃(l, t) = λ2ϕ̃(l, t− l/p) +
P+

2

2

1

p2
(e−kl/p − 1)y(t− l/p), (178)

y(t) = ekl/py(t− l/p), (179)

where λ2 = Φ′2(P+
2 ). Eigenvalues of this system are χ1 = λ2, χ2 = ekl/pekl/p, where |χ1| < 1,

0 < χ2 < 1. Hence, the �xed point (ϕ̃, y) = (0, 0) attracts all trajectories of the dynamical
system. It means that solutions of the boundary problem are asymptotically stable. The
stability is proved only for a special class of initial functions H = {ϕ̃(t) ∈ Oδ(P

+
2 ), y(t) ∈

Oδ(P
+
1 , t ∈ [−l/p, 0)}), where Oδ(a) is a small neighbourhood of a point a.

30.4 Separatrix and saddle type �xed points of codimensional 1

If there are repelling �xed points P−2 , then in R2 there is a �xed point P± of saddle type.
In this case, there is a separatrix, which divides a plain on the two regions U+

1 , U
+
1 such

that trajectories from U+
1 are attracted by a �xed point A+

1 . The trajectories from U+
2 are

attracted by a �xed point A+
2 . This is a typical property of the hyperbolic dynamical system

(see, Fig.1).
Thus, the attractor of the boundary problem contains asymptotic 2N1l/p, 2N2l/p - pe-

riodic piecewise constant functions p1(t), p2(t) for phases and amplitudes, respectively, if
initial data S0, ϕ0 ∈ Oσ(P+

1 , P
+
2 , where σ is small. If S0, ϕ0 ∈ Oσ(P−1 , P

+
2 then the �xed

point a± is a saddle type with unstable manifold W ua± of codimension 1. If initial curve
S0(t), ϕ0(t) intersect the manifoldW ua± at a point t0 ∈ [−p/l, 0 transversally then the point
determines a set � of points of 'discontinuities' on the period of the limit functions p1(t),
p2(t).

31 General functional boundary conditions

If we consider the boundary conditions of the form
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ϕx=0 = Φ2(S, ϕ)x=l, Sx=0 = Φ1(S, ϕ)x=l (180)

then the problem can be reduced the integro-di�erence equations

S(l, t) = Φ1[S(l, t− l/p), ϕ(l, t− l/p). (181)

ϕ(l, t) = Φ2[S(l, t− l/p), ϕ(l, t− l/p)− 1

2

∫ t

t−l/p

∂2S

∂x2
[(p(s− t) + l, s]ϕ[(p(s− t) + l, s]ds.(182)

Since

S(x, t) = S(0, t− x/p) +
p

2
x, (183)

from (183) and parametrization x(s, t) := p(s− t) + l we obtain that

∂2S

∂x2
(x(s, t), t) =

∂2S

∂x2
(0, t− x(s, t)/p)) =

1

p2
S ′′(0, t− l/p). (184)

Then relation (182) can be rewritten as

ϕ(l, t) = Φ2[S(l, t− l/p), ϕ(l, t− l/p)]− 1

2p2
S ′′(0, t− l/p)

∫ t

t−l/p
ϕ[(p(s− t) + l, s]ds. (185)

Next, from (185) it follows that

ϕ′(l, t) = Φ′2[S(l, t− l/p), ϕ(l, t− l/p)]ϕ′(l, t− l/p)− (186)

1

2p2
S ′′′(0, t− l/p)

∫ t

t−l/p
ϕ[(p(s− t) + l, s]ds+ S ′′(0, t− l/p)[ϕ(l, t)− ϕ(0, t)]

where (′) is the derivative along the direction dx(t)/dt = p.
Further, we assume that S(x, t) is a map which is homeomorphic to the quadratic map.

Then S ′′′(0, t− l/p) ≡ 0, (187) we obtain the relation

ϕ′(l, t) = Φ′2[S(l, t− l/p), ϕ(l, t− l/p)]ϕ′(l, t− l/p)− (187)
1

2p2
S ′′(0, t− l/p)[ϕ(0, t)− ϕ(0, t− l/p)].

Now, using the functional boundary conditions ϕ(0, t) = Φ2[S(l, t), ϕ(l, t)], we obtain

y′(l, t) = S ′′(0, t− l/p)y′(l, t), (188)
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where

y(l, t) = ϕ(l, t) = Φ2[S(l, t− l/p), ϕ(l, t− l/p)]. (189)

Equation (190) has the solution

y(l, t) = y(l, t0)eS
′′(0,t−l/p)(t− t0). (190)

Next, we assume that S ′′(0, t− l/p) ≤ 0 for each t ∈ [−l/p, 0). Then y(l, t) → 0 as t → ∞,
y(l, t) = y(l, t0) if the phase is linear function. Then asymptotically the problem is reduced
to the coupled di�erence equations

S(l, t) = Φ1[S(l, t− l/p), ϕ(l, t− l/p)] +
pl

2
. (191)

ϕ(l, t) = Φ2[S(l, t− l/p), ϕ(l, t− l/p)] (192)

Rigorous proof can be found in book [22]) for di�erence equations of the form

d

dt
[ω(u(t), ω(u(t+ 1))] = F [ω(u(t), ω(u(t+ 1))], (193)

which are integrable. Indeed, the operator of (194) can be decomposed on the product of
a di�erence operator F[y(t)] := ω(u(t), ω(u(t + 1) and the di�erential operator D[F ] :=
y(t)− F [y(t)]. It means that each equation of the form (194) can be reduced to a family of
non-autonomic di�erence equations

ω(u(t), ω(u(t+ 1))] = v(t, λ), (194)

where v(t, λ) is a solution of equation v′ − F (v) = 0, depending on a parameter λ = v(0)
(see, [22], p.163).

Asymptotic behaviour of di�erence equations (191),(192) is known [30, 33]. If the map
G : R2 → R2, which is produced by these equations, has a �nite number of �xed points
A then functions S(l, t), ϕ(l, t) tend to an asymptotic 2N l/p periodic piecewise constant
functions p1(t) ∈ A and p2(t) ∈ A for almost all points t ∈ (−l/p,∞), excluding �nite or
in�nite points of discontinuities (see, Fig.2). We know that it is possible if the map G is
hyperbolic. That is a spectrum of a di�erential T (G) has no real points with values equal
in modulus 1. If also stable manifolds W s(A+) intersect unstable manifolds W u(A−) and
W u(A±) transversally and an initial curve (S0(−l/p, 0), ϕ(−l/p, 0)) intersect an unstable
manifold W u(A±) of codimension 1 then G is structural stable and hyperbolic. Here, A+ is
a set of attractive points of G and A− is a set of repelling points, and A± is a set of saddle
type points of codimension 1.

It is known that a structure of attractor of dynamical can be described by a structure
non-wandering points of dynamical system. Let us de�ne a set of non-wandering points
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Ω (G) = Per (G) = Fix (GN), where Per (G) is a set of periodic points, Fix (G) is a set
of �xed points and N is least common multiple of attractive circle of the map G. Let
W =

⋃
a∈Ω (G)W

s(a), where W s(a) = {u ∈ W : limm→+∞G
mN(u) = a} is a stable manifold

of a �xed point a of G. Particulary, for any point u ∈ W there is the �nite limit

lim
j→+∞

GNj(u) := G∗(u). (195)

Let u(t) = (S(t), ϕ(t)) ∈ C0(R+ → R2).
Next, we de�ne a set of initial functions

H = {h(t) ∈ C0([−l/p, 0), R2) : h(0) = G[h(0)]}. (196)

Then for each function h(t) ∈ H there is periodic piecewise constant function p∗[h(·)] : R+ →
Ω (G) such that

p∗[h(t)] = Gi[G∗(h(t− i))] = G∗[Gi(h(t− il/p))], (197)

where t ∈ [i, i+ l/p), i = 0, 1, .... p∗[h(t)] is constant if and only if h(t) ∈ H′, where

H′ =
⋃

a∈Fix (G)

Ha, (198)

where

Ha = {h(t) ∈ H : h(t′) ∈ W s(a), t′ ∈ [−l/p, 0)}. (199)

Here, Ha 6= φ, where φ is empty set if and only if a ∈ Fix (G)}.
Then each solution u(t of a system of di�erence equations with initial functions u(t)[−l/p,0) ∈

Ha tends to a constant a if t → +∞. Each solution u(t) with initial functions u(t)[−l/p,0) ∈
H/H′ is asymptotic periodic piecewise constant function so that

lim
j→+∞

||u(t′ +Nj)− p∗[h(t′)]||R2 = 0, (200)

where t′ ∈ R+.
Further, for any ε > 0 and any solution u(t such that u(t)[−l/p,0) ∈ Ha we have the limit:

lim
j→+∞

sup ||u(t+Nj)− p∗[u(t′)]||R2 = 0. (201)

Note that

lim
j→+∞

sup ||u(t+Nj)− p∗[u(t′)]||R2 6= 0. (202)
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Thus, asymptotic solutions have the form

ψ(x, t) = eip1(t−x/p)/hp2(t− x/p)) +O(h2), (203)

where O(h2)→ 0 as h2 → 0. For application, such type solutions describe distributions of or-
der parameter for the linear Ginzburg-Landau equation with nonlinear boundary conditions
(see,[?] p.270).

32 Boundary problem for quantum equation of general

type

In this section, we consider the Shrödinger type equation with a symbol-polyoma:

− ih∂y
∂t

+ Pn

(
−ih∂y

∂x

)
= 0. (204)

Here

Pn(P ) =
n∑
j=0

ajp
j, (205)

where aj ∈ R and pj ∈ C, S is the complex space, h > 0 is the small parameter.
Solutions will be �nd in the form

y(x, t) = exp
i

h
S(x, t)ϕ(x, t). (206)

Then, substituting (206) into equation (204), we obtain the equation

exp
i

h
S(x, t)

[(
∂S

∂x
− ih∂ϕ

∂t

)
+ Pn

(
∂S

∂t
− ih∂ϕ

∂x

)]
= 0. (207)

Coe�cients of (207) can be �ned from the function

F (h) = (λ2 − ihE ′) + Pn(λ1 − ihp′) (208)

by the formula

F (h) =
n∑
k=0

hk

k!

dk

dhk
F (h). (209)

Then calculations lead to the equation

(
∂S

∂t
+ Pn

(
∂S

∂x

))
ϕ− ih

(
∂ϕ

∂t
+
∂Pn
∂p

(
∂S

∂x

)
∂ϕ

∂x

)
+

n∑
k=2

−ihk

k!

∂Pn
∂p

∂kϕ

∂xk
= 0. (210)

As a result, we get the Hamilton-Jacobi equation

36



∂S

∂t
+ Pn

(
∂S

∂x

)
= 0, (211)

for phases S, and the transport equation

∂ϕ

∂t
+
∂Pn
∂p

(
∂S

∂x

)
∂ϕ

∂x
= 0, (212)

for the amplitudes ϕ.
For equation (211) with Hamiltonian H(p) = Pn(p) we consider the Hamilton system of

ODE

dx

dt
=
∂H

∂p
= p,

dp

dt
=
∂H

∂x
(213)

with initial conditions

x(0) = x0, p(0) =
∂S0(x)

∂x |x=x0
. (214)

Let x(x0, t), p(x0, t) are solutions of the Hamilton system. Then equations x = x(x0, t), p =
p(x0, t) de�ne a manifold L in space (x, p, t). If from x = x(x0, t) it follows that x0 = x0(x, t)
then the projection of L on (x, t) - space is a solution of the Hamilton-Jacobi equation in
(x, t) - space.

To solve the Hamilton-Jacobi equation, we use a method of characteristics, noting that
along the characteristics dx(t)/dt = ḢpH solutions of the Hamilton-Jacobi equation can be
written as

dS(x(t), t)

dt
=
∂S

∂t
+ pdx = −H(p) + pdx. (215)

Remark that there is another interpretation of relation (215). Indeed, let us consider
a set of points (x, t), which is given by relations (214), where x0 ∈ R. Then we can �nd a
solution S(x, t) on surface L so that the function x(p, t) is a solution of equation

p− ∂S(x, t)

∂x
= 0 (216)

because if on L take place the equality ∂S(x,t)
∂x

= p then the solution x = x(p, t) is the
transition function from coordinates (p, t) to coordinates (x, t) on the surface L.

We recall that the function of an action S(q, t) is the integral

Sq0,t0(q, t) =

∫
$

Ldt (217)

37



along the extremal$, connecting points q0, t0 and q, t, where L = pq̇−H, is the Lagrangian of
a dynamical system. Thus, the Lagrangian is the Legendre transformation of the hamiltonian
H (see, [?], p.210).

Next, we consider the Hamilton system in a space R1
x

⊕
R1p

⊕
R1
t . Let x(x0, t), p(x0, t)

be a solution of the Hamilton system. Then equations

x = x(x0, t), p = p(x0, t) (218)

determines a manifold L of dimension n = 2 in the R1
x

⊕
R1p

⊕
R1
t with the boundary

{t = 0}. At this manifold the form

−H(x, p, t)dt+ pdx = Ω (219)

is closed. Remained that a form is closed if dΩ = 0. Additionally, if the manifold L is
connected then Ω is exact. Then Ω = dΛ where Λ is a di�erential form.

Next, interpreting the Hamiltonian system as a vector �eld (dynamical system) at a
symplectic manifold M, we can consider solutions of the Hamiltonian system as integral
trajectories of a vector �eld. There is the important question of the solvability of the equation
Ω = dΛ, where we assume that Λ is connected with respect to the topological structure of
the manifold M. Then a solution of the equation

dS ′ = ΩL′ , S ′t=0 = S0(x) (220)

exists. Indeed, let U be an open neighbourhood in the space R1
x

⊕
R1
t of the set {t = 0},

where U is a projection of a manifold L such that equation x = x(x0, t) is solvable with
respect to x0, that is x0 = x0(x, t).

32.1 Reduction to canonical system

From the above observation it follows thet the function

S(x, t) = S ′(x0 = x0(x, t), t) = (π−1
x )∗S ′(x0, t), (221)

is a solution in U of the initial problem. Here, πx : L → R1
x

⊕
R1
t is a projection (see,

[20], p.25).
In this case, from (210) it follows that the origin initial problem for equations of quantum

mechanics is reduced (with accuracyO(h2)) to a system of the Hamilton-Jacobi and transport
equations:

∂S

∂t
+ Pn

(
∂S

∂x

)
= 0, (222)

∂ϕ

∂t
+
dPn
dp

(
∂S

∂x

)
∂ϕ

∂x
= 0. (223)
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These equations are called by the canonical system.
Here, the phase S on manifold L satis�es to the di�erential form

dŜ = −Hdt+ pdx (224)

where the Hamiltonian H(p) := Pn(p). Then from (224) we arrive at

S(x(t), t) = S0(x(t0), t0)− Pn(p)(t− t0) + p[x(t)− x(t0)]. (225)

Now we consider the functional boundary conditions

S(0, t) = Φ1[S(l, t)], t > 0, (226)

where Φ1 : I → I is a function. Smooth initial conditions are

S(x, 0) = S0(x), 0 < x < l. (227)

In applications, such boundary conditions describe the changing between input S(0, t)
and output phases in the electronic device the multiplier of the phase N and the ampli�er
J of a frequency of the input signal at x = l. Additionally, there is the resistor R. The
device is designed so that we can change independently the phase and amplitude. The map
Φ−1

1 describes coupling between input and output phases at x = l and x = 0, respectively.
Similarly, we can organise connection between input and output amplitudes at x = l and x =
0. It is possible a case, when such coupling exists for input (output) phases and amplitude
together. In the �rst case, the problem is reduced to the two independent di�erence equations
for phases and amplitudes, separably. In the second case, the problem is reduced to the two
coupled di�erence equation. As a result, the problem is reduce to the research of asymptotic
behaviour of trajectories of 1D decouple dynamical systems or 2D couple systems [?, ?].

32.2 Asymptotic behaviour of di�erence equations

From the above sections it follows that solutions of boundary problem (223), (229) can be
�nd by the method of characteristic, which together with boundary conditions leads to an
initial problem for di�erence equations with delay arguments. Indeed, from relation (229)
we arrive at

S(l, t) = S(0, t− l/Ṗn(p))− Pn(p)(l/Ṗn(p)) + pl = Φ1[S(l, t− l/Pn(p)) + µ, (228)

where µ = −Pn(p)(l/Ṗn(p)) + pl is a parameter of the problem. We rewrite this di�erence
equation as

S(l, t) = Φ1[S(l, t− l/Pn(p)) + µ). (229)

Solutions of this equation can be �nd step by step if we know the initial function S0(l, t) on
the interval t ∈ [−l/p, 0).
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We assume that a map Φ1 is structural stable. It is known that if Φ1 ∈ C2 then such
maps are dense in C2 - metric. Partially, we consider a hyperbolic map. In 1D case, a set
of periodic points of the map Φ1 is the set PerΦ1 = P+

⋃
P−, where a set of attractive

�xed points P+ is always �nite. The set P− of repelling �xed points is �nite, countable or
countable. The main role in topology of trajectories plays the so-called separator D, which
is de�ned by the formula

D =
⋃
n≥0

h−n(P̄−)z, (230)

where P̄− is closer of P−. The separator D may be �nite if P− is �nite or in�nite (countable
or uncountable). We call corresponding limit solutions by distributions of relaxation, pre-
turbulent or turbulent type, respectively.

32.3 Transport equation

In this section we consider the transport equation (223). Denote dPn
dp

:= Ṗn(p). Solutions

will be �nd as ϕ(x, t) := u(t− x/dotPn(p)). The boundary conditions of the problem are

ϕ(0, t) = Φ2[ϕ(l, t)], t > 0. (231)

The initial conditions are

ϕ(x, 0) = ϕ0(x), 0 < x < l. (232)

The problem can be reduced to the di�erence equation

ϕ(l, t) = Φ2[ϕ(l, t− l/Pn(p))]. (233)

Indeed, if Φ2 : I → I hyperbolic then asymptotic solutions of (233) represent piecewise
constant 2N l/Pn(p) - periodic function p2(l, t), where p2(l, t) ∈ P+

2 . Here, P+
2 is a set of

attractive �xed points of Φ2. A solution can be written as

y(x, t) = e
i
h
p1(ζ)p1(ζ), ζ = t− l/Ṗn(p). (234)

Here p1(ζ) ∈ P+
1 , p2(ζ) ∈ P+

2 , where P+
1 , P

+
2 are �xed attractive points of the maps Φ1, Φ2.

Set of points of discontinuities (see, Fig.1) is determined by separators D1, D2 of Φ1, Φ2.
Let us initially postulate the simplest conditions

y(0, t) = e
i
h
S(0,t)ϕ(0, t), y(l, t) = e

i
h
S(0,t)ϕ(0, t) (235)

with additional asymptotic

y(0, t)⇒ e
i
h
p1(0,t)p2(0, t)), y(l, t)⇒ e

i
h
p1(l,t)p2(l, t)) (236)

as t→∞ for almost all points t ∈ R+.
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On the other hand, it can be considered the boundary conditions

y(0, t) = Φ[y(l, t)] (237)

where Φ : I → I.
Next, from

S(l, t) = S(0, t− l/Ṗn(p)) + µ, ϕ(l, t) = ϕ(0, t− l/Ṗn(p)) (238)

it follows that (237) can be written as

e
i
h
S(0,t)ϕ(0, t) = Φ

[
e
i
h

(S(0,t−l/Ṗn(p))+µ)ϕ(0, t− l/Ṗn(p))
]
. (239)

For simplicity, we assume that quantization equations ei
µ
h = 1 are satis�ed, and de�ne

z(t) = e
i
h
S(0,t)ϕ(0, t). Then equation (240) can be written as

y(t) = Φ[y(t−∆)]. (240)

32.4 Example 1

Indeed, consider a case G : (Re y, Imy) → (2 tanRe y,Re y + 1
2
Imy). Then the system

produce a map Φ : R2 → (−2, 2)×R. Note that there is a set Π such that G : Π̄→ Π. Here,
G = (−a, a)× (−b, b) and a ∈ (α, 2), where α > 0 is solution of equation 2 tanRe y = Re y
and b > 2a.

Then a set of non-wandering points is Ω(G) = {(−α,−2α), (0, 0), (−α,−2α)}, where
α ≈ 1.8 [30]. Attractive �xed points of the map G are A+ = {(−α,−2α), (α, 2α)}, and a sad-
dle point is A± = {((0, 0)}. Eigenvalues (2, 1/2) correspond to eigenvectors are (3, 2), (0, 1).
The vectors are tangential concern separatrices W u(0, 0), W s(0, 0), respectively. Similarly,
di�erentials T (Φ)(α, 2α), T (G)(−α,−2α) have eigenvalues (2/ cosh2 α, 1/2) with eigenvec-

tors

(
1,
(

2
2/ cosh2 α

− 1
2

)−1
)

and (0, 1). Stable manifolds are W s(α, 2α) = {(Re y, Imy) ∈

G : Re y ∈ (0, a), Im y) ∈ (−b, b)} and W s(−α,−2α) = {(Re y, Imy) ∈ G : Re y ∈ (−b, b)}.
Let h(t) be such that h(0) ∈ W s(−α,−2α), h(t1), h(t2) ∈ W s((0, 0)), where t1 < t2

and t1, t2 ∈ (−∆, 0). The set of points of discontinuities Γ(h(t)) = {t1, t2}. As a result,
solutions of the system tend to a periodic piecewise constant function, as shown on Figure
4. A limit function P(h(t)) = (±α,±2α) as t ∈ [0, t1)

⋃
[t2,∆). Note that at points t1, t2 a

limit function has only one 'jump' on a period.

33 First approximation

33.1 First approximation

In the �rst approximation, a solution of the transport equation can be represented as

ϕ(x, t) = ϕ0(x, t) + hϕ1(x, t). (241)

Then (with accuracy O(h3)) we have the equation
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∂ϕ1

∂t
+ Ṗn(p)

∂ϕ1

∂x
= −1

2
P̈n(p)

∂2φ0

∂x2
, (242)

which (on characteristics) can be written as ODE

dϕ1

dt
= −1

2
P̈n(p)

∂2φ0

∂x2
(243)

where φ0(x, t) is known, and

φ0(x, t) := φ0(t− x/Ṗn(p)). (244)

Thus, we have ODE (243). Solutions of this equation are determined along dx(t)/dt = Ṗn(p).
Indeed, integration of (243) from (l, t) to (0, t −∆) leads to the integro-di�erence equation
of the Volterra type

ϕ1(l, t) = ϕ1(0, t−∆) +
1

2
P̈n(p)

∫ t

t−∆

∂2φ0

∂x2
[Ṗn(p)(s− t+ ∆), s]ds. (245)

Since φ0[x(s), s) = φ0(s− x(s)/Ṗn(p), from (247) we arrive at

ϕ1(l, t) = ϕ1(0, t−∆)− ∆

2

P̈n(p)

Ṗ 2
n(p)

φ′′0(t−∆). (246)

From boundary conditions ϕ(0, t) = Φ[ϕ(l, t)] it follows that equation (246) can be written
as

ϕ1(l, t) = Φ[ϕ1(l, t−∆)]− ∆

2

P̈n(p)

Ṗ 2
n(p)

φ′′0(t−∆). (247)

33.2 Another method of reduction

The same result can be obtained from representation of equation (247) as

∂φ0

∂t
= −1

2
P̈n(p)

∂2φ0

∂x2
(ζ, t), (248)

where ζ = t−x/Ṗn(p)). Indeed, the similar integration on characteristic leads to the equation

ϕ1(t, t) = ϕ1(t−∆, t−∆)− 1

2
P̈n(p)

∫ t

t−∆

∂2φ0

∂x2
(ζ(s))ds. (249)

But ζ(s) = s− x(s)/Ṗn(p) alon the line ˙x(s) = Ṗn(p). Then

dζ = ds−
˙x(s)

Ṗn(p)
ds = 0. (250)

Hence, ζ = ζ∗ is a constant, and it is easy to check that ζ∗ = t−∆. As a result, from (249)
it follows the equation

ϕ1(t, t) = ϕ1(t−∆, t−∆)− ∆

2

P̈n(p)

Ṗ 2
n(p)

φ′′0(t−∆). (251)

42



Equations (246),(251) are identical equations, but in di�erent coordinates (x, t), (ζ, t), re-
spectively. Indeed, if we denote z1(t) = ϕ1(t, t) then we obtain the equations

z1(t) = z1(t−∆)− ∆

2

P̈n(p)

Ṗ 2
n(p)

z2(t−∆) (252)

where z2(t−∆) = φ′′0(t−∆).

33.3 Some estimations

In this section, it will be shown that in the above integro-di�erence equation (IDE) the in-
tegral is decreeing for smooth probe functions then IDE tends to a corresponding di�erence
equation. It means that asymptotically solutions of IDE tend to solutions of the di�erence
equations and ones have the same asymptotic. It is possible for a special asymptotic be-
haviour of the phase. At �rst, we must prove that the function φ′′0(t)⇒ 0 as e−kt for almost
all t ∈ R+, where k > 0. Indeed, let us consider the di�erence equation

u(t+ ∆) = f [u(t)], t > 0, (253)

where f ∈ C2(I, I) is a given function. Then

u′(t+ ∆) = f ′[u(t)]u′(t) (254)

and if |f ′[u]| < 1 for u ∈ I, then u′(t) ⇒ 0 as t → ∞. That is it is possible if initial
data lie at a some neighborhood of an attractive point of the map which is produced by
the origin boundary problem. If P+ contains one point, the statement is evident. But if
we have more then one points, there exist repelling �xed points, which correspond to large
derivatives of solutions at a neighborhood of the repelling point. This problem can be solved
by the method which has been developed by Sharkovsky [22].

To begin the prove, let us consider the di�erence equation
Further

u′′(t+ ∆) = f ′′[u(t)][u′(t)]2 + f ′[u(t)]u′′(t). (255)

Hence,

u′′(t+ ∆) = f ′′[u(t)][u′(t)]2 + f ′[u(t)]u′′(t) (256)

and

|u′′(t+ ∆)| ≤ ν|u′′(t)|+O(1/t), (257)

where 0 < ν < 1. Next, |u′′(t)| ⇒ 0 as t → ∞. Points of discontinuities Γ of the limit
solutions are produced by pre-images U = f−n[u−], n = 1, 2, 3, ... of repelling �xed points
u− ∈ A− of the map f , where |f ′[u−]| > 1.

Next, from (257) it follows that |φ′′0(t−∆)| ⇒ 0 as t → ∞. From (257) it follows that
we can use the asymptotic approximation

u′′(t+ ∆) = f ′[P+]u′′(t) (258)
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for each u ∈ Oε(P
+), where P+ is a set of attractive �xed points of the map f and Oε(P

+)
is a ε - neighborhood of the set P+. This is a consequence of structural stability the map f .

The solution of equation (258) is u′′(t) = ekt, where k = ln f ′(P+)/∆. Then we can
insert the value k into equation (251). As a result, we obtain

z1(t) = Φ[z1(t−∆)]− ∆

2

P̈n(p)

Ṗ 2
n(p)

ek(t−∆) (259)

where k < 0. Next, we de�ne z2(t − ∆) = ek(t−∆). Then z2(t) = ek∆z2(t − ∆). Hence,
equation (259) can be written as the system of two di�erence equations:

z1(t) = Φ[z1(t−∆)]− az2(t−∆), (260)

z2(t) = ek∆z2(t−∆) (261)

where a = ∆
2
P̈n(p)

Ṗ 2
n(p)

. These equations produce the 2D - map Φ̂ : (z1, z2)→ (Φ(z1)− az2, bz2),

where b = ek∆. Since k < 0, all trajectories at plane (z1, z2) tend to a line z1 as t→ +∞ so
that z2 → 0. It means that asymptotically we have deal with 1D - dimensional map which
is described by iterations of the di�erence equation:

z1(t) = Φ[z1(t−∆)]. (262)

Fixed points of these map can be �nd from equations Φ(z1) − az2 = z1 and bz2 = z2.
Hence, the points are A = (FixΦ, 0). If FixΦ = A+ then a point A = (A+, 0) is attractive.
It means that eigenvalues of the Jacobi matrix T Φ are k1 = Φ′(P+) and k2 = b, where
0 < b < 1. Next, if FixΦ = A± then a point A = (A±, 0) is saddle type.

34 Example A

Let us consider the two parameter family of Henon maps which represent quadratic di�eo-
morphisms at a plane that can be written as

(x, y)→ (y, y2 − α− βx), (263)

with constant Jacobian determinant γ. A set of (α, β) for which there is an attracting
periodic orbit is quite shallow - shaped con�guration (see, [?]). Such region corresponds to
an attracting orbit 5. If |β| is small then the dynamics of the 2D � map is similar to the the
dynamics of the 1D � map y → y2 − α.

The Henon map can be approximated by a linear map exapt at points near y = 0, then
the dynamics may beconsidered as a composition of two quadratic maps. It means that now
a Henon map is the product of the two quadratic maps of the form Φ : (x, y)→ (x2 − α, y)
or otherwise. If −α ≤ 1

4
, then the map has the two �xed points (β0, β0) and (β1, β1) on R2,

where
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β0,1 =
1

2
±
√

1

4
− α. (264)

If Φ(x, y) ∈ R2 I × I then an orbit of the map Φ is bounded. Hence the set KR ca be
described as the real part of the '�lled Julia set' for each components of the map Φ.

Thus, for |β| � 1, asymptotic orbits for the Henon map can be described as the Decart
of the 2D Julia set J := J(x) × J(y), where J(x) ≈ J(y) and both are '�lled Julia sets'.
Note that there is prolongation of the Milnor one-dimensional classi�cation of the two -
dimensional case. Indeed, we will say that Φ belongs to the trivial class R0 ×R0 in KR(Φ),
where KR(Φ) contains at most a single point (β1, β1) ∈ R2.

If Φ does not belong to the trivial class then there are at least two distinct �xed points
(β0, β0) and (β1, β1). Let Π := I × I be a smallest closed invariant interval that contains
KR(Φ). Thus every trajectory of the dynamical system which starts outside of Π must escape
to ∞, but the boundary ∂Π must have bounded orbits in R2. Indeed, since we have deal
with the degenerated Henon map, which is decomposed on the two independent quadratic
maps, with the two �xed points (β0, β0) and (β1, β1).

If −α > 1
4
then each component of the decoupled Henon map Φ tend to a �xed point

B0 = (β0, β0), where B0 is an attractive �xed point on the diagonal x = y. For −α > 1
4
,

points of each orbits of the map Φ : R2 → R2 tend to +∞ by iterations Φn(x, y) as n→∞.
Thus a set of parameters α < −1

4
determines the class R0 if |β| = 0. Next, we determine

a family of the Henon maps Φ(α, β) for small β and show that a new class R0(α, β) is
di�eomorphic to the class R0(α, 0) (compare with ([?], �gure 2).

To make it we assume that the map Φ is transitive. It means that there are intervals U1

and U2 about two critical points, so that a �rst return map from the interval U = U1

⋃
U2 to

itself is de�ned and smooth, interchanging these two components. It means that f ◦p(U1) ⊂ U2

and f ◦p(U2) ⊂ U1) for some p ≥ 0 and q ≥ 1. For example, a universal model for this
behaviour take place for 'biquadratic map', that is, for the composition of the two quadratic
maps.

In the above conditions, we assume that there are neighborhoods U1 and U2 such that
the �xed return map carries both U1 and U2 into U2. Thus the orbit of U1 is 'captured' by
the periodic orbit of U2. There are also the disjoint periodic orbits. It means that again
there are disjoint neighborhoods U1 and U2, but now the �rst return map carries each U1

into itself, so that f ◦p(U1) ⊂ U1) and f ◦q(U2) ⊂ U2).
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