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Abstract:  

 

The unsuccessful attempts of quantization of spacetime are corroborating the belief that for 

the purposes of quantum gravity, the current notion of spacetime must be replaced with a 

different concept. However, the range of possible alternative approaches is currently 

restricted by the fact that gravity is considered to be inseparably associated with the 

concept of curved spacetime.  

 

In order to extend this range of possible alternative approaches, it is shown here on the 

basis of the Schwarzschild metric how gravity may not only be described by the means of 

curved spacetime but equivalently also in the form of gravitational time dilation in flat, 

uncurved space. 

 

 

Essay written for the Gravity Research Foundation 2022 Awards for Essays on Gravitation. 
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1. Introduction 

 

Curved spacetime in the form of a pseudo-Riemannian manifold was introduced by 

Grossmann and Einstein in the year 1913 [1]. It was appreciated as an excellent tool when 

Einstein was looking for a way for the description of gravity and in particular of the principle 

of equivalence. However, it had one important inconvenient: It was not compatible with 

quantum mechanics. For several decades, it was tried to make curved spacetime harmonize 

with quantum mechanics by quantization of spacetime. Today, after all these attempts, we 

should accept that curved spacetime is only a tool which is not an essential part of general 

relativity, and which is not indispensable for quantum gravity. 

 

The idea of a universe of gravity without curved spacetime is not new. Already Steven 

Weinberg wrote in 1972 that it does not matter if we describe gravity as curvature of space 

and time or as a gravitational field [2], but he felt that leading general relativists rejected this 

point of view.1 Today, it seems more important than ever not to exclude any longer this 

approach, because quantum gravity has become a real cul-de-sac. 

 

In this essay, it will be shown on the basis of the Schwarzschild metric that gravity may not 

only be described by curved spacetime but also by the equivalent concept of gravitational time 

dilation in flat, uncurved space. 

 

                                                           
1 He wrote: "The reader should be warned that these views are heterodox and would meet with objections from 

many general relativists." 
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2. The equivalence of gravity and gravitational time dilation 

 

One particular characteristic of the Schwarzschild metric is its amazing simplicity. The 

equation2 

��� =  −��(1 − 2���� )��� + ��
1 − 2����

+  �(�Θ + ����Θ dϕ�) 

 

is simply a combination of the flat Minkowski metric with gravitational time dilation. In order 

to show this, we denote by C (upper case) the gravitational time dilation of the clock of a 

particle in a gravity field with reference to a potential-free far-away observer: 

� = ���� =  �1 − � = �1 − 2����  

 

By inserting C into the equation above, we get a modified form of the Schwarzschild metric: 

    ��� =  −��(���)� + ����  � +  �(�Θ + ����Θ dϕ�) 

 

Now we compare this equation with the equation of flat Minkowski metric [3]: 

��� =  −����� + ��� +  �(�Θ + ����Θ dϕ�) 

 

We see that the Schwarzschild metric and the Minkowski metric are very similar, and the 

gravitational time dilation C is the only difference between curved and uncurved spacetime: 

                                                           
2 Following the current sign convention (- + + +) 
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The term dt becomes Cdt and the term dr becomes 
!"# . By consequence, gravity may be 

entirely described by gravitational time dilation, and there is no gravitational effect beyond 

gravitational time dilation. 

 

 

3. The derivation of the attractive force of gravitation 

 

If gravity and gravitational time dilation are equivalent, the question arises how gravitational 

time dilation can generate any attractive interaction, as its direct effect is quite the contrary: 

Gravitational time dilation is slowing down the radial velocity of particles, by some repulsive 

effect, from the point of view of a potential-free observer (see below section 4.).  

 

There is only one possible answer which is equivalent to the geometry of curved spacetime: 

the time dilation gradient is acting on the rest energy of mass particles, in other words: mass 

particles are striving to maximize their respective gravitational time dilation. This concept is 

shown in fig. 1: 

 

Fig. 1: The effect of the gradient of time dilation: The clock of particle 2 runs slower because it 

is closer to the gravity source. Particles are attracted because they are striving to maximize 

their respective time dilation. 

Gravitational attraction 
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The two particle worldlines are not parameterized by some common coordinate time axis but 

by their respective proper time τ1 and τ2. Gravitational time dilation is acting directly by 

dilating these two proper time parameters (clock frequencies): 

 

The clock τ2 of the right particle is running at a slower frequency than the clock τ1 of the left 

particle because it is closer to the gravity source, with a higher exposition to time dilation. 

Both particles are striving to slow down their respective clocks, by following the gradient of 

gravitational time dilation which is oriented towards the gravity source on the right, 

represented by the blue arrow in the direction of the attractive force. 

 

In a gravity field, gravitational time dilation is 

 

� =  �1 − �  

 

from the point of view of a potential-free observer, and the spatial gradient of C (decreasing 

spatial distance r) is 

 

��−� =  − �2�  1
�1 −  �

=  − ���  1
�� �1 − �   

 

Accordingly, the attractive force of the spatial gradient on the rest energy E0 = mc2 of a mass 

particle in radial direction is 
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$%&& = − � ��−�  '�� =  ���  '��
�� �1 − �  = ��'�  1

�1 − �
=  $()*&+,�  

before gravitational time dilation. Due to the effect of gravitational time dilation (see below 

section 4.), we must multiply radial forces with C2: 

 

$′%&& = �� ∙ $%&& =  �� ∙ $()*&+,� = � ∙ $()*&+,  
 

An infalling observer of a black hole (C = 1) will feel exactly the force of permanent Newtonian 

attraction and acceleration, whereas from the point of view of the reference frame of an 

external observer (C is approaching zero), the attraction is approaching zero near the event 

horizon. 

 

 

4. The repulsive effect of gravitational time dilation 

 

We saw that gravitational attraction is generated by the spatial gradient of time dilation. But 

in order to be complete, we must take into account the fact that gravitational time dilation 

has a direct repulsive effect in radial direction which is reducing the attractive force, from the 

point of view of a potential-free observer: 

 

Gravitational time dilation C is acting on radial velocity which is v = s/t. Example: If C = 0,5, the 

object will take twice as much time t for a given distance, and therefore its velocity is divided 

by 2 (multiplication with C):  
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/0 = �/ 

v = velocity before gravitational time dilation 

v' = velocity after time dilation 

 

Accordingly, radial kinetic energy (and, in the same way, radial force) is multiplied with C2: 

 

1′23, = �� ∙ 123, 

 

So we get for the kinetic energy  

 

1′23, = �� ∙ 123, =   41 − � 5 '/�
2  

 

Due to time dilation, the particle loses kinetic energy, and the repulsive force is the 

corresponding spatial gradient of the kinetic energy, that means the loss of kinetic energy with 

decreasing spatial distance r: 

 

$")6 = �1′23,−� =  − 4 ��5 '/�
2 = − 2����� '/�

2 =  − /�
�� ��'�  =  − /�

�� ∙ $()*&+, 

 

As a result, the repulsive force corresponds to Newtonian force times squared velocity. Again, 

the infalling observer does not feel the repulsive force, because it is a direct effect of time 

dilation C. 
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5. Attraction and repulsion 

 

In total, we get one attractive and one repulsive radial effect of gravitational time dilation, 

which are added in order to obtain the total radial force of gravity: 

$ = $%&& +  $")6 = � ∙ $()*&+, − /�
�� ∙ $()*&+, = 7�1 − � −  /�

��8 $()*&+, 

 

 

 

 

 

 

6. Lorentz-invariance 

 

This alternative description of gravity by gravitational time dilation provides gravity with a 

Lorentz-invariant concept. Gravity is slowing down the frequency of the proper time of 

worldlines, without acting on any spacetime manifold. 

 

The four-dimensional gravity concept of spacetime and curvature is replaced with the two-

dimensional concept of gravitational time dilation along a worldline. The description of gravity 

as gravitational time dilation requires a reduced number of degrees of freedom because it is 

independent of space, gravitation "follows" the worldline of the particle. 

 

The concept of gravitational time dilation is based on the three-dimensional manifold of flat 

space, it is not based on spacetime. Therefore, this concept does not belong to the vain 

 generated by: acts on: 

Attraction gradient of gravitational time dilation rest energy 

Repulsion gravitational time dilation kinetic energy 
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attempts for the integration of gravity within a flat Minkowski spacetime manifold (cf. the 

summary of Misner-Thorne-Wheeler, p. 177 ff. [4]), and it complies with the current results 

of quantum gravity according to which it seems to be impossible to ally gravity and quantum 

mechanics within a four-dimensional Lorentzian spacetime manifold. 

 

 

7. Curved spacetime and gravitational time dilation in flat space: two complementary 

concepts 

 

The two alternative concepts of gravity adopt two different points of view which are 

complementary, with two different time concepts: Curved spacetime corresponds to the view 

of an observer whereas gravitational time dilation refers to the Lorentz-invariant proper time 

parameter of the observed particle. However, the proper time parameter is not appropriate 

for observation because each particle worldline has its own proper time parameter, and for 

observation, the conversion into a common time parameter of some spacetime coordinates 

is needed (by multiplication with the respective time dilation factors). As a result, curved 

spacetime will always remain indispensable for observation, but for quantum gravity, we must 

resort to the underlying fundamental, Lorentz-invariant concept of gravitational time dilation 

in flat space.  
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