Proof of Primality Using the Set S

Mar Detic

Abstract

This paper provides a proof of primality using a set construction S. Specifically, it demonstrates that a positive integer $p > 1$ is prime if and only if $p \notin S$. The set S is defined in terms of prime divisors of p and is constructed by considering natural numbers within certain bounds. Examples are provided to illustrate the application of this criterion for both prime and composite numbers, including $p = 121$.

Theorem

A positive integer $p > 1$ is prime if and only if $p \notin S$, where the set S is defined as:

$$
S = \{a(1+n) \mid a \text{ is a prime}, a \le \sqrt{p}, n \in \mathbb{N}, 2 \le n \le \frac{p}{a} - 1\}.
$$

Proof

Definition of the Set S

Let $p > 1$ be a positive integer. The set S is constructed as follows:

$$
S = \{a + an \mid a \text{ is a prime, } a \le \sqrt{p}, \ n \in \mathbb{N}, \ 2 \le n \le \frac{p}{a} - 1\}.
$$

Each element of S takes the form $a(1 + n)$, where:

- *a* is a prime divisor of *p* with $a \leq \sqrt{p}$,
- *n* is a natural number such that $2 \le n \le \frac{p}{a} 1$.

Case 1: p is Composite

Assume p is composite. Then p has a proper divisor a such that $1 < a \leq \sqrt{p}$. Let $b = \frac{p}{a}$ $\frac{p}{a}$, so *b* is also an integer, and *b* > *a*. Observe that:

$$
\frac{p}{a} - 1 = b - 1 \quad \implies \quad 2 \le n = b - 1 \le \frac{p}{a} - 1.
$$

Thus, *n* is a valid natural number in the range $2 \leq n \leq \frac{p}{a} - 1$. For this *n*, the element $a(1 + n)$ satisfies:

$$
a(1 + n) = a\left(1 + \frac{p}{a} - 1\right) = p.
$$

Hence, $p \in S$.

Case 2: p is Prime

Assume p is prime. Then p has no divisors other than 1 and p . For any prime Assume p is prime. Then p has no divisors other than 1 and p. For any p.
 $a \leq \sqrt{p}$, the term $\frac{p}{a}$ is not an integer, as a does not divide p. Therefore:

$$
\frac{p}{a} - 1 \notin \mathbb{N} \quad \Longrightarrow \quad n \notin \mathbb{N}.
$$

This means no valid *n* exists in the range $2 \leq n \leq \frac{p}{a} - 1$, so *p* cannot be expressed as $a(1+n)$ for any prime $a \leq \sqrt{p}$. Thus, $p \notin S$.

Conclusion

From the two cases, we conclude that:

$$
p
$$
 is prime \iff $p \notin S$.

Examples

Example 1: $p = 15$

Let $p = 15$. The primes $a \leq$ √ 15 are {2, 3}.

• For $a = 2$, $\frac{p}{a} - 1 = 6.5$. The range $2 \le n \le 6$ yields: $S = \{2(1+2), 2(1+3), 2(1+4), 2(1+5), 2(1+6)\} = \{6, 8, 10, 12, 14\}.$

Since $15 \notin S$, we proceed to the next a.

• For $a = 3$, $\frac{p}{a} - 1 = 4$. The range $2 \le n \le 4$ yields:

$$
S = \{3(1+2), 3(1+3), 3(1+4)\} = \{9, 12, 15\}.
$$

Since $15 \in S$, we conclude that $p = 15$ is composite.

Example 2: $p = 13$

Let $p = 13$. The primes $a \leq$ √ 13 are {2, 3}.

• For $a = 2$, $\frac{p}{a} - 1 = 5.5$. The range $2 \le n \le 5$ yields: $S = \{2(1+2), 2(1+3), 2(1+4), 2(1+5)\} = \{6, 8, 10, 12\}.$

Since $13 \notin S$, we proceed to the next a.

• For $a = 3$, $\frac{p}{a} - 1 = 3.33$. The range $2 \le n \le 3$ yields: $S = {3(1 + 2) \cdot 3(1 + 3)}$

$$
S = \{3(1+2), 3(1+3)\} = \{9, 12\}.
$$

Since $13 \notin S$, we conclude that $p = 13$ is prime.

Example 3: $p = 121$

Let $p = 121$. The primes $a \leq$ √ 121 are {2, 3, 5, 7, 11}.

• For $a = 2$, $\frac{p}{a} - 1 = 59.5$. The range $2 \le n \le 59$ yields: $S = \{2(1 + 2), 2(1 + 3), \ldots, 2(1 + 59)\} = \{6, 8, 10, \ldots, 120\}.$

Since $121 \notin S$, we proceed to the next a.

• For $a = 3$, $\frac{p}{a} - 1 = 39.33$. The range $2 \le n \le 39$ yields:

$$
S = \{3(1+2), 3(1+3), \ldots, 3(1+39)\} = \{9, 12, 15, \ldots, 120\}.
$$

Since 121 $\notin S$, we proceed to the next a.

• For $a = 5$, $\frac{p}{a} - 1 = 23.2$. The range $2 \le n \le 23$ yields:

$$
S = \{5(1+2), 5(1+3), \ldots, 5(1+23)\} = \{15, 20, 25, \ldots, 120\}.
$$

Since $121 \notin S$, we proceed to the next a.

• For $a = 7$, $\frac{p}{a} - 1 = 16.2857$. The range $2 \le n \le 16$ yields:

$$
S = \{7(1+2), 7(1+3), \ldots, 7(1+16)\} = \{21, 28, 35, \ldots, 119\}.
$$

Since 121 \notin $S,$ we proceed to the next $a.$

• For $a = 11$, $\frac{p}{a} - 1 = 10$. The range $2 \le n \le 10$ yields:

$$
S = \{11(1+2), 11(1+3), \ldots, 11(1+10)\} = \{33, 44, 55, 66, 77, 88, 99, 110, 121\}.
$$

Since $121 \in S$, we conclude that $p = 121$ is composite.