Proof of Primality Using the Set S

Mar Detic

Abstract

This paper provides a proof of primality using a set construction S. Specifically, it demonstrates that a positive integer p > 1 is prime if and only if $p \notin S$. The set S is defined in terms of prime divisors of p and is constructed by considering natural numbers within certain bounds. Examples are provided to illustrate the application of this criterion for both prime and composite numbers, including p = 121.

Theorem

A positive integer p > 1 is prime if and only if $p \notin S$, where the set S is defined as:

$$S = \{a(1+n) \mid a \text{ is a prime, } a \leq \sqrt{p}, \ n \in \mathbb{N}, \ 2 \leq n \leq \frac{p}{a} - 1\}.$$

Proof

Definition of the Set S

Let p > 1 be a positive integer. The set S is constructed as follows:

$$S = \{a + an \mid a \text{ is a prime, } a \le \sqrt{p}, \ n \in \mathbb{N}, \ 2 \le n \le \frac{p}{a} - 1\}.$$

Each element of S takes the form a(1+n), where:

- *a* is a prime divisor of *p* with $a \leq \sqrt{p}$,
- *n* is a natural number such that $2 \le n \le \frac{p}{a} 1$.

Case 1: p is Composite

Assume p is composite. Then p has a proper divisor a such that $1 < a \le \sqrt{p}$. Let $b = \frac{p}{a}$, so b is also an integer, and b > a. Observe that:

$$\frac{p}{a} - 1 = b - 1 \qquad \Longrightarrow \qquad 2 \le n = b - 1 \le \frac{p}{a} - 1.$$

Thus, n is a valid natural number in the range $2 \le n \le \frac{p}{a} - 1$. For this n, the element a(1+n) satisfies:

$$a(1+n) = a\left(1 + \frac{p}{a} - 1\right) = p$$

Hence, $p \in S$.

Case 2: p is Prime

Assume p is prime. Then p has no divisors other than 1 and p. For any prime $a \leq \sqrt{p}$, the term $\frac{p}{a}$ is not an integer, as a does not divide p. Therefore:

$$\frac{p}{a} - 1 \notin \mathbb{N} \implies n \notin \mathbb{N}.$$

This means no valid *n* exists in the range $2 \le n \le \frac{p}{a} - 1$, so *p* cannot be expressed as a(1+n) for any prime $a \le \sqrt{p}$. Thus, $p \notin S$.

Conclusion

From the two cases, we conclude that:

$$p \text{ is prime } \iff p \notin S.$$

Examples

Example 1: p = 15

Let p = 15. The primes $a \le \sqrt{15}$ are $\{2, 3\}$.

• For a = 2, $\frac{p}{a} - 1 = 6.5$. The range $2 \le n \le 6$ yields: $S = \{2(1+2), 2(1+3), 2(1+4), 2(1+5), 2(1+6)\} = \{6, 8, 10, 12, 14\}.$

Since $15 \notin S$, we proceed to the next *a*.

• For a = 3, $\frac{p}{a} - 1 = 4$. The range $2 \le n \le 4$ yields:

$$S = \{3(1+2), 3(1+3), 3(1+4)\} = \{9, 12, 15\}.$$

Since $15 \in S$, we conclude that p = 15 is composite.

Example 2: p = 13

Let p = 13. The primes $a \le \sqrt{13}$ are $\{2, 3\}$.

• For a = 2, $\frac{p}{a} - 1 = 5.5$. The range $2 \le n \le 5$ yields: $S = \{2(1+2), 2(1+3), 2(1+4), 2(1+5)\} = \{6, 8, 10, 12\}.$

Since $13 \notin S$, we proceed to the next *a*.

• For a = 3, $\frac{p}{a} - 1 = 3.33$. The range $2 \le n \le 3$ yields: $S = \{3(1+2), 3(1+3)\} = \{9, 12\}.$

Since $13 \notin S$, we conclude that p = 13 is prime.

Example 3: p = 121

Let p = 121. The primes $a \le \sqrt{121}$ are $\{2, 3, 5, 7, 11\}$.

• For a = 2, $\frac{p}{a} - 1 = 59.5$. The range $2 \le n \le 59$ yields: $S = \{2(1+2), 2(1+3), \dots, 2(1+59)\} = \{6, 8, 10, \dots, 120\}.$

Since $121 \notin S$, we proceed to the next *a*.

• For a = 3, $\frac{p}{a} - 1 = 39.33$. The range $2 \le n \le 39$ yields: $S = \{2(1 + 2), 2(1 + 2), \dots, 2(1 + 20)\} = \{0, 12, 15\}$

$$S = \{3(1+2), 3(1+3), \dots, 3(1+39)\} = \{9, 12, 15, \dots, 120\}.$$

Since $121 \notin S$, we proceed to the next *a*.

• For a = 5, $\frac{p}{a} - 1 = 23.2$. The range $2 \le n \le 23$ yields:

 $S = \{5(1+2), 5(1+3), \dots, 5(1+23)\} = \{15, 20, 25, \dots, 120\}.$

Since $121 \notin S$, we proceed to the next *a*.

• For a = 7, $\frac{p}{a} - 1 = 16.2857$. The range $2 \le n \le 16$ yields:

$$S = \{7(1+2), 7(1+3), \dots, 7(1+16)\} = \{21, 28, 35, \dots, 119\}.$$

Since $121 \notin S$, we proceed to the next a.

• For a = 11, $\frac{p}{a} - 1 = 10$. The range $2 \le n \le 10$ yields:

$$S = \{11(1+2), 11(1+3), \dots, 11(1+10)\} = \{33, 44, 55, 66, 77, 88, 99, 110, 121\}.$$

Since $121 \in S$, we conclude that p = 121 is composite.