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Abstract

Quantum Mechanics and Computation has a major problem called
the measurement problem [7] [19]. This has given physicists a very hard
time over the years when I first looked into the problem my approach was
simple find a new number system that can go with the uncertainty of a
Quantum particle the paper deals with the mathematics of uncertainty
which has solved 2 millenium prize problems [4], [5] and quantum mea-
surement problem very efficiently. We divide chaos into two parts low
chaos and high chaos then we find the desired value [19] inside the inter-
section of both. This helps us find something in a N3 >>> oo this takes
the problems around us to the next level if we are able to control a chaos
then we can achieve pretty much anything. This paper is inspired by [22]
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1 Introduction

Mathematics of uncertainty is a new math [22] created specifically for Quantum
world and the world we want to understand which is weird and very much
chaotic. I have tested this mathematics on 2 Millennium prize problems namely.
1. Riemann Hypothesis [4] and gave different approach to solve 2. Navier Stokes
Equation [5]. And of course Quantum Mechanics and Quantum Computing
problems [19]. This is an unique approach to tackle the uncertainty of a particle
or a Qubit.

This new math has new rules new numbers, new vector fields and a new way
to solve and understand chaos/. As we know there aren’t many ways to tackle
chaos and uncertainty and its considered as impossible to get hold of something
which is uncertain in nature but this new mathematics might help us uncover
many things we didn’t understood. I got into Quantum Mechanics couple of
years back and I noticed we aren’t actually really understanding what particle
is telling us this whole time. It is uncertain and we need a newer method after
I turned my attention towards Quantum Computing and there I noticed the
same thing we are just calculating in terms of Probability when we can actually
study uncertainty I spent a good deal of time in my thought experiments and I
think I have finally figured out a way to not calculate qubits/particles in terms
of probability but treating them as they are uncertain.

I know even I couldn’t believe it first but when I actually put my mathematics
to test I couldn’t believe it actually worked and now I thought I should publish
my findings because I believed we were using a wrong approach to get the
Quantum Computing to work and I think I have found the right way.

1.1 Abbreviations and Acronyms

QC: Quantum Computers. Cplane: Chaotic Plane. Un: Uncertain Mathematics
[22] k: k from devanagari letters and across paper devanagari numbers mean
low chaos. seen: seen from arabic letters and across paper arabic numbers mean
high chaos. k;: k and suffix L which is low chaos. seeny: seen and suffix h which
is high chaos.



2 Literature Survey

In Quantum Mechanics there is a problem called the quantum non-locality or
the measurement problem [7] and you must be knowing how a quantum particle
works if we observe a particle it collapses into a different state [7] the researchers
around the globe are trying to get the solution for this insanely probabilistic
problem but in this paper we have gone through a list of papers and have found
out how the recent researchers try to tackle this very problem. Almost all of
the paper’s try the probability theory to get the probabilistic solution even after
all these years of Quantum Mechanics it seems probability is the only solution
but this will change I have come up with a new number system a approach
that is completely new totally new even the numbers are different and this
helped me solve problems that seems impossible to the world until now for eg.
Riemann Hypothesis [4], Navier Stokes Equations [5]. This number system and
approach allowed me to understand how chaos works how the unseen which is
the basis of what Quantum Technology and particles work so I used this to
create a Quantum Computer of mine with my mathematics which goes hand in
hand with our today’s modern problems. The literature survey done for this is
very quality and easy as it was only a matter to find if any other method has
been introduced in recent papers other than the probability and I found none
so I think my method stands as the unique approach ever since the birth of
Bohr’s Probability [7] approach this paper introduce you with Mathematics of
Uncertainty [22].

3 Uncertainty And Chaos

3.1 About Uncertain Space

e Uncertain space is an infinite space inside the Hilbert Space as H is infinite
and it is denoted as Un

e Un has a number system different from our regular system called Chaotic
Numbers denoted as n

e n= {k,seen,p,h...} these are chaotic numbers one devanagri and one
arabic to denote chaotic numbers this is a set of numbers each. Chaotic
numbers have 2 sides low chaos and high chaos devanagri and arabic re-
spectively.

e Each k;(lowchaos) and seeny, (highchaos) has its own set [k1, ko, k3, kg, . . .|
and [seeny, seeng, seens, seeny, . . .|

o k1 (first low chaos) = {0.00256, —0.035, 0.0089, —0.000659.—0.0004698, . . . }
... ka(second low chaos) ... k;(lowchaos)

e seeny(firsthighchaos) = {2.718,205698, —26, 0.00089, 25+8i, —6—4i, 58, ... }
. seeng(secondhighchaos) ... seeny(highchaos)



e A chaotic plane has 2 sides k; and seeny, left and right respectively.
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Fig (a). low and high chaos

e Rules for Chaotic Plane:

1. There are two sides of a chaotic plane low chaos and high chaos k;
and seeny, respectively.

2. Points on Cplane gets plotted with their respective chaos for eg. low
chaotic system will be plotted on k; and high chaos will be plotted
on seeny,. refer

3. All the measurement point will start from initial point 0. these points
are movable inside both high and low chaotic sides of the plane. for
which we have Mov function.

4. Any set operations can be performed in the Cplane as we know each
k; and seeny has numbers inside of them labelled as k1, ko k3, ...
and seeny, seensy, seens, ...

5. A line, A circle, A triangle are different in this plane we will take a
look at them on Theorem 1.1.

Postulates of Uncertain Mathematics

1. There are two types of chaos low and high chaos k; and seen;, respectively.
In which we plot our points and use it as our coordinate system. On
calculating in Cplane initial point starts with 0.

2. seeny, has a very high chaos and seen; (firsthighchaos) = {2.718, 205698, —26, 0.00089, 25+
8i, —6 — 4i,5852133997, ... }, seens, seens, ... € seen, = {N3} (George
Cantor discovered R0 which is bigger than infinity I have discovered {N3}
which is even bigger than R0 ) and the chaos increases astoundingly by:
seeny < seeng < seeng < ... < seeny and the same goes for low chaotic
numbers by: k; has a low chaos and ki, ks, k3, ... € k; and the chaos
increases astoundingly by: k1 < ko < ks < ... <k

3. End points inside the chaotic plane (Cplane) stays fixed but the midpoints
don’t.

4. Low chaotic points converge to oo and high chaotic points to {N3}



5. By default Cplane is a Zero set {0} and any set operations can be per-
formed on it.

6. You can create a collection of Cplanes k; and seeny,, p; and sody, , t; and
kalf, as per need. eg: k* and seen?; which will yield 3.1 four times
simultaneously.

5 Axioms of Uncertain Mathematics

5.1 Chaos Increases in the ascending order

Chaos we defined call low and high chaos respectively have their own increasing
numbers every k in low chaos and every seen in high chaos have their own
subscript [ and h respectively which increases as the chaos increase.

eg: Low Chaos increasing in ascending order = k1 < ko < k3 < kg--+ < kg
High Chaos increasing in ascending order = seen; < seens < seeng < seeny <
- < seenp,

5.2 Intersection of Earth has k.een and seeny

As we will know more about intersection of earth and it’s importance as we
go to our theorems and problems just to give you an idea intersection of earth
meaning, imagine the whole universe we know in terms of chaos and uncertainty
universe is much much bigger than if we compare it to only earth so what I am
saying is we have a Cplane that is our universe which has low and high chaos and
we have intersection of the both low and high chaos which we call intersection
of Earth region. Now what this Axiom states is that to find the exact value
inside our region of intersection of earth since it’s the intersection between both
low and high chaos we have mixed state of the two kscepn and seeny. kgeen has
low-high chaos meaning the value of ks, is actually computeable as it’s in both
low-+high chaos which means it’s more inclined towards the low chaos rather
than our bizarre high chaos. Now if we take a look at seenj which is more high
chaos than that of low chaos and as ksee,, was a mix of low-high chaos our seeny
is high-low chaos and that value is inclined towards high chaos than that of low
chaos. So you might have a question what it might mean to our mathematics
how does it relate? well kgeen, is a state in which the outcome is chaotic but in
low chaos which means kgeern, = kp, this tells us that the value we got is closer
to high chaos and will get into high chaos i.e outside intersection region. Same
goes with seenj, = seeny, this expression tells us that we are close to low chaos
and will get into low chaos i.e outside intersection region.

5.3 Chaotic Members are Zero/All Equal only if Un is
Zero/All Equal

This property of chaotic numbers is pretty obvious so we stating it as an axiom
since all the members like seeny,...,seen; and kq,...,k; of the chaotic set



Ux = 0 or Ux has same element throughout, then members of Un are equal to

each other.
U Seenh—i—UKl =0 = seenp, = k; = seen; = seeng = --- = seenp, k1 = ko =kz--- =k, < Va € Ul
h=1 =1
N N (1)
ﬂSeenh+ﬂKl:O:>seenh:kl<:>Va€TUl><:0 (2)
h=1 =1

For more reference [22]

6 Theorem 1

6.1 Entries in Low chaos are not far apart but entries in
High chaos are very much far apart.

6.1.1 Proof:

Theorem states that p, chaotic numbers k; and seen;, low and high chaos have
entries in each set depending on the type of chaos. we know k;seenp, € Un by
definition of chaotic numbers we can say that each k; in low chaos seen; has
ascending increasing chaos by Axiom (1).

eg: k1 < kg <ks<ky...K

seen; < seeng < seeng < seeny < --- < seeny, (By postulate (2)) each is a
set and any set operations can be performed (by postulate (5)) So, we will define
entries and prove this theorem. k; = {0.00025,0.00002894, —0.00000975, 0.265, —0.125479, —0.1254, ...}
now if you compare 1st and 2nd entries in k; we can see that those are not that
far apart from each other and we can say the same for all the elements inside kq
because it’s chaotic number is 1 and not 2 because on ks will have a different
chaotic entries and the speed of entries will differ.

Let’s see for high chaos,

seeny = {0.00265, —1.5698763,0.80, —0.09654, 1.2361, . . .}

Now if we compare high chaotic seen; 1st and 2nd or any other element we
can see that the elements are very far apart from each other. And you might
want to know how a maximum high and low chaos would look like? let me
show you Lev Chaos: k; = {49.365, —56.23, 8.561, —150.6, 250, —784, 5i, . ..} Hgh
Chaos: seeny, = {0.6,56981.598, —56i, —981,8, —0.23, ...}

Now as we can see Theorem 1 is proved and entries in low chaos are low and
entries in high chaos are very high.

Hence Proved.



7 Theorem 2

7.1 Dvectors runs and fills up the space (Cplane).
7.1.1 Proof:

We will start by understanding what is meant by a ”Dvector” well our classical
mathematics has vectors for example or these vectors only can say you a
direction and magnitude and it’s static meaning if I change the space in which
pointed horizontally into vertically well now the vector is useless in direction.
Take an example of a car moving horizontally and and represent it’s direction
and magnitude a long as the car is static/constant the vectors are correct but
now I will make the car chaotic meaning now the car runs in a chaotic pattern
now both the vectors are now useless. But I have a solution for this I am
introducing Dvectors vectors with 2 heads and no tails. These vectors are
represented by
Td, Yd, Zd

which has endpoints x4 has z, 2’ and same for y4, z4 which are fixed by postulate
(3) and in between endpoints we have inifintly many dvectors which are low and
high chaos depending upon movement of the chaos we are calculating. As the
theorem says the Dvectors runs by runs I mean scaled, squished, curved etc all
types of chaotic patterns are performed by the midpoints of our dvectors.
Now, Let’s imagine a 3D space and define our dvectors x4, yq, 24 each has
endpoints x4 = F(z), E(2’) and we have midpoints between them let’s call them
my, Mg, M3, ... My SO,
E(z')
Td (3)

tells us that from endpoints E(z) to F(z') which will be summed all the mid-
points between our endpoints and 3 tries to fill up our 3D space but it can’t
this is the reason we need all 3 dvectors to fill up our space. Now we need,

E(y")

Z Yd (4)

E(y)

which will help our 7?7 to fill our 3D space and the same with our last third

dvector,
E(z

)
Z Zd (5)

BE(z)

Our theorem stated the statement that Dvectors fills up the space and looking
at equations 3 4 5 we can see that x4, Y4, z4 fills up the whole 3D space with the
help of chaotic midpoints and endpoints so our theorem here is proved. Hence
Proved.



8 Theorem 3

8.1 A triangle, line, circle are stable in the k; and not in
sin, and are not static (preserve shape).

8.1.1 Proof:

We know by postulate 4 that end points in the chaotic plane are fixed.

Let x, y, z be the points in both the space k; and siny,

In k; space, E(x) E(y) k; = EyEx (k1, ko, ks, ...)

with increase in low chaos the points between F(z) (Endpoint of z and E(y)
(Endpoint of y) changes low chaotically).

Since by low chaos definition we know that low chaos doesn’t move fast
and is slower very slower so the F(y) and E(x) being fixed the midpoints of k;
changes low chaotically which in return preserves shape and if we were to do
this in sin we know the first chaos of the siny it changes rapidly so the shapes
can’t be preserved.

Hence Proved for a Line and it’s stable in k;

A circle in k; with E(z) and E(y):

We join E(x,y) to create a circle from the line which is stable in the above
proof.

E(z,y) ki = E(z,y) (k1, k2, ks, ...) Since we are calculating a circle in low
chaos which is not the same as our coordinate geometry circle with = 72 will
we get the same answer? I think you know we can’t get it because we are no
longer in classical math where we have constant numbers like 1,2,3,4,... we
are in chaotic plane and things are different here so how can we define a circle
in Cplane?

we know 7 is Circumference / Diameter and we know for our circle which
is made of bunch of k; points and we know by postutlate 4 that end points in
Cplane are fixed and we already have our endpoints of our circle which were
E(x) and E(y) and for circle we made it E(xz,y) which is our circumference.

We can now sum up all the midpoints which are not fixed from E(x) to E(y)
we get,

Zgg; k; = k3 since k3 is the third low chaotic number and by looking at
set of first chaotic number above we can say we will find 3.14 around k3.

Hence proved circle in k; plane.

Proving triangle with Pythogarus Identity in Cplane:

E(z), E(y), E(z) be the endpoints points of a triangle in a Cplane.

As we did it for circle by attaching endpoints by F(z,y, 2) is our triangle in
a Cplane.

A line is defined by E(z) E(y) k; = EyEx (k1, ko, k3, ...)

so we can define pythogarus identity in Cplane:



E(y)? E(2)?  E(2)?

Zkl Zklel (6)

E(z)? E(y)?  E(z)?

Base? + Perpendicular? = Hypotunuse?

for a unit triangle (Classical): 12 + 12 = /2

for a unit triangle (Un Math): 12 4+ 12 = 1.41

Hence Proved triangle with Cplane Pythogarus Identity

9 Theorem 4

9.1 seeny, high chaos vector space and shapes is not pre-
served in seen; because of high chaos.

9.1.1 Proof:

By postulate 3 we know seen; has a very high chaos although endpoints are
fixed in the chaotic plane we know midpoints are insanely chaotic in seeny, (high
chaos) we can never find what patterns or shapes seen, space is giving us so we
introduce Chaotic vector space

As we know from our linear algebra knowledge that you need v which is
a single vector in a vector space which tells you about the magnitude and a
direction. if we need to show opposite directions then you need another vector
say w which will point in opposite direction and now we have 2 different vec-
tors to show the same thing and of course the math we study today is static
and constant linearly we calculate something which has effected quantum world
largely because its dynamic and chaotic in nature. As you know we are in this
theorem to prove chaotic vector space and we can’t use the traditional vector
space with multiplying scalars and vectors

We know that by postulate 3 endpoints in a chaotic plane are fixed.

Let « and 2’ be a Dvector (double vector) in seen;, space.

Let y and v’ be a Dvector in seenj, space.

And z and 2’ be a Dvector in seen;, space.

We know seeny, cardinality is N3 >>> oo

Classical math vectors have scalars that multiply with vectors to scale with
some factors. eg: 2-¥ which will extend the vector ¥ by a factor of 2 and enlarge
it. but we don’t need any scalars for our chaotic vector space since they are in
chaotic nature and they scale and descale on thier own so scalars are just out
of question in chaotic vector space.

Now as we are in high chaotic plane we know that x and 2’ (Dvectors) have
E(z) and E(2’) as endpoints and there are infinitly many midpoints between
them which have chaos seen;, = {siny, sing, sins, ...} each sin; has chaos bigger
that the next and all of them are midpoints inside or all Dvectors.

For explaining this chaotic vector space I would like to take a bizzare example
of a fluid any fluid water, honey, oil, with any viscosity and pressure we just
want to model our Dvectors so they can work properly.



Let’s define our endpoints for our Dvectors E(z), E(z'), E(y), E(y'), E(z),
E(z') be the end points of our Dvectors z, 2’ y,y’, z, 2" illustrated below is our
seeny, space.

Dvectory &y’

Dvector x & x'

Dvectorz & 7' 3

Fig (b) it illustrates all 3 Dvector with their distinct color with no tail and both
side heads of vectors and X’s on the figure shows all the midpoints between their
endpoints.
Now let’s throw our three Dvectors inside seeny, space to model our fluid.
We know endpoints are fixed and midpoints changes with high chaos in The-
orem 1 we proved circle for low chaos and we will use that analogy of endpoints
and midpoints and summing them all up but summing doesn’t mean we are

adding all the seeny values but we are actually modeling by: Zggz;) seenp, +

Zggj)) seeny, + ZEE;) seeny = Ascenh

where A is the fluid model we are modeling. This shows that z,z’, 9,/ 2, 2’
all the Dvectors and their respective endpoints and midpoints works together
to fill up the whole space A. And all the midpoints also are double vectors with
ablity to stretch from both sides and fill up all the space A to model our fluid.
Each dvector in model has equivalent midpoints and endpoints which goes to
N3 oo.

midpoints changes with seeny, chaos and each of them will be represented as

Zgg;)) seeny, which says that summation of midpoints of dvector z, z’,y, v/, z, 2’

will yield a value which fills gaps left by Zggz;) seeny, and Zgi;) seenp, NOwW
we know how we can model a fluid with dvectors and chaotic vector space to
summarize we use three dvectors z,y,z and their respective endpoints F(x),
E(z'), E(y), E(Y), E(z), E(z') we sum up all the midpoints with respect to
endpoints and we get our equation which is:

E(z") E(y") E(z")
Z seeny, + Z seeny, + Z seenp = Agcenh (7)
E(x) E(y) E(z)

short note: This is not our normal summation we are not actually adding
up value we are showing that between x,z’ all the chaotic points i.e seeni,

10



seeng, seeng, seeny ... are moving at high chaos and for this reason seen; is

a dvector and value of seen; will define the trajectory of z,xz’ since they are
fixed.

10 Theorem 5

10.1 A Quantum Particle in free space can be easily cal-
culated in chaotic plane.

10.1.1 Proof:

Let A be a free quantum particle. Each movement, momentum, superposition
everything is plotted on our chaotic plane.

And since we know from 3.1 we have two sides to our chaotic plane k; and
seeny, low and high chaos respectively. All the movement and everything about
the particle will be plotted on their respective sides a low chaotic movement will
be plotted on k; and high chaos will be plotted on seeny. below is the 10.1.1
illustrated

2

PEN R

Fig (c) showing the intersection of earth area and points plotted low for low
chaotic side and high for high chaotic points.

Since by postulate 5 we know we can perform any operation we want on k;
and seen; so we can perform intersection operation and we can call it inter-
section of earth because just like in the entire universe their is high chaos and
on earth their are high and low both chaos at the same time so we can call it
that as in 10.1.1 we can see points zy which are any points on the intersection
between k; and seenj, in the middle as we only check the intersection earth area
where particle was low in chaos and high that region is where our answer lies of
what is the position of our free particle?

So our equation is,

ki N seeny, = kseen SN . (8)

by postulate 6 we know Cplane is a Zero set {0}.

11



Lets pose a question about about our quantum mechanical particle A find
it’s exact position which is the position which is most visited in superposition
and have most visits in entire intersection earth area. Lets name our region Z
and now assume z,y any point on Z region which will help us get our desired
answer we know z,y € Z Now we will use z,y to our advantage and with the
help of these points € Z we can find the state (1| }) which in classical math is
called superposition state. and we need to find our particle A in the same state
and position at which it visited the most in our chaotic plane. which means we
have in our chaotic plane all the collapsed state a quantum particle collapses to
either of these states (1] ) and we have all the collapsed states with us which
are points on chaotic plane instead of finding positions of particle visited the
most we can find the most collapsed state between |0),]1) which state occurs
the most and we need a generalize state of our free particle in space. and we
know wave function collapses and its probability is given by |al? + [b|> = 1
where a,b € C. Now we know that intersection of Earth region has low chaos
plus high chaos points which will have state (1 |{) and as we know we have
collapsed states inside Cplane so we need to find collapsed generalized state and
position of A we will name that 3.

Movg y s Z = A (9)

Equation 4 states that take points =,y € Z region endpoints which are fixed
by postulate 4 making intersection of Earth infinitely smaller till it goes to
i which is the desired point we need from intersection of Earth region and Mov
function moves the points x,y — .

To Summarize the theorem we use our chaotic plane to find the exact
state/position of a particle by focusing on the intersection of earth section
where you have low and high chaos and you can guarantee that the desired
state/position of the particle is inside our Z region and we name our desired
state/position ¢ which will now have a particular point in Z region where i is
our exact output and we now take endpoints of Z region and and name them x, y
and use our Mov function to move x,y — ¢ to ¢ which is the point in question
our 8 has the information about intersection of chaotic plane and 9 finds the
desired output.

Hence Proved

11 Chaotic Normed Space:

As mentioned [13] in the rules of functional analysis a space can only be con-
sidered as a normed space only if these conditions satisfy So X is consired to be
normed space or vector space only if,

(@z+y<z+yvr,ye X (10)
(b)axr = arifr € Xandaisascalar. (11)

12



(c)x > 0ifr #0 (12)

For a chaotic normed space. Let’s call it ¢X be a non abelian vector space
with dvectors (double vectors) x4, y4,24 € ¢X C Ux eqns 10 11 12 are the
requirements for this to be a normed space lets start with (a) or eqn 10.

’
x

Td = Z (seeni—seeny, ) (k1—k)Ld (13)

x

The dvectors 'where x4 is a double vector with 2 heads and zero tails z and z’
are the position of the 2 heads whereas seen; — seeny, says that between x and
z’ there are chaotic numbers which are midpoints of x4 and kq — k; is the low
chaotic midpoints with high chaos >’ is used from initial point of x4 i.e  till
the #’ the final or latest point of z4. This sums up till the space is filled 2 Now
for ya,

’

Y

Ya = Z (seeni—seeny)(k1—k;)Yd (14)
Y

So eqn 10 is the property of normed space on X and we will use eqn 13 and eqn
14 to define norm space on cX,

Tq + yq < xq + yaVrgandyg € cX (15)

Now for property (b) or eqn 11 since we know that we don’t need a scalar so
« is out of the chaotic norm property we only need our x4 that will define our
chaotic scaling, squishing, multiplying and everything a vector should do but
with a very very minimal calculation errors or parameters. So (b) or eqn 11 is
given by,

Tq = Tq/YdsSincexq, yq € cX (16)

And now for the final property (c) eqn 12 we get,
xq > 0ifx #0. (17)

Hence chaotic normed space (¢X) is a Linear Space or Vector Space.

11.1 Navier Usama Stokes Equation using Chaotic Normed
Space:

Navier Stokes Equations demand a solution to a equation that both navier and
stokes given and as for now only 2D problem of this has been solved I am not

Lor Double vectors are the vectors which squishes squeezes or scales on it’s on which means
we don’t need any scalars or any scalar multiplication to specify where dvectors should go
they go with the flow of nature.

2filled: this word is used to describe a movement of double vectors the simple vectors only
points in one direction whereas double vectors can point in co number of direction so if we
have a space ) the space Y is filled with 45 meaning the space ) has x4 filling up the space
needed for calculation.

13



gonna give the exact answer to this Millennium problem as I solved for [4] but
I will give you a different approach to see at this problem. I thought maybe
we are looking at the problem in a wrong way so I just gave my theorem of 3D
Cplane and I thought maybe I have solved [5] but again I won’t claim I solved
it I just gave an idea. Let A be a space of fluid, gas or any smooth viscous
dense quantity.

By chaotic norm space we know, eqn 15 and this equation alone x4 + yq <
x4 + yqgVrqgandyy € c¢X proves that individual dvector norms fills more space
and much better than combined norm of dvectors so we will define A as,

A=24+Ya+ za+ aa+ba+ - +ng (18)

A has infinitly many dvectors and all of them are given by,

x Yy z
A= E (seenlﬁseenh)(klﬁkl)xd""_ E (seenlﬁseenh)(klﬁkl)yd"i_ E (seenlﬂseenh)(klﬁkl)zd'i_
x y z

(19)

a’ b’ n

Z (seeny —>seenh)(k1—>kl)ad+z (seeny —>seen;t)(k1—>kl)bd+' . +Z (seeny—seenp,) (k1 —k)d
b

a

/

n

A has like all the dvectors each dvector has a capacity to fill and run till
infinity and when all of these dvectors combine and keep moving in space and
time this will model the true nature in R? 3 Dimensions the problem of Navier
Stokes Equation was the equation was going through a hard time if tried for R?
this is the reason I propose this method and a way to look at physics mathemat-
ics with the lens of chaotic numbers. This section introduced with chaotic norm
which help us look at Navier Stokes Equation with a new perspective. Hence
Proved Navier Usama Stokes Equation new approach. B

12 Theorem 6

12.1 Using More than one 3 dimensional chaotic plane to
calculate bigger uncertainty:

12.1.1 Proof:

Consider a big uncertainty, weather, fractrals, fluid, smoke, etc any uncertainty
which is big in size and seems to be impossible task to solve.

Let’s call that space V Now as we know we have a chaotic plane with two
sides low and high chaos k; and seeny, respectively and its a single plane with
chaotic sides each plane has dvectors uncertain points plotted as per need and
that single plane can calculate a free particle uncertainty as we did in theorem
3.

Now we know by postulate 7 that we can take more than one Cplane and
arrange them any way we like so I would like to take infinitely many Cplanes

14



and arrange them one below the other and beside each other so low and high
chaos don’t mix up in the process just like shown in the ?7.
for a single Cplane in terms of double vector chaotic plane is.

Aseenh + Bk:l =0 (20)

we got 7 from theorem 4 and the 9. As we got Ascenn We can get for low chaos
as well we will call it By;. 20 states that low and high chaos are together to
form single chaotic plane.

In V we have infinitely many 20 single planes all over the space V every point
in the space is filled with infinitely many and small our 3D Cplanes and simpli-

fied equation 5 remember that each Azcenn = Zgg;) seeny, + ZEEZ;) seeny, +

Zggz;) seeny, o it is simplified to get equation 5. Each plane has z,2’,y,v/, 2, 2’
endpoints and Dvectors x, y, z we know these are the endpoints of a single plane
dvector field which fills up the whole plane to give us Agcepnp which is the value
after calculating all the Y midpoints from the endpoints. Now we are going to
use Integration like never before to calculate big uncertainty now let’s start
by intuitively understanding what we are trying to do.

a3 |y || Aen| BB || eg | uty

hh| BB
g |y | 8 |y

0 9 | |[WY| AN T g iy

N

s |y | Ash| B || o |

Fig (d) The purple sphere is our V space which is opened up for better view we
can see Cplanes arranged infinitely many and small to cover our V space.

In 12.1.1 we can see infinitely many Cplanes arranged such a way we will
now add up all the infinitly many Cplanes we can write as,

V)'[-U (Alseenh+B1kl)1+(AZseenh+B2kl)2+(A3seenh+B3kl)3+~ .. (Anseenh+
Bnkl n

o0
V=~ Z(Anseenh + Bnkl)n (21)
n=1
21 describes all the planes add up with > to get (Anseenn + Brki)n
V space has infinitely many of these single Cplanes and as I mentioned
above we will be using integration so we need upper and lower bounds for our
integration to work. Now we get,

= (Aiscenh + Biki)1 — Lower Bound. (22)
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h = (Anseenn + Bnki)n — Upper Bound. (23)

Now that we have lower and upper bounds from which plane to plane we are
going to calculate;

h
V= /l Vdv (24)

This integral will calculate all the Cplanes in each frame and get us volume of
the whole space V.

To let you know what we just defined let me elaborate more to you on a
classical math vector field we know that you have one vector say ¢ this vector
is single vector with only one information, direction and magnitude now we are
doing this in Cplane and we have Dvectors (double vectors) and each plane i.e
(Aiseenn + Biki)1 has 3 endpoints z, 2',y, v, z, 2/ and their respective dvectors
x,vy,z which will yield chaos in just that space as we have n number of these
planes and dvectors the amount of chaos is actually huge and equation 8 looks
simple but you know the amount of chaos and uncertain information it carries.
and we know by postulate 2 this is bigger than infinity <<< N3 so the chaos
and uncertainty it carries has numbers we don’t even know yet.

Hence Proved

13 Quantum Computing with Uncertain Math-
ematics.

13.1 U-QC Gates and Un Equations for QC.
13.1.1 Traditional Bell States:

This section is with the help of [19], Our hadamard has the equation 1//2 |0) +
|1) where 1/4/2 is the amplitude of our quantum qubit. and |0) + |1) is knowm
as superposition of the states. This is represented on the bloch sphere z axis
in bloch sphere represents |0) and the south pole is our |1) which makes our
hadamard gate equation also known as bell states in between our bloch sphere.
Now I would like to talk to you about ”Erwin Schrodinger” [7] and his thought
experiment, a hypothetical cat may be considered simultaneously both alive and
dead as a result of its fate being linked to a random subatomic event that may
or may not occur. This really explains our superposition state of bell states.
In quantum computing [19] we use the concepts of quantum mechanics and
computer science to compute and this method was first proposed by Richard
Feynman and now that we are where IBM and Google and China are making
quantum computers where we are using more than hundred qubits but we are
not even close to achieving a commercial quantum computer so I originally
made this mathematics to solve our quantum computing problems. The errors
while working on QC are very high 90% of the time you are encountered with
errors per cycle of qubit calculation imagine the amount of error now. So I have
developed some of these techniques that might reduce errors by 90% to 95% in
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theory it’s working absolutely fine but as the independent researcher I lack the
experimental side. Now let’s start by defining our Un mathematics for QC my
proposed method.

13.1.2 Quantum Computing concepts for classical math.

Let’s look at our theorem 5 8 where we can see k; N seeny, = kgseenSeeny. which
says that inside intersection of earth region we have low-high and high-low chaos
refer Axiom (2). Now that I have layed down what we have and what we are
up against we will formulate some algebra for Un Math for QC before this I
would like to compare some of the traditional QC methods with classical math
and then we will see for my Math.

Traditional QC concepts: The things you need to know [19] are pretty
basic so there are Qubits one or more, Qubits are in superposition state, Qubits
are entangled, Qubits are represented on bloch sphere, Qubits have probabilty
amplitude whose norm squared is always 1 like |a|?,a € C pretty much this
sums it up now when we use these methods it really gets messier and messier as
you need phase factors and inner products of states outer products then if you
have |1) or |0) and you wanna represent it in the hadamard gates and CNOT
gates the things are really messy but they work it out and still we have bunch
problems ahead of us.

13.1.3 Defining Superposition on Cplane.

Let A = ¢1 (q1 = single qubit). As g1 is a qubit it has superposition and if it
has superposition then it will be uncertain while using it as a computable bit.
so we denote our quantum qubit in terms of quantum mechanics as |0) +|1) [19]
which has probabilty amplitude attached to each say a and 8 which € C now
as we saw in the theorem 5 we had our 9 which uses Mov function to get our
desired value that theorem will be very useful in our QC with Un Math.

We place ¢ inside our Cplane which will contain all the possibility plot-
ted (this paper shows how marginal probabilities of locality condition but my
method is much better) [18] on our Cplane (Chaotic Plane) till X3 by theorem
3 we know that Cplane has intersection of earth region and x, y points as points
which will close and approach the limit provided by you. so,

ki Nseeny = q1 (25)
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Fig (e): ksecen and seeny are inside the intersection of earth called Z region
and points outside Z region are chaos which is unseen and unwanted. point in
blue is i the point we want for our ¢; qubit equation.

And we know that our ¢; is a single qubit which is in superposition. Now
let’s call our intersection of earth Z region.. If ¢y € Z then 3i € Z which is
equal to ¢; = |1) OR |0) which we will denote by,

(i=iqn =1 (26)

(i=oq1 =0 (27)

As seen in the above figure Z region is the intersection of both low and
high chaos and as I have given the definition of intersection of earth before
explaining why we named that you might have an idea what’s really going on
let me explain.

Now as you know ¢; is in superposition state that is interacting with the
surrounding and it’s position as well as the momentum is not stable at all
and of course it’s state is also not stable. In Quantum Mechanics we have
Heisenberg’s uncertainty principle which says that there is a limit to accuracy on
finding the position of a particle and the momentum. These traits of a Quantum
particle is what stops us from achieving a functional quantum computer. And
we have a lot of complexity surrounding gates of QC and their circuits the
struggle is real. But what I just proposed in 25 and 26 we can get the state
[0),]1),(0], (1|,]0) +|1), (0] + (1| all the possibility of a single qubit without
any hassle.

13.1.4 U-Z Gate for QC

We can find the exact collapsed state of our ¢; by choosing any x,y — ¢ this term
means that moving our endpoints E(x), E(y) approaching to ¢ to our desired
collapsed value. Which gives you Ay, scen, we will call it just A so it will be easier
to perform some algebra.

Movg ysij0), 1y Z = Aqa (28)
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This equation actually tells us that, Mov points z,y to the desired point in Z
i.e ¢ and our i = |o) or |1) or any other state of our qubit. So our qubit can be
in kgeen or seeny refer Axiom (2).

U-Z Gate for single qubit ¢;:

ql..qn U Q1 = 1 .. 200N = 150
Movxy-i=[ol|
QL TEAT Mg = 1,8, Zngn = 1,3

Fig (f) Our input is ¢; and it gives out the output Ag;. Z gate in our traditional
QC math consists of Pauli matrices Z from X, Y, Z both are very different as Z
gate gives you the phase change in traditional QC math. U-Z gate will give you
the precise value of qubit we desire.

Truth Table for U-Z Gate:

heightq, A Alq
Ok MOU_%,y_H;:()Z = 0

i MovgyicnZ =1 1

seen

Looking at our truth table and 13.1.3 you can have a pretty geometric intuition
on what we just defined. Given a single qubit gate in traditional QC and classical
math we have vectors those vectors have braket notation and we perform Pauli
matrices on them namely X,Y, Z then we have a bloch sphere representation
on that qubit we have to keep track of the phase we have to keep track of the
qubit not changing so we build up circuits on them using hadamard, X gate, Y
gate and Z gate but all those worries have disappeared. In theory and on paper
this method certainly works. We will next define Two Qubit states on Cplane
and Un math.

13.1.5 Cplane Two Qubit States and Algebra:

Cplane has all possible states of any number of qubits you need and are plotted
on the our Cplane as we need 2 qubits now to define our 2 qubit state. Let’s
call our 2 qubits ¢1, g2 each qubit is on a different Cplane we defined our single
qubit above as A(¢; which means that our qubit ¢; is inside our Cplane A and
now that we have 2 qubits we can call it’s Cplane’s as A and B.

(1 + (g2 = A(q1 + B(g2
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= A(;=00 + B(;=11

= AB(00 + AB(01 + AB(10 + AB(11

As I said and you can refer 13.1.3 that we have our Cplane our Z region and
which consists of ks, and seen, and variable i represents our desired state
of ¢; the same we are applying to our 2 qubit state in the above algebra done
we can see that there are 2 Cplanes namely A and B which is then attached
to our 2 qubits ¢; for A and ¢ for B which means that all the states of ¢ is
inside Cplane B and we are taking the classical bits formation 00,01, 10,11 to
represent our Un QC algebra so it’s easier for us to understand what really is
going on. Now that we have our equations in place I will build a Truth table
for our 2 qubit state.

Truth Table of 2 Qubit states:
Qg2 Z Aqi, Bge
(0 (0| Movy2,2;—00Z =00  AB(00
(0 (1| Movg2,2_;—01Z =01  AB(01 |You can see in the table above
(1 (0| Movg2,2_;=10Z =10  AB(10
(1 (1| Movg2 2 ;=112 =11 AB(11
that we are using z2,y? that ? indicates we took 2 Cplanes and those Cplanes
had 2 different x,y points to approach to our variable 7. Now our equation is,

(@1 + (g2 = Alq1 + B(g2 (29)

13.1.6 Multi-Qubit States in Un Mathematics:

We defined single qubit equation, truth table, symbol and we moved to 2 qubit
state and we did the same with 2 qubit states now I will define n number of
qubits in other words multiple qubit states in a Equation.

SingleQubit = (q1 = A(q

TwoQubit = (q1(g2 = A(q1B(g2
As we gave names to our Cplanes as A, B for n number of qubits we will define
A B,C,D,...Z,A,,B,,Cy,,...Z,. each of them is a Cplane which has a single
qubit inside each Cplane. So as we have n number of Cplanes we need n number
of ™ y™ points to approach our i. we can define this by as our qubits increase
q1,92,43,... wehave A--- — Z,(0...0 = 1...1) and it’s endpoints =", y™ and
n number of Cplanes. Our equation is.

(g1 +(@+ -+ (@g=A+B+C+ -+ Z,(qn (30)

20



13.2 All Quantum Gates in Un Mathematics representa-
tion.

13.2.1 TUsama’s Z Gate:

Creating a U-Z gate with N number of inputs and N number of outputs where
U stands for both Un Math and my name Usama. The Z gate in traditional QC
has a phase change operation but when you talk about my Z gate it takes qubits
in whatever state we don’t care about that and perform a Mov operation which
will give us any state you desired. Since our Cplane has all states of qubits and
we just take intersection of low and high chaos this actually yields 2 outputs
by Axiom (2) one being O, cern called low-high state which is actually a correct
state (desired) and one being Oseen, called high-low this gives us a state which
is more in high chaos than in low so we can’t rely on that state but it will be
used in entanglement. How you ask? well you already know that ¢; through
¢n n number of qubits goes into U-Z gate and you get what you wanted and
there is the high-low part of the U-Z gate and all Un math gates as it’s the
only method we have to get the exact state of a qubit so that part of our U-Z
gate is always remained but as you might be knowing entanglement is when our
qubit is actually connected to it’s entangled state which means in traditional
QC entangled states can be explained as 1/v/2|00) + |11) which is saying when
the state |00) is given which means the entangled state of this state is |11)
which is understood due to the same reason as entanglement is just this what
we explained the qubits actually talk to each other and that’s what made QC so
powerful than our classical computers and also difficult due to the same reason
but worry not I got a brilliant solution to this. Since what we are making now
is a U-Z Gate with n number of qubits. I will show you can refer 13.2.1. In
the first input we have ¢ — ¢, qubits which are feeded into U-Z gate which
outputs kseen, (low-high) states/chaos which are the states that you told U-Z
gate to find in Cplane now the entanglement happens when you have maximal
pure/mixed state in the second output where the output yeilds seeny, (high-low)
states/chaos. Now both of them are entangled one with high-low and second
with low-high. Remember that second input only outputs the high-low chaos
which is why in 13.2.1 we see the output as 1scen, . The entanglement in general
explains the phenomenon of one qubit entangled with another in a way that
both have similar or opposite properties if one is 1 state other is definitely in
zero state same goes with spin of a particle. Now as the second input only has
the seeny, state/chaos we will take the second output and put it through U-NOT
gate which will be entangled with our output of ke, since NOT operation just
inverts the operation like 1 — 0 and 0 — 1 this method will be different from
our traditional NOT operation we need to entangle our first output of U-Z gate
with the output of U-NOT gate so output of U-NOT gate will be explained
next.

Here is the Symbol, operation, and equation for our U-Z gate and we already
showed this gate in both single and two qubit gates above:
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ql...qgn U-Z AQT = 18, Z0(QN = 1

Mov x,y~i=|o}|

10N W=Ral NG = 1,,3... Zn(gn = 1,,®

Fig (g): : Multi-Qubit U-Z gate Equation/Representation for U-Z
gate:
@G- qgn=A...Z,=Alq1-.-Zn(gn (31)

13.2.2 TUsama’s U-NOT Gate:

The U-Z gate will be used first then comes the U-NOT gate to perform entan-
glement for a simple calculation of extraction of bits from a qubit our U-Z gate
is enough but for entanglement and use the real beauty of quantum computing
in action we need the combination of both gates and we have our first quantum
circuit. Seeing the 13.2.1 and 13.2.2 the output from the second input gived
you seeny, chaos/state which then goes as a input to U-NOT gate and it out-
puts the flipped state as a NOT operation go(15¢¢™* — go(0Fseen which inverts
the output from 0 — 1 or 1 — 0 and also NOTs the operation of chaos from
seeny — kgeen, Which tells us that the ¢; and ¢ are entangled and we can use
this to our advantage to have faster calculations.

input from U-Z Gate 11,
output from U-Z gate a v
)W U-NOT

QU QU1 20E

|
> Q0T \ﬂ

q1(1+q200

Entangled bits: q1(1 + q2(0
Fig (h): U-NOT gate for Entanglement between 2 qubits:

13.3 Grover’s Search Algorithm with My Gates:

Grover’s search algorithm is like the first algorithm to really capture the essence
of Quantum Computers it uses a lot of traditional QC gates and mathematics to
get the best search algorithm which finds the elements from the random set of
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numbers. And you know my mathematics itself is random so we will design our
first oracle which is nothing but Usama’s Z gate. Which gives us the desired
output from the set of all uncertain qubits that is nothing but the definition of
traditional oracle we use in today’s QC.

We will use our kgeer, and seeny as our set of random numbers and by
definition of our pnumbers we can definitely use those as our set and now we
will use our Cplane and Intersection of Earth concept to get our Grover’s search
work in my method.

q kseen (5
[CL—-T Movxy—1=5Z=5

UZ gate + UNOT gate
UNOT flipped high-
UNO low chaos to low-
7S high and the state 5
to Quantum
equivalent state n

Mowxy—1=52=5

q kseen (n

Fig (i): U-Oracle for Grover’s Search Algorithm:

Looking the figure above we can see that we are using U-Z Gate and UNOT
gate are added together to get our oracle which will take both seen and k chaos
and find the desired value quickly.

kN seeny, = kgeen, SEENY (32)

Intersection of Earth of low and high chaos is taken to get 2 values which is
our U-Z gate equation to get the low-high and high-low values from U-Z gate
now this is taken and added to our UNOT gate to entangle the qubits now our
Grover’s Search Algorithm demands the search in the random set we got our
desired value from the first output of U-Z gate which finds any value we desire
but also gives us the high-low chaotic terms which is then fed into the input of
UNOT gate which flips the chaos and the state in which we found which is the
same result as doing a entanglement in today’s QC math and methods.

Now for example we need the number 5 inside our set of random numbers
or nnumbers we will set the value of ¢ = 5 which will help us find the exact
number inside that random/chaos now we use our Mov function:

Movg y =52 =5 (33)

We have already solved the Grover’s Search algorithm without any non-intuitive
method.

13.4 Shor’s Algorithm with My Method:

As you know Shor’s algorithm is the algorithm which really outperforms classical
computers on the classical computer it takes the complexity exponential which
is very large and on QC it will be polynomial time complexity. Now keep in
mind we use what is called QFT (find’s period of a function) to solve shor’s
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algorithm with the combination of Hadamard gates and UROT (rotation) gates
to get QFT and use QPE (Quantum Phase Estimation) to inverse that operation
now we use that and perform calculations on our traditional QC which gives
us various states for say |z) = |x1),|x2),...,|xn) which is then passed to a
hadamard and then to the UROT gate this cycle continues which a really long
process just for the QFT then we perform actual Shor’s algorithm which takes
more time approximately O(n?) roughly.

Remember we don’t even care for measurement in my method we just get
what we want with U-Z gate or U-Oracle (used in grover’s search algorithm)
so my method is much much easier no excess use and abusive notations and
unnecessary use of gates. And please keep in mind I won’t do the classical part
of the algorithm you can check the classical part.

Now how will my method work? There are 2 parts to calculate the shor’s
algorithm one is the classical part done by a classical computer and another with
of course our quantum computer now the part in traditional quantum computing
meaning the method we use now uses superposition and entanglement to get
the period of our algorithm. As you know any odd prime number when divided
gets stuck in a period some might explain it as 1 — 1 which means whenever
you got 1 the next in line 1 is our whole period from one to one. So now that
you know what period is I will go through the traditional method very quickly
now we take any number say N that number will have a period the period for
let’s say 15 is |0),]4),|8),]12). Now these are the only values that are left due
to calculations from the Oracle of traditional QC so these values are called the
equally likely probability of getting every number which in my opinion a lazy
guess, So that’s how we got the period which is the hardest part of our algorithm
this alone takes exponential time classically now let’s see my method:

13.4.1 Now the steps to calculate with My method of shor’s algo-
rithm includes:

e We will use our U-Z gate to get all the values that is a period say |0}, |4) , |8)

e This U-Z gate as you know has 2 output register the second output register
get’s the same values but in high-low chaos which will next sent to the
U-NOT gate to flip the chaos and the values.

e Together they formed the U-Oracle which yeilds values that are needed
in our case the period and the next register yeilds the same values which
means the second register output and the first register outputs are entan-
gled so we have our CONFIRMED answer as we got our period.

This should have cleared how powerful my mathematics and theories are this
concludes the Quantum Computation with Uncertain Mathematics section next
we will see Quantum Register, Quantum Capacitor and a Quantum Processor.
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13.5 Quantum Resistor:

This component was important to add to my quantum computer as I think prac-
tically the computation on my QC will be a little slow because we are searching
and getting the desired state inside a U-Z gate or U-Oracle the practical ap-
proach might be a little slow so I decided to add a necessary component to
my QC a Quantum Resister though sounds familiar to the traditional resistor
component used in electrical circuits though has a different functionality.

Quantum Resistor will be used before Quantum Capacitor which we will look
at in next section that stores healthy qubits inside just like a electrical capacitor
stores current now before this process we need to go through our Quantum
resistor which will filter out damaged quantum particles/qubits by damaged I
mean very much affected by environment which will create numorous problems
when any Un gates applied so wee need clean qubits to work with that are not
damaged.

Quantum Resistor

input from any outputs the healthy
quantum Qubits to Quantum
computing qubit Capaciter

Fig (j): Quantum Resistor:

In the above figure you can observe that we are taking input as any quantum
mechanical particle/qubit and it outputs a healthy qubit which is perfect for
our Un gates to compute information in that qubit. If gn(0,1 any state q is in
gs(x state which means the state was noisy and QR will get rid of that state
to get noiseless calculations.

Gt g =ge(X (34)

where q1 — ¢, are the qubits passed through quantum resistor and it outputs
the g4(x state (¢ is any qubit with noise between the ¢; — ¢,,) which was the
qubit with noise and was eliminated from the n qubits passed through the QR.

13.6 Quantum Capacitor:

This component is placed after the quantum resistor which will store the healthy
qubits and pass it to the Un Quantum Computer/Gates.

ql+92+g3 +...+qn qaX

input from QR with — |outputs the qubits
healthy qubits. one by one and
stores the rest for
next cycle of
computation.
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Fig (k): Quantum Capacitor:

Above figure states clearly that the inputs from the QR are all the healthy
noiseless qubits our Quantum Capacitor stores them and passes one by one to
the Quantum Gates or Computer. Which helps the Quantum Computer be
busy and don’t have to worry about the ”bad states” coming to it.

Qe=q+q@+a@+...+¢ =qa(x (35)

where (« is any qubit outputed) qubits g1 — ¢, are stored inside our QCapacitor
which then will be outputing each ¢, one by one to our Quantum Computer.

14 Results and Experiments:

I am 22 years old living in a small town in India when I stumbled upon a
video on Youtube called ”Quantum Machine Learning” by Siraj Raval and I
saw him explain what qubits and Quantum Computing was. I was immediately
attracted to the idea of faster calculations few months passed and I failed in
Engineering Mathematics in my diploma in Computer Engineering after that
failure I started to watch Professor Leonard Youtube channel and the way he
taught mathematics was when I fully understood how amazing Newton and
Leibniz were to create Calculus a mathematics of change. I started my journey
of learning quantum mechanics and I saw how they use probability to solve
a particle non locality problem then some lectures of Prof. John Preskill and
NPTEL lectures for Quantum Computation how big of a deal it was to solve
a Quantum Measurement problem then in the vaccation after semester I gave
myself a deadline to find a new number system which will define uncertainty
and chaos that’s where this paper was born.

I first looked at this method as hook and point method the approach was to
attach a bunch of hooks to every movement of a quantum mechanical particle
and plot those movement on a plane and then find where particle visited the
most but then I realised how unintutive the idea of hook point is and it’s not
unique it’s yet another statistical technique but then I found out how a chaos
is by looking at a smoke from a debris the smoke was very less and when that
gas was sent into air the chaos was so high we can’t even see the gas particles.
This was the birth of low chaos and high chaos and then I was finding the
proof of Riemann Hypothesis in the midst of my experiments with Quantum
Computation that’s when I realised how N3 infinitly many numbers have been
plotted onto a Cplane and in the collection of such large chaos how can one
find if all the numbers on critical line is zero then that experiment gave birth
to the idea of intersection as in the middle of such large numbers and quantity
I observed how a chaos is whatever is happening no matter how many numbers
are governing this universe only the actions of present matters and I came up
with intersection of low and high chaos which gives low-high and high-low values
inside the intersection the high-low which will enter into the region of low chaos
and low-high into high. This gave a meaning to my work of finding a new
mathematics for quantum mechanics and computation.
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The results I received after such intense experimentation’s was amazing this
method and approach opened a lot of new doors in my mind I found peace with
the chaos and I was able to propose this method and solve Riemann Hypothesis
and gave new meaning to Navier Stokes Equation. Most importantly I was able
to just find any state of a particle with just getting the intersection of the values
of particle as particle is uncertain and chaotic the particle has speed of either
high chaos or low chaos or both which is our intersection region you see when
we take intersection and find let’s say |0) + |1) /v/2 which is our |[4) state inside
bloch sphere we don’t even care about collapsing of this state as we will just get
the exact collapsed state of a particle inside my intersection region. This is just
a proposed method of course with no experimental proof’s but I believe this is
the only way we can give meaning to chaos and uncertainty.

15 Conclusion:

This paper deals with how in quantum mechanics and computation there is a
huge problem of measurement as we try to measure any particle it just collapses
to a state opposite to it or any other this is the major problem in quantum
computing which has stopped the growth of Quantum Technologies I tried to
develop a new method other the probability to understand this quantum phe-
nomenon with my new number system called chaotic numbers pwhich has it’s
own rules and techniques. This new method divides chaos into two parts called
the low and high chaos and then if we need any state of a particle in the present
state we can find by intersecting both and getting any desired value this also
helped me to solve Riemann Hypothesis also Navier Stokes Equation. In rie-
mann hypothesis we just place my Cplane inside the critical strip which then
sees if the region is empty as Cplane is a all the plotted points till R3 if it’s
empty the Riemann Hypothesis is true and for Navier Stokes we just take one
Cplane place it on any Big Uncertainty fluid gas anything and we place Dvectors
(Double Vectors) which has low and high chaos midpoints which increases and
we place infinitely many Cplanes on that space and simply integrate it to get
the movement of that at every point in that space.

Future of my method’s I encourage researcher’s to look into my mathematics
as it is immature and as a result of it’s birth and I being alone working on this
I couldn’t finish all the parameters in my mathematics I did till I was satisfied
to complete this research it has Dvectors Chaotic numbers (n) it’s postulate
Cplane the distribution the operations on these numbers the maturity of this
mathematics will take many many years but it does the work for now. I request
to work more on my approach many of the things I didn’t mention but can be
achieved think about the applications of cryptography in this if we can control
randomness many problems which can be solved. The control of Quantum
Particles once we know it’s next position, The weather predictions and so many
more applications.

We started by showing how today’s number system is so fragile and why
we need a new number system and we saw how it helped us solve problems we
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were just waiting for years someone would solve and I have started this new
number system which has potential to do much more this is just my ideas and
approach. I was only able to apply them with the questions I found on google
like millennium prize problems as they are so famous I live in a very small town
in India where not many people are even literate. I found my knowledge through
youtube and online lectures and I was able to try these problems there might be
a different problem that would become easy with this. This paper has a lot to
take in and many new things to digest but if this work were to ever go public it
will be a new opportunity for researchers to use this tool shape it the way they
like, I would encourage researchers to work on this number system and make it
robust enough as it’s just a proposed method from my small mind what more
could T have done and what the world might do with this new mathematical
tool which is so different in nature. For more information on chaotic numbers
refer [22]
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