Hamiltonian Instability and the Classical-to-Quantum Transition

Ervin Goldfain
Ronin Institute, Montclair, New Jersey 07043, USA
E-mail ervin.goldfain@ronininstitute.org

Abstract

The mechanism of Arnold diffusion (AD) describes the dynamic instability of nearlyintegrable Hamiltonian systems. Here we argue that AD leads to action quantization for classical systems having an infinite number of degrees of freedom. Planck's constant emerges as long-time value of the action differential applied to large ensembles of oscillators in near equilibrium conditions.

Key words: Arnold diffusion, Hamiltonian chaos, Planck constant, action quantization, classical to quantum transition.

The formalism of action-angle variables applies to generic Hamiltonian systems undergoing periodic motion, such as harmonic oscillation or Kepler

$$
1 \text { IPage }
$$

rotation. It consists of replacing the generalized coordinates and momenta using the transformation [1-3]

$$
\begin{equation*}
(q, p) \rightarrow(\theta, I) \tag{1}
\end{equation*}
$$

Action-angle variables are canonically conjugate and introduced through the generating function [3]

$$
\begin{equation*}
S(q, I)=\int_{q} p(q, H) d q \tag{2}
\end{equation*}
$$

such that

$$
\begin{gather*}
I=\frac{1}{2 \pi} \int_{C} p(q, H) d q=I(H) \tag{3a}\\
\theta=\frac{\partial S(q, I)}{\partial I} \tag{3b}
\end{gather*}
$$

Since I is a cyclic variable, the corresponding drift of (2) per each period of I amounts to [1]

$$
\begin{equation*}
\Delta S=2 \pi I \tag{4}
\end{equation*}
$$

Consider a nearly-integrable periodic system with n degrees of freedom defined by the Hamiltonian [4-6]

$$
\begin{equation*}
H=H_{0}(I)+\varepsilon H_{1}(I, \theta, \varepsilon) \tag{5}
\end{equation*}
$$

where $0 \leq \varepsilon \leq \varepsilon_{0}$ is a small perturbation parameter and $H_{0}(I)$ is the unperturbed Hamiltonian, taken to be fully integrable in the limit $\varepsilon=0$. The frequency of the unperturbed motion is determined by

$$
\begin{equation*}
\omega(I)=\frac{\partial H_{0}}{\partial I} \tag{6}
\end{equation*}
$$

For $\varepsilon \leq \varepsilon_{0} \ll 1$, the equations of motion read

$$
\begin{gather*}
\dot{I}=-\frac{\partial H(\theta, I)}{\partial \theta}=0 \tag{7}\\
\dot{\theta}=\frac{\partial H(\theta, I)}{\partial I}=\omega(I) \tag{8}
\end{gather*}
$$

in which $I, \theta \in \mathbf{R}^{n}$. The solution of (7)-(8) lies on invariant n-tori residing in the phase-space of dimension $\mathbf{R}^{2 n}$. For $n \leq 2$, all solutions are stable since 2 -tori confine trajectories on a 3-dimensional energy surface. This is no longer the case for $n \geq 3$ where, according to the Arnold diffusion conjecture, the 3IPage
action of nearly-integrable systems changes by $O(1)$ over a sufficiently long time. In particular, assuming that

$$
\begin{equation*}
\left|H_{0}\right|<c_{1},\left|H_{1}\right|<c_{1} \tag{9}
\end{equation*}
$$

where c_{1} is a positive constant, and taking the unperturbed Hamiltonian to represent a quasi-convex function of the action variable, the following condition holds $[6,8]$

$$
\begin{equation*}
\delta I=|I(t)-I(0)|<C_{1} \varepsilon^{1 / 2 n} \tag{10}
\end{equation*}
$$

over sufficiently long-times satisfying

$$
\begin{equation*}
0 \leq t \leq \exp \left(C_{2}^{-1} / \varepsilon^{1 / 2 n}\right) \tag{11}
\end{equation*}
$$

In (10) and (11), C_{1}, C_{2} are also positive constants. By (4), the corresponding drift in action is given by

$$
\begin{equation*}
\delta(\Delta S)=2 \pi \delta I<O\left(C_{1} \varepsilon^{1 / 2 n}\right) \tag{12}
\end{equation*}
$$

Normalizing (12) to C_{1} confirms that the drift in action is of $O(1)$, which naturally replicates the process of action quantization for $n \gg 1$. It follows

$$
41 \text { Page }
$$

that Planck's constant may be mapped to the long-time value of (12) applied to large ensembles of oscillators in near equilibrium conditions. Stated differently, the transition from classical to quantum behavior is expected to occur when

$$
\begin{equation*}
0 \leq t \leq \exp \left(C_{2}^{-1} / \varepsilon^{1 / 2 n}\right) ; n \gg 1 \tag{13}
\end{equation*}
$$

leading to

$$
\begin{equation*}
\delta(\Delta S)=2 \pi \delta I=O(1) \tag{14}
\end{equation*}
$$

These findings fall in line with the approach taken in [7].

References

1. Landau L. D., Lifschitz E. M., Mechanics, Butterworth-Heinenann, $3^{\text {rd }}$ Edition, 1976.
2. Corben H. C., Stehle P., Classical Mechanics, Dover Publications, 1966.
3. Zaslavsky, G. M., Hamiltonian Chaos and Fractional Dynamics, Oxford, 2006.

$$
5 \mathrm{IPage}
$$

4. http://authors.library.caltech.edu/13561/1/KALbams08.pdf
5. https://webusers.imj-prg.fr/~pierre.lochak/textes/compendium.pdf
6. https://www.researchgate.net/publication/10731460
7. https://www.researchgate.net/publication/343403813
8. https://en.wikipedia.org/wiki/Nekhoroshev estimates
