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Abstract

Our universe is a 3-dimensional elastic substrate which once has condensed and now is

expanding within some higher dimensional space. The elastic substrate is built from

tiny invisible constituents, called tetrons2, with bond length about the Planck length

and binding energy the Planck energy. All ordinary matter particles are quasiparticle

excitations of the tetrons gliding on the elastic medium. Since the quasiparticles ful-

fill Lorentz covariant wave equations, they perceive the universe as a 3+1 dimensional

spacetime continuum lacking a preferred rest system. Any type of mass/energy induces

curvature on the spacetime continuum as determined by the Einstein equations.

The 24 known quarks and leptons arise as eigenmode excitations of a tetrahedral fiber

structure, which is made up from 4 tetrons and extends into 3 additional ‘internal’

dimensions. While the laws of gravity are due to the elastic properties of the tetron

bonds, particle physics interactions take place within the internal fibers.

I will concentrate on three of the most intriguing features of the model: (i) Under-

standing small neutrino masses from the conservation of isospin, and, more in general,

calculating the spectrum of quark and lepton masses. This is obtained from the tetron

model’s interpretation of the Higgs mechanism. As a byproduct, the connection be-

tween the large top mass and the electroweak symmetry breaking becomes apparent.

(ii) The possibility to determine the full size of the universe from future dark energy

measurements. This is obtained from the tetron model’s interpretation of the dark

energy effect. In the course of discussion, the dark energy equation of state, i.e. the

equation of state of the elastic tetron background will be derived. (iii) Finally, the ori-

gin of the big bang ‘Hubble tension’ within the tetron scheme will be elucidated, and

deviations from the standard picture such as a varying Newton constant are discussed.

1Talk presented at the Sixteenth Marcel Grossmann Meeting (MG16), Rome, July 5-10, 2021. To

appear in the proceedings.
2Tetrons transform as the fundamental fermion(=octonion) representation of SO(6,1). With re-

spect to physical 3+1 spacetime a tetron is simply an isospin doublet of Dirac spinors Ψ = (U,D).
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1 Introduction

In this talk some important implications of the tetron model[1, 2, 3, 4] of particle

physics and cosmology will be reviewed. The universe is an elastic medium composed

of invisible constituents which are bound at Planck energy. While the laws of gravity

are due to the elastic properties of the medium, particle physics interactions take place

within internal fibers, with the characteristic internal energy being the Fermi scale. All

ordinary matter quarks and leptons are constructed as quasiparticle excitations of this

internal fiber structure. Since the quasiparticles fulfill Lorentz covariant wave equa-

tions, they perceive the universe as a 3+1 dimensional spacetime continuum lacking a

preferred rest system. Any type of mass/energy induces curvature on the spacetime

continuum as determined by the Einstein equations.

In the following I want to explain some details of these statements.

2 Small Neutrino Masses from Conservation of Isospin

The ground state of our universe looks like illustrated in Figure 1. In this figure

the large horizontal arrow stands for the 3 dimensions of physical space, while the

tetrahedrons extend into 3 extra dimensions. The picture is a little misleading because

in the tetron model physical space and the extra (‘internal’) dimensions are assumed

to be completely orthogonal. This means the whole game is actually played within a

large altogether 6 dimensional space, 3 physical dimensions and 3 internal ones.

Figure 1: The global ground state of the universe after the electroweak symmetry

breaking has occurred, considered at Planck scale distances. Before the symmetry

breaking the isospin vectors are directed randomly, thus exhibiting a local SU(2) sym-

metry, but once the temperature drops below the Fermi scale ΛF , they become ordered

into the tetrahedral structure.

If you ask: why this structure?, I can say at this point that the tetrahedral structure is
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introduced in order to explain the observed quark and lepton spectrum, which means

to get exactly 24 excitation states with the correct multiplet structure.

Before discussing the excitations, let us first consider the ground state Figure 1 in some

more detail. As you can see, each tetrahedron is made up from 4 constituents called

‘tetrons’, depicted as dots3. The arrows denote the ‘isospins’, i.e. internal spin vectors

of the tetrons. This means the tetrons have a spin in physical space and in addition

an internal spin in internal space. As turns out, the interactions of the internal spins

play an important role for particle physics and for electroweak symmetry breaking.

It is important to note, that not only the 4 tetron locations but also the 4 isospin

vectors in Figure 1 define tetrahedrons. Due to the pseudovector property of these

vectors their tetrahedral symmetry group actually is a Shubnikov group [5, 6, 7]. This

means, while the coordinate symmetry is S4, the arrangement of isospin vectors respects

the tetrahedral Shubnikov symmetry

G4 := A4 + CPT (S4 − A4) (1)

where A4(S4) is the (full) tetrahedral symmetry group and CPT the usual CPT op-

eration except that P is the parity transformation in physical space only. Since the

elements of S4 − A4 contain an implicit factor of internal parity, the symmetry (1)

certifies CPT invariance of the local ground state in the full of R6+1

In the situation depicted in Figure 1 a symmetry breaking has already taken place,

because the isospins are aligned between all the tetrahedrons.

Before the symmetry breaking, which means above a certain temperature, isospins are

distributed randomly, corresponding to a local SU(2) × U1 symmetry4, but when the

universe cools down, there is a phase transition, and the isospins freeze into the aligned

structure, breaking the symmetry from SU(2)× U1 to the discrete ‘family group’ G4.

And the important point to note is, this temperature can be identified with the Fermi

scale[2].

How does this work out in detail? Mathematically, a tetron is assumed to transform as

the fundamental spinor representation of SO(6,1). This representation is 8-dimensional

and sometimes called the octonion representation.

With respect to the decomposition of SO(6, 1)→ SO(3, 1)×SO(3) into the 3-dimensional

base space and the 3-dimensional internal space, a tetron possesses spin 1/2 and isospin

1/2. This means it rotates both in physical space and in internal space, and corresponds

to the fact that a tetron Ψ decomposes into an isospin doublet Ψ = (U,D) of two or-

dinary SO(3,1) Dirac fields U and D.

8→ (1, 2, 2) + (2, 1, 2) = ((1, 2) + (2, 1), 2) (2)

3Actually, antitetrons are needed as well. See the Appendix, and for more details the review [3].
4Weak parity violation, i.e. the appearance of index L in SU(2)L, is discussed in [3].

3



Using this, one can rigorously define the isospin vectors used and drawn in Figure 1:

~Q =
1

2
Ψ†~τΨ (3)

where τ are the internal spin Pauli matrices5.

A typical interaction Hamiltonian between such isospin vectors of 2 tetrons a and b

looks like this

HH = −J ~Qa
~Qb (5)

So it has the form of a Heisenberg interaction - but for isospins, not for spins. The

coupling J is called the ‘isomagnetic exchange coupling’.

In reality, the Hamiltonian is somewhat more complicated than (5) due to the appear-

ance of antitetrons and of the fact that inner- and inter-tetrahedral interactions are

present, the inner ones with ‘exchange coupling’ j = −O(1) GeV (strong interaction

scale) and the inter ones with J = O(100) GeV (weak interaction scale). j and J

have different sign, because j leads to the frustrated ‘antiferromagnetic’ ground state

of a single tetrahedron, while J is responsible for the ‘ferromagnetic’6 alignment of

neighboring tetrahedrons[1].

This alignment can be shown to be the microscopic origin of the electroweak symmetry

breaking, and furthermore it allows to calculate the quark and lepton masses. I refer

here to references [1] and [2]. In these papers you can find all the details - how to

construct the electroweak order parameter, the Higgs field and how to calculate the

quark and lepton masses and mixings from the isospin couplings.

At this point it must be enough to show that among the 24 isospin excitations which

are the quarks and leptons, there are 3 almost massless modes which correspond to the

neutrinos. This has to do with the conservation of total isospin. Namely, the masses

of the neutrinos are particularly suppressed because the 3 neutrino modes correspond

to the vibrations of the 3 components of the total internal angular momentum vector

in one tetrahedron

~Σ :=
4∑

a=1

~Qa =
1

2

4∑
a=1

Ψ†a~τΨa (6)

5Actually, there is a pair of isospin vectors sitting at each tetrahedral edge. Namely, one has to

distinguish chiral isospin vectors

~QL =
1

4
Ψ†(1− γ5)~τΨ ~QR =

1

4
Ψ†(1 + γ5)~τΨ (4)

and for tetrons and antitetrons. A discussion of this point can be found after (62) and in [3].
6I am using the language of magnetism, although interactions of isospins and not of spins are

considered. Note that isospin is not an abstract symmetry here, but corresponds to real rotations in

the 3 extra dimensions.
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Whenever this quantity is conserved

d~Σ/dt = 0 (7)

the neutrino masses will strictly vanish. In fact, the Heisenberg type of interactions

(5) conserve total internal angular momentum. Therefore, they fulfill (7) and give no

contribution to the neutrino masses. Further details can be found in [1].

So ~Σ is the total internal angular momentum (total isospin), and the conservation

equation for the 3 components of ~Σ leads to 3 of the 24 eigenmodes being massless.

Tiny nonvanishing ontributions to the neutrino masses come from torsional interactions

which violate the conservation of isospin[1].

The masses of the remaining quarks and leptons can be obtained from diagonalizing

equations which are generically of the form7

d~Qa

dt
= i [H, ~Qa] (8)

Furthermore, CKM and PMNS mixings arise when calculating the eigenstates of the

isospin excitations.

As an example, the top quark mass will be derived in the Appendix, and it will be

shown that it is the only excitation with mass of order ΛF , because it corresponds to

a minimum energy of the tetrahedral isospin Hamiltonian (72). All other quark and

lepton masses naturally turn out to be much smaller.

The mathematical treatment of the excitations arising from (5), (8) and (73) is similar

to that of magnons in ordinary magnetism. However, the physics is quite different,

because in contrast to magnons the isospin excitations are pointlike, i.e. they can exist

within one point of physical space, because they are vibrations of the isospin vectors

of the tetrons within one internal tetrahedron. Note, that these internal vibrations

are spin-1
2

because they inherit their fermion nature from the fermion property of the

vibrating tetrons in their 3-dimensional physical ‘base space’.

Similar to magnons, the vibrations can move in physical space by hopping from one

tetrahedron to another (particle picture) or propagating as quasiparticle waves through

physical space (wave picture). Thus, although they can exist at one point of physical

space, when one tries to exactly measure its location, for example by scattering with

another particle, the excitation will start to move on physical space, and this move-

ment will follow a wave equation which naturally has an uncertainty in it according

to Schwarz’ inequality. Planck’s constant enters this uncertainty because the whole

process is taking place on a discrete system with Planck length ’lattice constant’ and

Planck energy ’response energy’.

7In general, the Hamiltonian H involves Heisenberg interactions (5), torsion and antisymmetric

exchange (73) between the isospin vectors.
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Gauge bosons are constructed as excitations of tetron-antitetron pairs of neighboring

tetradedrons, and the Higgs vev is the tetron-antitetron ground state value, essentially

given by the length of the isospin vectors in Figure 1, times
√
J . At first sight this

may seem reminiscent to technicolor ideas, but the tetrons do not have technicolor

indices and there is actually more similarity to magnetic and superconductivity phase

transitions.

3 The Full Size of the Universe from a Simple Spring Model

From this point on, I do not want to give more details on the particle physics implica-

tions, but want to concentrate on gravity and cosmological aspects. In order to include

gravity in the tetron model, it is assumed that there is not only an interaction among

the isospin vectors in internal space, but also a binding among tetrons in physical

space, and that this binding is elastic. In other words, our universe is a 3-dimensional

elastic medium expanding within some larger 6-dimensional space, and it can acquire

curvature both in space and time (the magnitude of the curvature being dictated by

Einstein’s equation).

Figure 2: Expansion of the empty universe consisting of internal tetrahedrons which

look pointlike in physical space.

In 3-dimensional physical space, the expansion looks as shown in Figure 2. Note that

in physical space the tetrahedrons are pointlike because they extend only into the extra

dimensions. This means, in Figure 2 you do not see the tetrahedral structure, you only

see points which are bound with bond length about the Planck length and binding

energy the Planck energy.

In the beginning, that means before the expansion started, the universe was created in

a sudden so to say inflationary condensation process from an ultrahot tetron gas under
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ultrahigh pressure. This process, which mimics usual big bang ideas, will be described

in more detail in section 4. Photons and later on standard matter were created as

quasiparticle excitations gliding on the elastic medium. Since the quasiparticles fulfill

Lorentz covariant wave equations, they perceive the universe as a 3+1 dimensional

spacetime continuum lacking a preferred rest system. Any type of mass/energy induces

curvature on the spacetime continuum as determined by the Einstein equations.

In this section I want to draw a connection between the smallest and the largest scales

of the universe, namely between the tetron binding structure at Planck length L and

the size a of the universe as a whole. For that purpose, let us consider the potential

energy of 2 tetrahedrons as a function of L, so this means the energy of 2 dots in Figure

3 as a function of their distance. It is assumed, that this function has a minimum at

some bond length Ls and that at present we are at bond length L0 roughly equal to

the Planck length. Then the function looks like in Figure 3.

Figure 3: Potential energy of 2 neighboring tetrahedrons as a function of their distance

L. L0 is the present day bond length(=Planck length) with present day energy(=Planck

energy) E0 = E(L0). Lc refers to the bond length at the big bang, as described in

Section 4. Ls denotes the equilibrium bond length which the universe is approaching,

with energy Es = E(Ls). In a neighboorhood of Ls the potential energy can be

approximated by a parabola. This neighborhood is assumed to include L0. In contrast,

a (modified) Lennard-Jones ansatz is more appropriate in the big bang region near L̄

and Lc. Note that the full size of the universe at time t is given by a(t) = NL(t) where

N is the number of tetrahedrons in a hypothetic chain which stretches from one end of

the universe to the other.

From this figure one concludes that the universe is expanding towards an equilibrium

corresponding to an average bond length Ls. So the whole universe is carrying out an

extremely low frequency breathing vibration ω � 10−10yrs−1 around Ls, and all the
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tetron bonds on average are vibrating in accord with the universe. One can work out

the details of this picture and indeed show that this effect accounts for the present

accelerated expansion as given by the dark energy observations[4].

An important point to note is that in future more precise dark energy measurements

may allow to extract the breathing frequency ω of the universe, and from ω one can

determine the full size radius a of the universe according to the simple formula

a =
L

Ls

c

ω
(9)

where c is the speed of light.

The remainder of this section is devoted to the proof of (9) within a simple spring type

model, and to carry the idea of the universe as an extremely low frequency oscillatory

system to the end.

In addition, these considerations will allow to derive the dark energy equation of

state[12], i.e. the equation of state of the invisible tetron background substrate. The

relation between tetron density and pressure is a characteristic property of the bound

tetron system. Actually, the elastic tetron universe resembles a fluid with elastic bonds

among its constituents rather than an ordered solid, and so the fluid equation seems

an appropriate way of description8.

By ‘full size’ is meant the diameter of the 3-dimensional elastic medium which according

to the tetron model is our universe. As a measure of this size I shall take a(t) as appears

in the standard FLRW line element

ds2 = −c2dt2 + a(t)2 [
dr2

1− kr2
+ ... ] (10)

a(t) is assumed to have dimension of length and dr2 to be dimensionless. A dimensionful

a(t) is to be used here, because of the relations (9) and (19).

Following reference [4] a harmonic oscillatory term ∼ ω2(a−as) appears in the modified

FLRW equations in addition to the cosmological constant Λ

ä = −4π

3
Gρa− ω2(a− as) +

Λ

3
c2a (11)

The assumption of a breathing vibration with a(t) ∼ L(t) then leads to an identical

equation for L(t):

L̈ = −4π

3
GρL− ω2(L− Ls) +

Λ

3
c2L (12)

8But note, the stiffness ζ = c7

~G2 ≈ 10112 kg
ms2 of the tetron bonds is large enough, that this ‘fluid’

pours out into only 3 of the 6 dimensions.
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The interpretation of the cosmological constant term within the tetron model will be

postponed to the end of the section. For the moment, let us simply forget about Λ.

Then the empty universe behaves harmonic with frequency ω, the reason being that its

tetrahedral constituents follow a harmonic elastic interaction, i.e. the potential energy

among the internal tetrahedrons in the neighborhood of the minimum at Ls can be

approximated by a parabola, see Figure 3.

While characteristic frequencies ω and H0(=Hubble constant) of the universe are tiny,

the frequency fs = f(ts) of a single tetron spring is extremely large and given by

f(t) =
1

T (t)
=

c

L(t)
(13)

where T (t) = L(t)/c is the time dependent Planck time.

In accordance with reference [4] I have introduced cosmic time dependent Planck quan-

tities

L(t) =

√
~(t)G(t)

c3
T (t) =

√
~(t)G(t)

c5
M(t) =

√
~(t)c

G(t)
(14)

with present day values at t = t0:

L0 = 1.6× 10−35m M0 = 2.2× 10−8kg T0 = 5.4× 10−44s (15)

Inverting (14), a time dependent Planck and Newton constant[11] is obtained

~(t)c = E(t)L(t) (16)

G(t) = c4L(t)/E(t) (17)

where according to Figure 3 the time dependence E(t) is induced by the dependence

E(L) = E(L(t)).

No time dependence of c is indicated, because in the present model there is none - at

least if one uses the so-called cosmic coordinates t and r appearing in the line element

(10). Furthermore, any dispersion in a discrete system with spacings L is of the form

c(k) =
2c(0)

k L
| sin k L

2
| ≈ c(0) +O(k L)2 (18)

and is completely negligible, except for wavelengths as small as the Planck length L,

where the discreteness of the system becomes apparent.

Coming to the details of the spring model, it is assumed that at each point of the

elastic universe each direction can be approximated as a serial connection of N har-

monic springs which connect N+1 constituents (= internal tetrahedrons). These can

be thought to lie approximately on a straight line running from one end of the universe

to the other. The spatial extension of the universe is then given by

a(t) = NL(t) (19)
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Clearly, this includes the additional simplifying assumption that the expanding con-

densate has approximately the same extension in all directions.

The rest mass µ of any one of the spring chains is given by the sum of all constituent

rest masses Mrest in the chain, i.e.

µ = NMrest (20)

where Mrest is the rest mass of one internal tetrahedron. The value of Mrest is unknown

but should be typically of the order of the Planck mass.

Since in the neighborhood of Ls the potential energy E(t) = E(L(t)) is assumed to be

quadratic in L, it must have the form

E(L) = Es +
d

2
(L− Ls)2 = Es +

1

2
Mrestc

2(1− L

Ls
)2 (21)

i.e. E(L) is a sum of a constant energy Es = E(Ls) plus a variable component, which

vanishes at Ls. Es comprises the binding energy of 2 tetrahedrons at Ls as well as

their possible rest mass.

The spring constant of a single spring is d = Mrestf(ts)
2 with f(t) from eq. (13). The

basic reason why the breathing frequency ω of the universe is so small whereas the

fundamental frequency f = 1/T of its tetron constituents is so large, arises from the

following fact: Consider one chain of strings stretching from one end of the universe

to the other, each spring with a constant d. Then the serial connection of N springs is

itself a harmonic oscillator with a much smaller combined spring constant

D = d/N (22)

Note that the springs connected in parallel belong to different chains and do not con-

tribute to the effective overall chain constant D.

Using D = µω2 one can express the (extremely small) frequency ω of the universe in

terms of the (extremely large) Planck frequency fs = f(ts):

ω2 =
D

µ
=

d/N

NMrest

=
1

N2
f 2
s =

c2

N2L2
s

(23)

Thus, the full extension (19) of the universe at equilibrium can be given as

as = NLs =
c

ω
(24)

in a similar way as the observable(=Hubble) radius is given as c/H0.

The present size of the universe is somewhat smaller than as and given by (9). This

means that a precise enough measurement of the dark energy effect (i.e. of ω) can be
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used to determine the full size of the universe. The details of why these ideas can be

used to understand present dark energy data, can be found in [4].

The spring model is also of use to better understand the FLRW theory within the

general elasticity ansatz. The essence of the FLRW model is contained in the following

equations

(i) the Friedmann equation for the Hubble parameter ȧ/a and

(ii) the ‘fluid equations’ for the densities ρtet and ρmat of tetrons and (ordinary and

dark) matter, respectively. Both, the tetron substrate and the matter content of the

universe are assumed to be separate uniformly distributed perfect fluids with mass

energy densities ρtet(t) and ρmat(t) and pressure ptet(t) and pmat(t).

In the present model one can write down an equation for the conservation of energy in

a matter-free spatially flat tetron universe

N3Mrest

2
ȧ2 + 3N3Mrestc

2

2
(1− a

as
)2 = N3Etotal (25)

the conserved energy being the kinetic plus potential energy of the system of N3 masses

Mrest and 3N3 springs between them. The system is furthermore assumed to be in a

breathing mode. Then, the difference in neighboring spring positions xn+1(t) − xn(t)

within one of the spring chains is n-independent and given by L(t)−Ls for each spring

n, and the velocity difference by ẋn+1 − ẋn = L̇(t) = ȧ(t)/N .

As compared to the corresponding matter-free FLRW equation

-there is no Λ-term in (25), i.e. there is no cosmological constant contribution from

tetrons, because for the matter free elastic tetron substrate the binding forces do not

drive the universe with Λa2 to infinity, but with ω2(a − as)2 to as. As will turn out

later, in the presence of matter a cosmological constant reappears because the time

dependent Newton constant (17) implies a time dependent matter contribution to the

cosmological constant[8, 9, 10].

-instead of the spatial curvature k there is a nonvanishing constant Etotal. This has to

do with the fact that the Friedmann equation only counts contributions to the curva-

ture, but does not know about the cosmic constituents and uses the general freedom in

the definition of the potential energy to put their energy to zero, i.e. the background

energy corresponding to the matter-free, expanding and spatially flat elastic substrate.

So far we have considered the empty universe, which is an elastic substrate of bound

tetrons (or, more precisely, of bound internal tetrahedrons). If, in addition, matter is

present in the universe, eq. (25) becomes

1

2
ȧ2 +

3

2
ω2(a− as)2 =

4π

3c2
Gρmata

2 +
1

6
Λmatc

2a2 +
Etotal
Mrest

(26)
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where ρmat/c
2 denotes the mass density of ordinary plus dark matter. As before in

(25), the constant term ∼ Etotal is not relevant when forming the time derivative of

(26) in order to obtain the equation for the acceleration ä.

Equation (26) includes a cosmological term Λmat. This term derives from the time

dependence of the Newton constant G = c4L(t)/E(L(t)) and can be determined from

the cosmological fluid equations. Both matter and the expanding tetron background

will be approximated as separate fluids distributed homogeneously over the universe

with energy densities ρtet(t), ρmat(t) and pressure ptet(t) and pmat(t).

For the tetronic fluid the appropriate form of the fluid equation is the ordinary one

ρ̇tet + 3(ρtet + ptet)
ȧ

a
= 0 (27)

because the spring coupling d is constant and the time dependent Newton coupling

not involved. In terms of a single tetrahedron with physical volume L3 around it the

density of the tetronic ‘dark energy’ fluid is

ρtet(t) =
E

V
=
Es
L3

+
Mrestc

2

2L3
s

(1− L(t)

Ls
)2 (28)

Similarly, the dark energy pressure is obtained to be

ptet = −∂E
∂V

=
Mrestc

2

3L3
s

(1− L

Ls
) +O(L− Ls)2 (29)

and it can be checked that (28) and (29) indeed fulfill eq. (27).

Note, the dark energy pressure ptet has the required sign within the conventions used

here. It describes an expanding system because it is directed towards the equilibrium

size as(> a0) of the universe.

These equations correspond to an equation of state parameter

w =
ptet
ρtet

=
Mrestc

2

3Es
(1− L

Ls
) +O(L− Ls)2 (30)

To compare this with various other dark energy equations of state suggested in the

literature one may consult [12].

For matter and dark matter the suitable form of the fluid equation can be derived from

the Bianchi identity

T µν;µ = 0 (31)

for the energy-momentum tensor in general relativity. In case of a time dependent

Newton and cosmological constant one has[8, 9, 10]

d

dt
[Gρmat +

c4

8π
Λmat] + 3G(pmat + ρmat)

ȧ

a
= 0 (32)
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On the other hand, for the late time cosmology under consideration, matter can be

approximated in the standard way as uniformly distributed dust. Ordinary and dark

matter should then fulfill the ordinary fluid equation

ρ̇mat + 3(pmat + ρmat)
ȧ

a
= 0 (33)

by means of

pmat = 0 (34)

ρmat(a) = ρmat(as)
a3
s

a3
(35)

Comparing (32) and (33) one concludes, that any imbalance coming from the time

dependency of G must be cancelled by a time dependence of Λmat according to[8, 9, 10]

Ġρmat +
c4

8π
Λ̇mat = 0 (36)

In the present approach all time dependencies arise only through a(t) = NL(t). There-

fore using

d

dt
= ȧ

d

da
= L̇

d

dL
(37)

one can calculate Λmat from the scale dependence of G eq. (17)

Λmat(a) = Λmat(as) + 8π

∫ as

a

da ρmat(a)
d

da

L

|E(L)|
(38)

with L = a/N . In the quadratic approximation used throughout this section, where

one considers the neighborhood of a = as, one can carry out the integral in (38) to

obtain the a(t) dependence of Λmat:

Λmat(a) = Λmat(as) +
8πρmat(as)

|Es|
(Ls − L) +O(L− Ls)2 (39)

Here, ρmat(as)L
3
s/|Es| is the ratio of average energy of matter within a Planck volume

L3
s over one tetrahedral binding energy Es. Since there are much more bound tetrons

than matter particles in the universe, the cosmological constant due to (39) is extremely

small. This can be seen more explicitly by rewriting (39) as

Λmat(a)− Λmat(as) = 8π
ρmat(as)

ρtet(as)

Ls − L
L3
s

≈ 8π
ρmat(a0)

ρtet(a0)

L0 − L
L3

0

(40)

and using approximate values L0 − L ≈ −L0 and

ρmat(a0)/c2 = 2.6 10−27 kg

m3
(41)

ρtet(a0)/c2 =
M0

L3
0

= 0.54 1097 kg

m3
(42)
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4 ‘Early Dark Energy’, ‘Hubble Tension’ and a Varying New-

ton Constant

This section deals with the question to what extend the standard big bang scenario

may have to be modified by the tetron idea. I will start with some overview remarks

and then present the results in more detail.

First of all, within the tetron model, there must not be a strict singularity from which

the universe has started. Still there is

(i) a rapid blow-up similar to inflation after which

(ii) the ordinary FLRW expansion of the universe began at a finite size ac.

Secondly, a modification which is usually coined ‘early dark energy’ will be seen to arise

in the tetron model. Associated with this is a variation of the Newton constant. This

happens in a similar way as the Newton constant is time dependent for late time tetron

cosmology, cf. [4] and (17). While the early dark energy effect turns out to be small,

the associated time variation of the Newton constant becomes the dominant effect to

modify the standard big bang picture and to explain the so called Hubble tension[13].

Actually, the results presented below are similar to what scalar-tensor theories have to

say about the Hubble tension from a varying Newton constant[14, 15].

Now for the detailed discussion, the tetronic history of the universe goes as follows:

Shortly before the big bang there was an ultrahot gas of tetrons under ultrahigh pres-

sure (with temperature larger than Planck’s energy). The gas cooled down, and below

some critical temperature it condensed, and our universe came into existence - in a

homogeneous, isotropic and extremely compressed form. This sudden overall conden-

sation process can be identified by what is usually called inflation, and it produced the

universe at a size ac.

Soon afterwards, pressure was released and the expansion of the elastic substrate

started. As will be shown below, the rate of expansion is determined by the initial

pressure, the evolution of the tetron binding energy and by the associated (modified)

FLRW equations.

In Section 3 the present day(=late time) dark energy was interpreted as the tetron

binding energy E(L0) at bond length L0 (=Planck length) and corresponding size of

the universe a0 = NL0, cf. eq. (19). In the following this interpretation will be taken

over to the early universe, and one is thus lead to extrapolate the curve E(L) in Figure

3 to small values of L.

Unfortunately, in the small-L region the harmonic approximation used for late time

cosmology is not suitable any more. In other words, eqs. (21), (25), (26) and (30) loose

their validity. Instead of the harmonic potential, in the small-L region a Lennard-Jones
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type of ansatz seems reasonable. An ordinary Lennard-Jones potential looks like

ULJ =
X

Lm
− Y

Ln
(43)

with constants X and Y and m > n. It vanishes at some value L = L̄ and becomes

extremely repulsive for still smaller values of L. For the actual numerical simulations

a trial potential was used which has the overall Lennart-Jones form but otherwise

behaves much more smoothly, in particular at L = 0.

Neglecting for a moment the time variation of G, one can include the binding energy

in the Hubble expansion as

ȧ = H0

√
Ω0
rada

−2 + Ω0
mata

−1 + Ω0
k + Ω0

Λmat
a2 + ΩE (44)

where a(t) = NL(t). The Ω’s are defined in the usual way, for instance

ΩE = −2E(L)

Ḣ2
0

(45)

Note that E is negative for L > L̄, cf. Figure 3.

Near the big bang phase transition point L = Lc the binding energy may be approxi-

mated as

E(L) = Ec + β (L− Lc) (46)

with Ec = E(Lc) and

β =
∂E

∂L

∣∣∣
c

(47)

From (44), (46) and from Figure 3 one concludes that in this region dark energy is

much smaller than at present and thus does not give a strong direct modification of

the standard big bang picture. There is, however, an appreciable indirect contribution

via a variation of Newton’s constant. See below.

How large is ac? In other words, how large was the redshift zc = a0
ac
− 1 at the end

of inflation, i.e. after the phase transition (=the condensation of our universe) was

completed? I do not dare to say, except that it must be larger than at the time of the

CMB (zCMB ≈ 103). The experts tell me that it should also be larger than zBBN ≈ 109

in order to have a consistent primordial nucleosynthesis, and that it must even be larger

than 1013 in order for the electroweak symmetry breaking to take place in the universe.

At first sight it seems difficult to imagine that the tetron substrate is so strongly

compressible. However, tetron binding forces and other tetron properties are vastly

different from those of ordinary matter (with factors 10100 difference, cf. Footnote 6),

so the tetron material may well be compressible to ultra extreme values.
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An alternative view arises from the fact that according to Figure 3 at the condensation

point the binding energy E(Lc) is much smaller than the Planck energy E(L0). Since

the value of E(Lc) is unknown, it may be smaller than the Fermi scale, i.e. the con-

densation of the universe may have taken place after the electroweak phase transition.

In other words, the aligned tetrahedrons of isospins (Figure 1) were formed already in

the gas phase, i.e. before the condensation. Thus one could have zc < 1010 without

contradicting the general big bang idea. In the language of [16] this is a low scale

inflation scenario.

Although I cannot predict ac, the present model gives at least the opportunity to obtain

relations among the critical quantities by making use of data samples. Namely, one

can extrapolate the Friedmann evolution (44) starting today, i.e with a0 = a(t0) and

da(t0)/dt, and also at the condensation point ac and da(tc)/dt and then compare the

two evolution curves. This way it is possible to get a relation between ac and da(tc)/dt

(resp. β).

As a byproduct of the high temperature condensation process, excitations of the tetrons

were produced, mostly in the form of radiation (photons). These excitations had (and

still have) the same temperature as the tetron background. And the subsequent cooling

(of photons, freeze out of quarks and leptons, nucleosynthesis etc) then took place

as described by ordinary big bang models. The main additional point is that the

condensation energy which is gradually released, while the magnitude of the universe

drives towards its equilibrium value as, completely goes into motion energy, i.e. the

dark energy expansion.

As the next step the variation of G is included in the consideration. This comes about,

because in the tetron model G depends on the tetron binding energy E according to

(17).

Including the variation of G and considering only the leading term for small a in (44)

one has

ȧ = H0

√
G

G0

√
Ω0
rada

−2 = H0

√
E0

E(a)

√
Ω0
rada

−2 (48)

where

Ω0
rad =

8πG0

3H2
0

ρ0
rad (49)

refers to present day quantities.

Since the linear factor of L in (17) describes the redshift effect, the main modification

due to the time dependent G is given by a factor
√

E(L0)
E(L)

with E(L) from (46). Eq.
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(48) will then modify the timely evolution dt = da/ȧ according to

(t− tc)H0

√
Ω0
rad =

∫ a

ac

da′a′
√
E

E0

(50)

Using the linear approximation (46) one finds

(t− tc)H0

√
Ω0
rad = a2

c

∫ a/ac

1

dx x

√
Ec
E0

+
βac
E0

(x− 1) (51)

Here one may use the fact that Ec is small, while the derivative β is large, i.e. Ec � E0

and Ec � βac. Then one arrives at the integral∫ a/ac

1

dx x
√
x− 1 =

2

15
(x− 1)

3
2 (3x+ 2)

∣∣∣a/ac
1

(52)

As compared to the standard result for the radiation dominated epoch [a(t) ∼ t1/2] this

describes a universe which is a little less rapidly expanding. For example, suitably away

from the critical point, i.e. in the region ac � a� a0, eq. (52) leads to a(t) ∼ t2/5.

I will now shown that this effect has the potential to explain the recently observed

‘Hubble tension’. By this is meant the discrepancy between the locally measured

Hubble constant [HLOC
0 = (74.0 ± 2.0)km/s/Mpc] and the value inferred from the

cosmic microwave background [HCMB
0 = (67.4±3.0)km/s/Mpc)]. Thus experimentally

HCMB
0 is 9% smaller than HLOC

0 , although these two numbers should be equal.

The value of 67.4 has been obtained by extrapolating CMB data from zCMB = 1100 to

z = 0 using (44) under the assumption of a constant G. In order to increase this value

to 74.0 and to make HCMB
0 and HLOC

0 equal, it is enough to include a ratio

E0

ECMB

=
GCMB

G0

= (
74.0

67.4
)2 ∧= 18% (53)

in the formula (48). This statement is in agreement with results in the literature,

where it has been shown that the Hubble tension can be explained by early modified

gravity[14]. That is, a weaker gravitational strength at early times allows the models to

substantially relax the H0 tension - even when large scale structure data are included in

addition to CMB and supernovae results. Furthermore, thanks to the strong increase

of gravity at small a (the fast rolling towards the minimum in the case of [14], and

eq. (46) in the case of the tetron model), the tight constraints on the effective Newton

constant from laboratory experiments and on post-Newtonian parameters from solar

system measurements are easily satisfied.

Thus, within the tetron model, the effect (53) can be tracked back to a variation of the

tetron binding energy E(L) since CMB times by 18%.
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It must be admitted, though, that this is not the whole story, because in addition to

the variation of G there is also a variation of Planck’s constant within the tetron model

according to eq. (16). This may affect the value of HCMB
0 , too, because it modifies

ionization energies and therefore the time, at which recombination has occurred. A

detailed analysis of this effect is in progress.9

5 Remark on the Strong Interaction

In the preceeding sections we have obtained an understanding of gravity as well as of

the electroweak symmetry breaking. How does the strong interaction among quarks fit

into the tetron picture?

The dominant features of the strong interaction are the linear attractive potential at

low energies and asymptotic freedom at high energies. In the tetron model the strong

interaction is related to disturbances by the triplet isospin excitations(=quarks) of the

local frustrated ground state which is formed by a single tetrahedron of isospin vectors.

As triplet states of G4, quarks disturb the ground state’s isomagnetism, whereas leptons

9There is another, rather different scenario in which the variation of E(L) since the time of CMB

production is much larger than the 18% obtained in (53). In this scenario the value of z = 1100 is

only partially due to spatial redshift [factor L in (16)] - and partially to the change in Planck’s energy

[factor E(L) in (16)]. This can happen because the behavior of E(L) and thus of h and G in the region

of small L is virtually unknown.

The CMB has a spectral radiance peak at a microwave frequency ν0 = 160.23 GHz corresponding to

a wavelength λ0 = c/ν0 and an energy of 6.626× 10−4 eV. One may compare these numbers with the

corresponding numbers at the time when the CMB was produced. On the basis of (16) and assuming

energy conservation one obtains

E(L0)
L0

λ0
= 6.626× 10−4 eV = E(L1)

L1

λ1
(54)

where the index 0 refers to today and 1 to the time of the CMB production. Thus

E(L0)

E(L1)

L0

L1
= 1100 (55)

In other words, only part of the CMB effect would be due to expansion [L0/L1] while another part to

the increase of tetron binding energy [E(L0)/E(L1)] between CMB production time and today. For

a rough estimate of magnitudes I make a still cruder approximation than (46) and assume a linear

relation E(L) = β L in the region L1 < L < L0.

Under these assumptions one immediately obtains L0/L1 ≈ 33 instead of 1100. Such a result obviously

would have harsh consequences in many respects. Not only would the analysis of (48) have to be

completely modified, but the big bang would actually be a rather small bang. Furthermore, in such

a scenario cosmic expansion could easily be part of a larger story where one part of the universe is

undergoing expansion while other (invisible) parts are contracted. And in these other parts there

could, for example, be an - accidental - excess of antibaryons.
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are G4-singlets, i.e. ‘isomagnetically’ neutral. They do not disturb the ground state

and can exist freely, not taking part in the strong interaction.

As discussed in the Appendix, the isomagnetic ground state energy of 2 neighboring

tetrahedrons is roughly EQCD ≈ 1 GeV corresponding to a characteristic length scale

LQCD ≈ 10−15m. The linear potential between two G4-triplets, vulgo a quark Q and

an antiquark Q̄, then arises as follows: Since the inter-tetrahedral exchange energy

j = EQCD is relatively small, its physical effects have a much longer range LQCD than

the weak interactions which are induced by the inner-tetrahedral exchange energies J =

O(100) GeV. The triplet excitations corresponding to the two quarks are characterized

by small vibrations ~∆Q and ~∆Q̄ of the isospin vectors (3). When the distance between

the two excitations becomes larger than LQCD, an additional pair ~∆q and ~∆q̄ is excited

on intermediate tetrahedrons in order to reduce the original ‘isomagnetic’ suspense

between ~∆Q and ~∆Q̄. The associated cost in energy is proportional to the number of

qq̄ pairs created, and the potential V between Q and Q̄ therefore increases linearly with

distance:

V = F |x| F ≈ −j < ~∆Q
~∆Q̄ > /LQ (56)

where < ~∆Q
~∆Q̄ > is the isospin correlation between the sites, on which the isospins

vibrate, and LQCD the length where all this becomes relevant. The confinement energy

is hence proportional to the original ‘ferromagnetic’ exchange energy j induced on the

disturbances Q and Q̄. The ratio x/LQCD is the number of times, an additional pair

of excitations has to be created from the ’sea’.

In the tetron model quarks are disturbances ~∆Q of the isospin vectors (3). Due to the

interactions (5) not only the ground state vectors but also the disturbances tend to

align. This tendency of the triplet excitations gives rise to a ‘mass gap’ < ~∆Q
~∆Q̄ >6= 0

which signals a phase transition in the form of the usual breakdown of chiral symmetry

due to the strong interactions.

In summary, a single quark Q increases the energy of the system in its neighborhood

LQCD not only by its flavor-dependent mass(=excitation energy) but by an additional

energy necessary to ‘pick up a qq̄ pair from the sea’. This energy is flavor independent,

because it does not depend on the flavor Q, which flavors q are excited. The flavors

q correspond to an average of the light quarks u, d and s. So when a Q and a Q̄ are

torn apart, at some distance x ≈ LQCD a light qq̄ pair is formed, because otherwise the

single quark Q could not endure the disturbance of the ground state. In the end a sort

of string appears obtained by Qq̄qq̄′...Q̄ pairs. Any time a new qq̄ pair is created, energy

is to be taken from the environment, so the associated cost in energy is proportional

to the number of qq̄ pairs and the potential between quark and antiquark therefore

increases linearly with distance as indicated in (56).

Readers familiar with the quark model, will recognize that one is led directly to the

19



classic ideas of the quark model. For example, using the linear potential (56) masses

of mesons and baryons can be estimated just as in the quark model. Since mesons

and baryons are G4-singlets, the ‘isomagnetic’ disturbances induced by quarks get

neutralized in these bound states, i.e. mesons and baryons do not disturb the ground

state of a single tetrahedron.

The role of the length LQCD, below which (and the energy EQCD above which) the

creation of a light quark-antiquark is enforced, is the same as in the Standard Model.

At distances above LQCD one has confinement, while below LQCD the strong force

diminishes. Virtual bound quark-antiquark pairs are formed which as gluons mediate

an interaction of the original QQ̄ pair which effectively can be described by the QCD

Lagrangian. As well known, this interaction dies out when the energies involved go to

infinity, i.e. one has asymptotic freedom.

6 Summary

Introducing an additional level of matter, the tetron model offers a unified understand-

ing of particle physics and gravitation. While particle physics processes are induced

by ‘isomagnetic’ interactions in extra-dimensional ‘internal’ fibers with a tetrahedral

substructure, gravity arises from elastic forces among the tetrons.

The internal tetrahedral structure is introduced in order to explain the elementary

particle spectrum of quarks and leptons (6 singlets and 6 triplets after the spontaneous

electroweak symmetry breaking). The 24 states of the 3 quark/lepton families are not

truly fundamental particles but can be identified as quasi particle wave excitations of

a tetrahedron formed by isospin vectors.

Since the quasiparticles fulfill Lorentz covariant wave equations, they perceive the

universe as a 3+1 dimensional spacetime continuum lacking a preferred rest system.

Any type of mass/energy induces curvature on this continuum as determined by the

Einstein equations.

The tetron model stands for a material understanding of the hitherto abstract particle

symmetries SU(3)×SU(2)L×U(1) of the Standard Model as well as of their breaking.

In particular, isospin is not an abstract idea, but corresponds to real rotations of the

3 extra dimensions. Furthermore, the Higgs mechanism arises from the alignment of

internal isospin vectors of neighboring tetrahedrons, and the Higgs field corresponds to

a joint excitation of a neighboring tetron-antitetron pair.

Concerning the phase transition an analogy between particle physics and superconduc-

tivity may be drawn. In this analogy the tetron model corresponds to the BCS theory

of superconductivity, whereas the analog of the particle physics Standard Model would
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be the Landau-Ginzberg approach.

In physical cosmology, the tetron model gives a natural explanation of many phenom-

ena, from the big bang to dark energy. It does so by reducing these effects to properties

of the underlying elastic tetron substrate.

Namely, in order to include gravity in the model, it is assumed that there is not only

an interaction among the isospin vectors in internal space, but also a binding among

tetrons in physical space, and that this binding is elastic. In other words, our universe

is a 3-dimensional elastic medium expanding within some larger 6-dimensional space,

and it can acquire curvature both in space and time, the magnitude of the curvature

being dictated by Einstein’s equations. This way a connection is drawn between the

smallest and the largest scales of the universe, namely between the tetron binding

structure at Planck length L and the size a of the universe as a whole.

As shown in section 3, dark energy accelerated expansion is a consequence of the

universe expanding towards an equilibrium at as � a0 plus a variation of Newton’s

constant according to (17).

Concerning the big bang, within the tetron model there is no actual singularity from

which the universe has started. Still there is

(i) a rapid expansion process similar to inflation after which

(ii) the ordinary FLRW evolution of the universe began at a finite size ac.

Just as in late time cosmology, there is a dark energy effect at big bang times, plus

a variation of the Newton constant. While the early dark energy effect turns out to

be small, the associated time variation of the Newton constant becomes the dominant

effect to modify the standard big bang picture and to explain the so called Hubble

tension[13]. This outcome is in accord with results from modified gravity theories

about the Hubble tension from a varying Newton constant[14, 15].
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Appendix: Details about E(L) in Figure 3 and its Relation to

the fundamental 6-dimensional Tetron Interaction

According to (2), a tetron can be considered as an isospin doublet of two 4-dimensional

Dirac spinors U and D. In Dirac basis a general tetron field can thus be given by an
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octet Ψ = (U1, U2, U3, U4, D1, D2, D3, D4), where U1 and U2 describe the 2 spin states

and U3 and U4 the antiparticle content of U , and similar for D.10

The most straightforward way to describe a tetrahedral ground state configuration of

isospin vectors pointing outward is by choosing

〈Ψ〉 = (〈U1〉, 0, 0, 0, 0, 0, 0, 0) (57)

This leads to 〈Ψ̄Ψ〉 = 〈Ψ†Ψ〉 = 〈U∗1U1〉 and ground state values

〈 ~QL〉 = 〈 ~QR〉 =
1

4
(0, 0, 〈U∗1U1〉) (58)

of the isospin vectors (3) and (4). As shown below, the tetron field Ψ is typically

governed by the Planck scale, while the much smaller value of the Fermi scale enters

through the isomagnetic coupling J in (5).

The ground state (57) is a pure state in the sense that it is a particle, not an antiparticle,

and that a definite spin and isospin is attributed to it. Spins and isospins add up to

zero for the system of 4 tetrons inside a tetrahedron. Note that the symmetry of this

system is given by A4+T (S4−A4) instead of (1), corresponding to a C and CP violating

ground state, and one may speculate that this fact can be used to explain the apparent

baryon asymmetry of the universe.

Note further that although one has 2 vibrating objects ~QL and ~QR, there is only one

tetron particle on each tetrahedral site. Therefore, ~QLa and ~QRb can interact only when

on different sites a 6= b. This is in contrast to previous work[3] where a CP invariant

ground state was considered formed by a U- and an anti-D component on each site and

where the symmetry is given by (1). Such a situation is realized, for example, with

〈Ψ〉 = (〈U1〉, 0, 0, 0, 0, 0, 〈D3〉, 0) (59)

with ground state isospin vectors

〈 ~QL〉 = 〈 ~QR〉 =
1

4
(0, 0, 〈U∗1U1〉+ 〈D∗3D3〉) (60)

In the following both possibilities will be kept open, i.e. tetron-tetron as well as tetron-

antitetron interactions will be considered.

In order to derive both the binding energy E in Figure 3 and the isomagnetic exchange

energy J, the form of the fundamental interaction among tetron fields Ψ has to be

10Spins and isospins in the tetrahedral ground state are assumed to point radially away from the

origin. Therefore, it is more appropriate to choose U and D to be ‘radial’ spinors and isospinors.

This means, U corresponds to an isospin vector (3) pointing outward and D pointing inward, and

similarly for the spins. As a consequence, the ‘z-direction’ in (58) should actually be taken for the

radial direction ~er.
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known. According to the discussions in the previous sections, the universe can be

treated as a non-relativistic elastic medium, and the binding energy derives from a

potential between 2 of its constituents. Let us first discuss the classical theory and

afterwards come to the quantum mechanical case.

In the non-relativistic limit SO(6, 1) → SO(6) the tetron representation 8 of SO(6,1)

reduces to

SO(6, 1) → SO(6) (61)

8 → 4 + 4̄ (62)

where 4 is the spinor representation of SO(6) and 4̄ its complex conjugate. Since

the universal covering of SO(6) is given by SU(4), its 4-representation actually is the

fundamental representation of SU(4). The four degrees of freedom of this representation

are the spin (±1
2
) and isospin (±1

2
) of the tetron, and the 4̄-representation corresponds

to four antitetron dofs.

In order to derive the tetron excitation spectrum, i.e. the quarks and leptons, it is

convenient to use the isospin vectors ~QL and ~QR [plus the densities Ψ†Ψ and Ψ†γ5Ψ]

for the description of those 8 degrees of freedom. Physically, the excitations are small

vibrations δ of the ground state values

~QLa = 〈 ~QLa〉+ ~δLa ~QRa = 〈 ~QRa〉+ ~δRa (63)

The tetron-(anti)tetron potential to be discussed below will imply interactions like (5)

between the ~Q’s, and through this among the vibrations δ.

Within classical physics the energy of two tetrons 1 and 2 in 6-dimensional space11

may be reasonably assumed to be of the form

m

2
(v2

1 + v2
2)± f 2

L4
(65)

where m is the mass of a single tetron and f its charge. The upper sign describes a

repulsive interaction among two tetrons and the lower an attractive interaction among

a tetron and an antitetron of charge f. Instead of a Coulomb potential (∼ 1/L) I have

11The 3-dimensional analog of (65) is given by

m

2
(v21 + v22)−Gm

2

L
+

1

4πε0

e1e2
L

(64)

The opposite sign of the Newton and Coulomb contribution corresponds to the gravitational force

being attractive, while the Coulomb force of 2 identical charges e1 = e2 is repulsive. Furthermore, the

definition of G is tied to the equivalence of inert and heavy mass, while the vacuum permittivity ε0
is introduced for linking mechanical and electrical energy units. The corresponding ‘ε0’ for the case

(65) is assumed to be contained in the definition of f.
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introduced a fourth power potential which is more appropriate for the 6-dimensional

case because it corresponds to Green’s function of the 6-dimensional Laplacian thus

guaranteeing the validity of Gauss’ law, i.e. of charge conservation in 6 dimensions[17].

Within a non-relativistic quantum mechanics12 the binding energy between a tetron

and an antitetron should be calculable from the expectation value∫
d6x1d

6x2Φ∗F (x1, x2)UF (|x1 − x2|)ΦF (x1, x2) (66)

where Φ is the complete wavefunction for the tetron-antitetron system and F denotes

its combined system of quantum numbers, i.e. spin, isospin, orbital angular momentum

etc. I have introduced a more general potential energy UF because at small distances

the attractive L−4-term has to be augmented by a repulsive contribution due to the

Pauli principle.

One may ask how such a potential transforms under SO(6). Since the energy must be

a singlet, one has to have

(4 + 4̄)×RU × (4 + 4̄) = 1 + ... (67)

where RU is the representation under which UF transforms. Since 4× 4̄ = 1 + 15 and

4 × 4 = 6 + 10 and 15 × 15 = 1 + ... and 6 × 6 = 1 + ...[18], it follows that UF is

either a scalar U1, an adjoint Ua
15λ

a, a=1,...,15, or a vector U i
6e
i, i=1,...,6, where λa are

the generators of SU(4) and ei are vectors which span 6-dimensional space. U1 and

U15 describe interactions among a tetron and an antitetron and U6 is a tetron-tetron

interaction. For simplicity, it will be assumed here that the dominant interaction is a

singlet scalar UF = U1.

According to (62) tetrons are fermions and thereby have to respect the Pauli principle.

As a consequence

-a repulsive term appears in UF which is relevant for very small distances (and is

actually smoother than the usual Lennard-Jones potential (43)).

-the spatial part φ(x1, x2) of the wave function Φ(x1, x2) must be either symmetric

or antisymmetric under the exchange of 1 and 2. Approximating it by products of

12As discussed in section 4 tetrons are involved in the big bang inflation. This process involves

superluminal velocities of the metric and of the tetron condensation. Therefore the tetronic SO(6,1)

symmetry is defined in terms of a maximal speed C(� c) instead of the ordinary speed of light.

Likewise in [3] it was shown that Planck’s constant h is a property of the elastic substrate and does

not necessarily hold outside of it. Therefore the quantum behavior of tetrons is not governed by h

but by a new constant H(� h). While h applies only to tetron excitations, i.e. to ordinary matter, H

appears in the commutation relations for the tetron spins and isospins and in all the other fundamental

tetron equations. This implies, among others, that the measure of energy HC/λ of a free tetron wave

in 6-dimensional space is different from the measure hc/λ of an ordinary matter wave within the

elastic substrate, both with wavelength λ.
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1-tetron wave functions, it is therefore given by (up to a normalization constant)

φ±(x1, x2) = ϕ1(x1)ϕ2(x2)± ϕ1(x2)ϕ2(x1) (68)

where ϕi(xj) denotes the wavefunction of tetron j centered at a fixed point Xi in 6-

dimensional space (an edge point of a tetrahedron), and the tetrons 1 and 2 are assumed

to be localized at distance L = |X1 −X2|.

Using (66) and (68) the energy can be calculated as (up to a normalization constant)

E(L)± A(L) =

∫
d6x1d

6x2UF (|x1 − x2|)ϕ2
1(x1)ϕ2

2(x2)

±
∫
d6x1d

6x2UF (|x1 − x2|)ϕ1(x1)ϕ1(x2)ϕ2(x1)ϕ2(x2) (69)

where E(L) is the binding energy depicted in Figure 3 and A(L) the exchange energy

appearing in the ‘isomagnetic’ Heisenberg Hamiltonian (5) in the form13

J = −A(L) (71)

If one assumes the single tetron wave functions to be strongly localized at the tetra-

hedral sites, there is actually a hierarchy |A(L)| � |E(L)|. This is due to the 12-

dimensional integration, where the overlap contributions become strongly suppressed

and therefore E(L) much larger than J . In the extreme case of delta functions, the

integral E(L) reflects the form of the potential energy UF , while J(L) vanishes. This

actually is the way the hierarchy between the Planck scale and the Fermi scale can be

understood[4] within the tetron approach.

What sign to choose in (68) and (69)? The answer to this question is that the plus

sign, i.e. a symmetric spatial wave function, is the relevant one for the cases under

consideration. In order to show this, one has to distinguish 2 cases:

-the tetron and the antitetron sit on 2 edges of 2 neighboring tetradrons (‘inter-

tetrahedral’ interaction). The behavior under interchange of 1 and 2 is then given

by (−1)` where ` is the orbital angular momentum of the system in physical space.

Just as the total spin, this is assumed to vanish in the ground state Figure 1, and

so one ends up with a symmetric function φ+. Note that in this case the distance

L = |X1−X2| between the tetron and the antitetron agrees with the ‘Planck’ distance

between 2 tetrahedrons which was used in Figure 3 and for the cosmological analysis

13The exact formula is

J = −A(L)− E(L)S(L)2

1 + S(L)4
(70)

where S � 1 denotes the overlap integral and E(L)S(L)2 can actually be of the same order as A(L).

This complication will be ignored in the pedagogical presentation.
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Figure 4: Exchange energy A(L) of 2 neighboring tetrons as a function of their distance

L. Typical values of A(L) are of the order of the Fermi scale and thus are many orders

of magnitude smaller than the direct energies E(L) in Figure 3. L0 is the present day

bond length(=Planck length) of 2 tetrons in neighboring tetrahedrons, with a negative

exchange energy A(L0) = −J corresponding to ‘ferromagnetic’ behavior. This induces

the alignment of isospins of neighboring tetrahedrons and is thus responsible for the

electroweak symmetry breaking. In contrast, L′ refers to the bond length of two tetrons

within one tetrahedron, i.e. L′ measures the extension of one internal tetrahedron. Due

to the rigid, non-elastic ‘molecular’ structure of one tetrahedron, L′ is time independent

and smaller than the Planck length L0. At L′ the exchange energy A(L′) is positive

corresponding to ‘anti-ferromagnetic’ behavior and leading to the ‘frustrated’ isospin

configuration of a single tetrahedron.

in the main text. Furthermore, the isospin vectors of tetron and antitetron are par-

allel in the ground state corresponding to ‘ferromagnetic’ attraction with a positive

J = −A(L) > 0. As explained in section 2, this isospin alignment corresponds to the

electroweak symmetry breaking, and the value of J to the Fermi scale.

-the 2 tetrons sit on 2 edges of one and the same tetradron (‘inner-tetrahedral’ interac-

tion). In this case, the behavior under interchange of 1 and 2 is given by (−1)`
′

where

`′ is the ‘orbital angular momentum’ of the system in internal space, i.e. of isospin or-

bital angular momentum. Within one tetrahedron, the energetically preferred isospin

configuration of a tetron-antitetron pair is antiparallel - frustrated but antiparallel.

This implies `′ = 0. Therefore again one has a symmetric wave function φ+. Note, in

this case the distance L′ = |X1 −X2| between the tetron and the antitetron describes

the size of an internal tetrahedron. The isospin vectors of tetron and antitetron are

frustrated (antiparallel) and one has ‘antiferromagnetic’ repulsion J = −A(L′) < 0.

As discussed in [3], this value of J corresponds to the QCD scale.

Having established φ+ as the relevant function, the total energy of a tetron-(anti)tetron

system is given by E(L)+A(L), where the direct energy |E| ∼ 1019 GeV (corresponding

to the Planck energy) is many orders of magnitude larger than the ‘isomagnetic’ ex-
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change energy |A| ∼ 100 GeV (determining the electroweak symmetry breaking). This

hierarchy arises from the 12-dimensional integration, because the exchange energy is

strongly dependent on the overlap of wave functions. One can calculate numerically

A(L) and E(L) for the smoothed-out Lennard-Jones potential and some trial wave

functions φ1 and φ2 of two tetrons 1 and 2 centered at distance L, and finds that ist is

not unreasonable that each of the 12 integrations contributes about a factor of 0.05 to

the ratio A/E.

The outcome for A(L) is depicted in Figure 4 and is discussed in the caption. It

confirms older results described in [3].

The minimum of A(L) in figure 4 does not play an important physical role, because it

is over dominated by the minimum of E(L) at Ls in Figure 3. Of more importance is

the point, where A(L) vanishes because it separates the ferromagnetic region (L ∼ L0)

from the antiferromagnetic one (L ∼ L′). L′ corresponds to the intra-tetrahedral

bond length, i.e. to the size of an internal tetrahedron, while the Planck length L0

corresponds to the inter-tetrahedral bond length of 2 neighboring tetrahedrons.

-

A main ingredient to the discussion so far was the idea that a single tetrahedron of

isospins is a ‘frustrated’ configuration[19] based on a Heisenberg interaction of type (5)

with ‘antiferromagnetic’ coupling, i.e. J < 0. One conclusion was that the strength of

the inter-tetrahedral isospin interactions is related to the electroweak scale ΛF , while

the inner one is smaller, of order J = O(1) GeV only.

Actually, there exists a different path, where one attains attraction instead of frustra-

tion, and furthermore the inner-tetrahedral interactions turn out to be of order ΛF ,

while the inter ones are of order 1 GeV. Namely, one can construct a Hamiltonian be-

tween every 2 isospins, which has a minimum at the tetrahedral angle θtet = arccos(−1
3
).

As a consequence, the tetrahedral arrangement of isospins stabilizes. Furthermore, as

shown below, the singular role of the top quark and its relation to the electroweak SSB

becomes understandable.

Such a Hamiltonian can be constructed as a linear combination

H = HH +HDM (72)

of the Heisenberg term (5) and a Dzyaloshinskii-Moriya (DM) interaction[21]

HDM = −J
4∑

a,b=1

~Qa( ~Dab × ~Qb) (73)

The form of the DM-vectors ~Dab is dictated by the tetrahedral symmetry [20] and their

absolute normalization by the requirement that HH + HDM should have a minimum
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at the tetrahedral configuration. Since the Heisenberg Hamiltonian HH ∼ cos(θ) and

the DM-term involves sin(θ), their sum can have a minimum at θ = θtet. For that one

needs a negative J and

~Dab =
3

2
~Qa × ~Qb (74)

The masses of the corresponding excitations can be calculated on the basis of (8), and

by insertion of an ansatz ~δa ∼ exp(ic2mt/h) for ~δa = ~Qa − 〈 ~Qa〉 where 〈 ~Qa〉 are the

ground state values of the isospins in the tetrahedral ground state. Furthermore, one

may use the angular momentum commutation relations for the isospin vectors

[Qα
a , Q

β
b ] = iδabε

αβγQγ
a (75)

where a, b = 1, 2, 3, 4 count the 4 tetrahedral edges and α, β, γ = 1, 2, 3 the 3 internal

directions.

When carrying out the calculation, care must be taken concerning the unique choice

of the quantization axis. One may choose one of the tetrahedral edges, e.g.

〈 ~Q1〉 =
1√
3

(−1,−1,−1) (76)

to define the axis of quantization. One then obtains

d~δa
dt

= −J
{
〈 ~Q1〉 × ~∆a − 4i〈 ~Q1〉 × [〈 ~Q1〉 × ~∆a]− 3〈 ~Q1〉 × {〈 ~Q1〉 × [〈 ~Q1〉 × ~∆a]}

}
(77)

where the imaginary term arises from repeated application of the isospin commutator

and ∆a is given by
~∆a = −3~δa +

∑
b6=a

~δb (78)

After diagonalization the following results are found: For a general linear combination

of (5) and (73) one obtains 2 triplet excitations of equal mass of order J (top and

charm), while the remaining 6 excitations (a triplet and 3 singlets, corresponding to up-

quark and neutrinos) are massless at this point. However, for the special combination

(5)+(73)=HH+HDM , with energy minimum at the tetrahedral ground state, the charm

triplet becomes massless, too, and one ends up with just one massive triplet with mass

of order J = O(ΛF ) - the top quark.

So while the tiny masses of the neutrinos have to do with the conservation of isospin,

the small mass of charm (as compared to top and at this level of approximation) arises

because the energy minimum (5)+(73) implies d~Qcharm/dt = 0 for the charm linear

combination ~Qcharm of isospin vectors.

In (5)+(73) only one vector ~Q is assumed to sit on each tetrahedral site. As a conse-

quence, there are only 3×4=12 excitations, corresponding essentially to top-, charm-
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and up-quark und the neutrinos. Using ~QL and ~QR instead of ~Q as explained in foot-

note 5, one can write down a generalization of (5)+(73) which gives masses to the rest

of the third family, i.e. to bottom and tau. It turns out that mb and mτ are dictated

by the magnitude of J − JLR where JLR = O(ΛF ) is the isospin coupling among ~QLa

and ~QRb[3].

In summary, the isospin interaction HH +HDM can explain, why among all the quarks

and leptons only the top quark receives a mass of the order of the electroweak scale.
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