On the calculation of a polynomial approximation of numerical table values using matrix algebra

Aloys J. Sipers*, Joh. J. Sauren ${ }^{\dagger}$

May 6, 2022

Abstract

In this communication, we propose a computational method involving matrix algebra to approximate numerical values of a given table by a second degree polynomial.

1 Application of matrix algebra to approximate tabulated values by a second degree polynomial

In Engineering practice we encounter the problem of programming in a microcontroller a table consisting of a large number of numerical values. Depending on the size of the table, i.e. the amount of its elements, programming can be a tedious task to complete. Therefore, in this communication we propose to use matrix algebra to approximate the table values by the coefficients of a second degree polynomial, an approximation resulting in sufficient accuracy. To demonstrate the matrix algebra employed, out of lay-out reasons, we limit the size of a given non-symmetrical table to 3×4. The formulas presented here are by no means restricted to symmetrical or non-symmetrical tables, i.e. the formulas can be applied to a table of any given size.
Define

$$
\begin{aligned}
& \vec{z}=\mathbf{M} \cdot \vec{c} \Rightarrow \mathbf{M}^{T} \cdot \vec{z}=\mathbf{M}^{T} \cdot \mathbf{M} \cdot \vec{c} \\
& \vec{c}=\left(\mathbf{M}^{T} \cdot \mathbf{M}\right)^{-1} \cdot \mathbf{M}^{T} \cdot \vec{z} \text { for } \operatorname{det}\left(\mathbf{M}^{T} \cdot \mathbf{M}\right) \neq 0
\end{aligned}
$$

The components of the vector \vec{c} denote the coefficients $c_{p, q}$ of a polynomial $p(x, y)$ with variables x, y

$$
p(x, y):=\sum_{p+q \leq n} c_{p, q} x^{p} y^{q} \quad n, p, q \in \mathbb{N}
$$

[^0]To demonstrate the application of matrix algebra, we write the given table consisting of three rows and four columns as a matrix with elements $z_{i, j}$:

	y_{1}	y_{2}	y_{3}	y_{4}
x_{1}	$z_{1,1}$	$z_{1,2}$	$z_{1,3}$	$z_{1,4}$
x_{2}	$z_{2,1}$	$z_{2,2}$	$z_{2,3}$	$z_{2,4}$
x_{3}	$z_{3,1}$	$z_{3,2}$	$z_{3,3}$	$z_{3,4}$

The numerical figures in the table are approximated by the second degree polynomial ($n=2$)

$$
p\left(x_{r}, y_{k}\right)=c_{0,0}+c_{1,0} \cdot x_{r}+c_{0,1} \cdot y_{k}+c_{2,0} \cdot x_{r}^{2}+c_{1,1} \cdot x_{r} y_{k}+c_{0,2} \cdot y_{k}^{2}
$$

Now, we write all matrix elements of the given table as a vector \vec{z}

$$
\vec{z}=\left(z_{1,1}, z_{2,1}, z_{3,1}, z_{1,2}, z_{2,2}, z_{3,2}, \cdots, z_{1,4}, z_{2,4}, z_{3,4}\right)^{T}
$$

and we write the matrix elements of \mathbf{M} as

$$
\mathbf{M}=\left(\begin{array}{cccccc}
1 & x_{1} & y_{1} & x_{1}^{2} & x_{1} y_{1} & y_{1}^{2} \\
1 & x_{2} & y_{1} & x_{2}^{2} & x_{2} y_{1} & y_{1}^{2} \\
1 & x_{3} & y_{1} & x_{3}^{2} & x_{3} y_{1} & y_{1}^{2} \\
1 & x_{1} & y_{2} & x_{1}^{2} & x_{1} y_{2} & y_{2}^{2} \\
1 & x_{2} & y_{2} & x_{2}^{2} & x_{2} y_{2} & y_{2}^{2} \\
1 & x_{3} & y_{2} & x_{3}^{2} & x_{3} y_{2} & y_{2}^{2} \\
1 & x_{1} & y_{3} & x_{1}^{2} & x_{1} y_{3} & y_{3}^{2} \\
1 & x_{2} & y_{3} & x_{2}^{2} & x_{2} y_{3} & y_{3}^{2} \\
1 & x_{3} & y_{3} & x_{3}^{2} & x_{3} y_{3} & y_{3}^{2} \\
1 & x_{1} & y_{4} & x_{1}^{2} & x_{1} y_{4} & y_{4}^{2} \\
1 & x_{2} & y_{4} & x_{2}^{2} & x_{2} y_{4} & y_{4}^{2} \\
1 & x_{3} & y_{4} & x_{3}^{2} & x_{3} y_{4} & y_{4}^{2}
\end{array}\right)
$$

Solving the matrix equation

$$
\vec{c}=\left(\mathbf{M}^{T} \cdot \mathbf{M}\right)^{-1} \cdot \mathbf{M}^{T} \cdot \vec{z}
$$

results in the vector \vec{c} with its sought for coefficients

$$
\vec{c}=\left(c_{0,0}, c_{1,0}, c_{0,1}, c_{2,0}, c_{1,1}, c_{0,2}\right)^{T}
$$

2 Example

In the following we apply the formulas derived above to approximate the numerical values of a given symmetrical Mollier-table. The elements of this table denote relative humidity values as a function of a column vector $x_{1}=1, x_{2}=2, x_{3}=3$ which denotes the temperature difference in Celsius between the wet and the dry bulb and a row vector $y_{1}=15, y_{2}=18, y_{3}=20$ that denotes the different temperatures of the environment in Celsius.
Assume that the Mollier-table $z_{i, j}$ is given as a matrix with each three rows and columns:

	y_{1}	y_{2}	y_{3}		15	18	20
x_{1}	$z_{1,1}$	$z_{1,2}$	$z_{1,3}$	1	90	80	71
x_{2}	$z_{2,1}$	$z_{2,2}$	$z_{2,3}$	2	91	82	73
x_{3}	$z_{3,1}$	$z_{3,2}$	$z_{3,3}$	3	91	83	75

We now approximate the figures in the table by the second degree polynomial ($n=2$)

$$
p\left(x_{r}, y_{k}\right)=c_{0,0}+c_{1,0} \cdot x_{r}+c_{0,1} \cdot y_{k}+c_{2,0} \cdot x_{r}^{2}+c_{1,1} \cdot x_{r} y_{k}+c_{0,2} \cdot y_{k}^{2}
$$

Denote vector \vec{z} by

$$
\vec{z}=\left(z_{1,1}, z_{2,1}, z_{3,1}, z_{1,2}, z_{2,2}, z_{3,2}, \cdots, z_{1,3}, z_{2,3}, z_{3,3}\right)^{T}
$$

and the matrix \mathbf{M} as

$$
\mathbf{M}=\left(\begin{array}{llllll}
1 & x_{1} & y_{1} & x_{1}^{2} & x_{1} y_{1} & y_{1}^{2} \\
1 & x_{2} & y_{1} & x_{2}^{2} & x_{2} y_{1} & y_{1}^{2} \\
1 & x_{3} & y_{1} & x_{3}^{2} & x_{3} y_{1} & y_{1}^{2} \\
1 & x_{1} & y_{2} & x_{1}^{2} & x_{1} y_{2} & y_{2}^{2} \\
1 & x_{2} & y_{2} & x_{2}^{2} & x_{2} y_{2} & y_{2}^{2} \\
1 & x_{3} & y_{2} & x_{3}^{2} & x_{3} y_{2} & y_{2}^{2} \\
1 & x_{1} & y_{3} & x_{1}^{2} & x_{1} y_{3} & y_{3}^{2} \\
1 & x_{2} & y_{3} & x_{2}^{2} & x_{2} y_{3} & y_{3}^{2} \\
1 & x_{3} & y_{3} & x_{3}^{2} & x_{3} y_{3} & y_{3}^{2}
\end{array}\right)=\left(\begin{array}{cccccc}
1 & 1 & 15 & 1 & 15 & 225 \\
1 & 2 & 15 & 4 & 30 & 225 \\
1 & 3 & 15 & 9 & 45 & 225 \\
1 & 1 & 18 & 1 & 18 & 324 \\
1 & 2 & 18 & 4 & 36 & 324 \\
1 & 3 & 18 & 9 & 54 & 324 \\
1 & 1 & 20 & 1 & 20 & 400 \\
1 & 2 & 20 & 4 & 40 & 400 \\
1 & 3 & 20 & 9 & 60 & 400
\end{array}\right)
$$

Solving the matrix equation

$$
\vec{c}=\left(\mathbf{M}^{T} \cdot \mathbf{M}\right)^{-1} \cdot \mathbf{M}^{T} \cdot \vec{z}
$$

results in the vector \vec{c} with its sought for coefficients

$$
\vec{c}=(97.4503,-14.6140,0.3433,0.1667,0.2895,-0.0111)^{T}
$$

Comparing the approximated table A to the given one, we get

	15	18	20
1	90	80	71
2	91	82	73
3	91	83	75

and as an indication of accuracy we calculate the difference between the approximated and the given table:

$$
\Delta=
$$

```
2.1 Matlab program
%
% Mollier table written as vector z
%
z = [90 ; 80 ; 71 ; 91 ; 82 ; 73 ; 91 ; 83 ; 75 ];
%
% Matrix M as a function of the column vector }\textrm{x}\mathrm{ and
% the row vector y
%
M = [lllllll
        12 154 30 225
        1315945 225
        111181818324
        12 184436 324
        1 3 18 9 54 324
        1 1 20 1 20 400
        1220440400
        1320 9 60 400];
%
% calculation of coefficients of vector c
%
c = inv(M'*M)*M'*z
%
% calculation and result of approximation vector A to
% the Mollier table
%
A = M*C
%
% difference between given and calculated figures
%
Delta = z - A
```


3 Acknowledgement

The authors acknowledge the support of Charlotte Creusen and Ad Klein both affiliated with the Department of Engineering of Zuyd University of Applied Sciences.

[^0]: *Corresponding author, Department of Engineering, Zuyd University of Applied Sciences, NL-6419 DJ, Heerlen, The Netherlands, aloys.sipers@zuyd.nl
 ${ }^{\dagger}$ Department of Engineering, Zuyd University of Applied Sciences, NL-6419 DJ, Heerlen, The Netherlands, hans.sauren@zuyd.nl

