A Decomposition Formula for Third-Order Real Antisymmetric Matrices

Luca Pettinari
Alumnus of Polytechnic University of Marches
Bratislava, April 2022
lalb.pettinari@gmail.com

Abstract

A decomposition formula for an antisymmetric matrix $A_\omega \in A_3(\mathbb{R})$ is provided, where its axial vector is expressed as $\omega = M\nu$, with M symmetric and $\nu \in \mathbb{R}^3$. The proof is based mainly on vector projection through Frobenius inner product. In the end, a vectorial identity involving cross product is proved as a corollary of the decomposition formula.

Keywords Antisymmetric Matrices · Cross Product · Frobenius Inner Product

1 Introduction

Let $A_3(\mathbb{R}) = \{A \in M_3(\mathbb{R}) : A = -A^T\}$ be the set of third-order real antisymmetric matrices, where $M_3(\mathbb{R})$ is the vector space of square real matrices of order 3. Then A_3 is a vector subspace of M_3. In fact, given two antisymmetric matrices $A_1, A_2 \in A_3$, it is easy to show the closure with respect to sum:

$$A_1 + A_2 = -A_1^T - A_2^T = -(A_1 + A_2)^T$$

Similarly, for any given $\lambda \in \mathbb{R}$, we can show the closure with respect to multiplication by a scalar:

$$\lambda A_1 = -\lambda A_1^T = -(\lambda A_1)^T$$

Proposition 1.1 A_3 has canonical base $B = \{E_1, E_2, E_3\}$, where:

$$E_1 = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad E_2 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}, \quad E_3 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$$
Proof: Any $A \in A_3$ can be expressed as a linear combination of E_1, E_2, E_3. In fact:

$$A = \begin{bmatrix} 0 & a_{12} & a_{13} \\ -a_{12} & 0 & a_{23} \\ -a_{13} & -a_{23} & 0 \end{bmatrix} = a_{12}E_1 + a_{13}E_2 + a_{23}E_3$$

therefore $A_3 = \text{Span}(E_1, E_2, E_3)$. Now consider the two following linear combinations:

$$A = \gamma_1' E_1 + \gamma_2' E_2 + \gamma_3' E_3$$
$$A = \gamma_1'' E_1 + \gamma_2'' E_2 + \gamma_3'' E_3$$

By definition, we know that any antisymmetric matrix $A \in A_3$ is such that $A = -A^T$, therefore $A + A^T = 0$. In light of this, we can write:

$$A + A^T = (\gamma_1' E_1 + \gamma_2' E_2 + \gamma_3' E_3) + (\gamma_1'' E_1 + \gamma_2'' E_2 + \gamma_3'' E_3)^T =$$

$$= (\gamma_1' - \gamma_1'') E_1 + (\gamma_2' - \gamma_2'') E_2 + (\gamma_3' - \gamma_3'') E_3 = 0$$

The latter is satisfied if and only if $\gamma_i' = \gamma_i''$ for $i = 1, 2, 3$, which means that there is a unique linear combination to express A, hence $\{E_1, E_2, E_3\}$ is a set of linearly independent vectors. Therefore, $B = \{E_1, E_2, E_3\}$ is a base of A_3.

An immediate consequence of this is that $\dim(A_3) = 3$. Antisymmetric matrices are useful to express cross products in terms of matrix-vector products. In fact, given two vectors $a, b \in \mathbb{R}^3$, their cross product $a \times b$ can be expressed as:

$$a \times b = A_a b$$ \hspace{1cm} (1)$$

where A_a is antisymmetric. Given (a_1, a_2, a_3) the coordinates of a, the matrix A_a reads as follows:

$$A_a = \begin{bmatrix} 0 & a_3 & -a_2 \\ -a_3 & 0 & a_1 \\ a_2 & -a_1 & 0 \end{bmatrix}$$ \hspace{1cm} (2)$$

Given any antisymmetric matrix, it is always possible to associate it with a vector $a \in \mathbb{R}^3$, which is called axial vector.

Let us now consider the following set of antisymmetric matrices:

$$X_1 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} \hspace{1cm} X_2 = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \hspace{1cm} X_3 = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
Similarly to the last result, it can be easily shown that $B' = \{X_1, X_2, X_3\}$ is a basis of A_3, and that given an axial vector $\omega = (\omega_1, \omega_2, \omega_3)$, it is always possible to write its associated antisymmetric matrix A_ω simply as:

$$A_\omega = \omega_1 X_1 + \omega_2 X_2 + \omega_3 X_3$$

(3)

Definition 1.1 Given two real square matrices of order n A, B, the Frobenius inner product is a bilinear form $\langle \cdot, \cdot \rangle_F : M_n(\mathbb{R}) \times M_n(\mathbb{R}) \to \mathbb{R}$ defined as:

$$\langle A, B \rangle_F = \text{Tr}(A^T B)$$

The norm induced by this product is given by:

$$\|A\|_F = \sqrt{\langle A, A \rangle_F}$$

Proposition 1.2 $B' = \{X_1, X_2, X_3\}$ is an orthogonal basis with respect to the Frobenius inner product.

Proof: We have to prove that $\langle X_i, X_j \rangle_F = 0$, for $i, j = 1, 2, 3, i \neq j$. It is straightforward to see that multiplying each row of X_i^T with the correspondent column of X_j (i.e. first row with first column, second row with second column, and so on), one gets a null-diagonal matrix, hence the product is identically zero for any $i \neq j$, proving the statement. □

To conclude with, we can report the following theorem on vector projection [1] applied to antisymmetric matrices expressed with respect to $B' = \{X_1, X_2, X_3\}$.

Theorem 1.1 Given $C \in A_3(\mathbb{R})$ and the orthogonal basis $B' = \{X_1, X_2, X_3\}$ with respect to the Frobenius inner product, it holds that:

$$C = c_1 X_1 + c_2 X_2 + c_3 X_3$$

where

$$c_i = \frac{\langle C, X_i \rangle_F}{\langle X_i, X_i \rangle_F}$$

(4)

are called Fourier’s coefficients.

2 **Decomposition Formula**

Theorem 2.1 Given two axial vector $\nu, \omega \in \mathbb{R}^3$, where ω is expressible as $\omega = M \nu$ with M symmetric, the following equality holds:

$$A_\omega = \text{Tr}(M) A_\nu - 2\text{Asym}(MA_\nu)$$

(5)

where A_ν, A_ω are the antisymmetric matrices associated to the axial vectors ν, ω respectively, and $\text{Asym}(MA_\nu)$ is the antisymmetric part of MA_ν.

3
We want to find out who

Adding and subtracting it to (6), one has:

where the last step is obtained using (3). We now need to characterize \(\sigma \)

Let us show that \(I \) corresponds to \(\text{Tr}(M) A \). In fact:

Let us show that (1) corresponds to \(\text{Tr}(M) A \nu \). In fact:

where the last step is obtained using (3). We now need to characterize \(\sigma \)

First of all, let us observe that we can remove \(\sigma \). In fact, for \(i = j \), the term \(m_{ij} \nu_i - m_{ii} \nu_j = 0 \), hence we can simply put:

We want to find out who \(C \) is. Since \(\text{Tr}(M) A \nu \) is antisymmetric, \(C \) must be forcedly antisymmetric in order to enforce (6) and have \(A \sigma \in \mathcal{A}_3(\mathbb{R}) \). Let us observe from (8) that the components of \(C \) are obtained from some linear operation between \(M \) and \(\nu \). We cannot choose \(C = A M \nu \) because it already appears at the left-hand member of (7), so a hint
for C would be:

$$C = \lambda \text{Asym}(MA_{\nu})$$

with λ opportunely chosen. Observe that this intuition makes sense since the components of C would consist of a sum of addenda where each of them is a product of some m_{ij} multiplying some ν_i (eventually with a shifted sign), as predicated by (8). In addition, taking the antisymmetric part will ensure the requirement of antisymmetry of C. Also this choice is well-defined because:

$$(MA_{\nu})^T = A_{\nu}^T M^T = -A_{\nu} M$$

which means MA_{ν} is neither symmetric nor antisymmetric. Moreover:

$$\text{Asym}(MA_{\nu}) = \frac{1}{2} \left[MA_{\nu} - (MA_{\nu})^T \right] = \frac{1}{2} \left[MA_{\nu} + A_{\nu} M \right] = \frac{1}{2} \left[A_{\nu} M + MA_{\nu} \right] = \frac{1}{2} \left[A_{\nu} M - M^T A_{\nu}^T \right] = \frac{1}{2} \left[A_{\nu} M - (A_{\nu} M)^T \right] = \text{Asym}(A_{\nu} M)$$

In order to show this intuition is actually true, we will take $C = \lambda \text{Asym}(MA_{\nu})$, project it on $B' = \{X_1, X_2, X_3\}$, and check if the projection coefficients are actually corresponding to the components of C as expressed in (8). Before continuing, we need to introduce the following lemma.

Lemma 2.1 Given a symmetric matrix M and an axial vector ν with associated antisymmetric matrix A_{ν}, it holds that:

$$\langle A_{\nu} M + MA_{\nu}, X_i \rangle_F = 2 \langle A_{\nu} M, X_i \rangle_F \quad i = 1, 2, 3$$

where $X_i \in B'$.

Proof: Calculate $\langle A_{\nu} M, X_i \rangle_F$ first:

$$\langle A_{\nu} M, X_i \rangle_F = \text{Tr} \left((MA_{\nu})^T X_i \right) = \text{Tr} \left(A_{\nu}^T M^T X_i \right) = -\text{Tr}(A_{\nu} M X_i)$$

By the commutation property of the trace operator applied to a matrix product, for real square matrices we have $\text{Tr}(AB) = \text{Tr}(BA)$, which allows us to express the Frobenius inner product of two matrices alternatively as:

$$\langle A, B \rangle_F = \langle B, A \rangle_F = \text{Tr}(B^T A) = \text{Tr}(AB^T)$$

Therefore, considering $\langle MA_{\nu}, X_i \rangle_F$:

$$\langle MA_{\nu}, X_i \rangle_F = \text{Tr}(A_{\nu} MX_i^T) = -\text{Tr}(A_{\nu} MX_i) = \langle A_{\nu} M, X_i \rangle_F$$

Therefore:

$$\langle A_{\nu} M + MA_{\nu}, X_i \rangle_F = \langle A_{\nu} M, X_i \rangle_F + \langle MA_{\nu}, X_i \rangle_F = \langle A_{\nu} M, X_i \rangle_F + \langle A_{\nu} M, X_i \rangle_F = 2 \langle A_{\nu} M, X_i \rangle_F$$
which proves the lemma.

Now we can use this lemma to compute the Fourier’s coefficients of $C = \lambda \text{Asym}(MA_\nu)$ along X_1, X_2, X_3. We have that:

$$C = \lambda \text{Asym}(MA_\nu) = \frac{\lambda}{2} [A_\nu M + MA_\nu]$$

and

$$c_i = \frac{(C, X_i)_F}{(X_i, X_i)_F} = \frac{\lambda}{2} \frac{(A_\nu M + MA_\nu, X_i)_F}{(X_i, X_i)_F} = \frac{\lambda}{2} \frac{(A_\nu M, X_i)_F}{(X_i, X_i)_F}$$ \hspace{1cm} (10)

It is easy to calculate that $(X_i, X_i)_F = \|X_i\|_F^2 = 2$ for $i = 1, 2, 3$. In fact, take $i = 1$:

$$(X_1, X_1)_F = \text{Tr} \left(\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} \right) = \text{Tr} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = 2$$

It is easy to show that also for X_2 and X_3, allowing us to rewrite (10) as:

$$c_i = \frac{\lambda}{2} (A_\nu M, X_i)_F$$

which we need to explicit for $i = 1, 2, 3$. Consider $i = 1$:

$$c_1 = \frac{\lambda}{2} (A_\nu M, X_1)_F =$$

$$= \frac{\lambda}{2} \text{Tr} \left(\begin{bmatrix} 0 & \nu_3 & -\nu_2 \\ -\nu_3 & 0 & \nu_1 \\ \nu_2 & -\nu_1 & 0 \end{bmatrix} \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{12} & m_{22} & m_{23} \\ m_{13} & m_{23} & m_{33} \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}^T \right) =$$

$$= \frac{\lambda}{2} \text{Tr} \left(\begin{bmatrix} 0 & \nu_3 & -\nu_2 \\ -\nu_3 & 0 & \nu_1 \\ \nu_2 & -\nu_1 & 0 \end{bmatrix} \begin{bmatrix} 0 & m_{13} & -m_{12} \\ m_{13} & m_{23} & -m_{22} \\ m_{13} & m_{23} & m_{33} \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} \right) =$$

$$= \frac{\lambda}{2} \left(-m_{13}\nu_3 + m_{33}\nu_1 - m_{12}\nu_2 + m_{22}\nu_1 \right) =$$

$$= \frac{\lambda}{2} \left(m_{22} + m_{33} \right) \nu_1 - m_{12}\nu_2 - m_{12}\nu_3$$ \hspace{1cm} (11)

In a similar way, we can find out that:

$$c_2 = \frac{\lambda}{2} \left(m_{11} + m_{33} \right) \nu_2 - m_{12}\nu_1 - m_{23}\nu_3$$ \hspace{1cm} (12)

$$c_3 = \frac{\lambda}{2} \left(m_{11} + m_{22} \right) \nu_3 - m_{12}\nu_1 - m_{23}\nu_2$$ \hspace{1cm} (13)
Now, let us write explicitly the coordinates C as expressed in (8). Still using Einstein’s notation, it reads:

$$C = \left(m_{i1} \nu_i - m_{ii} \nu_1 \right) X_1 + \left(m_{i2} \nu_i - m_{ii} \nu_2 \right) X_2 + \left(m_{i3} \nu_i - m_{ii} \nu_3 \right) X_3 = C_1 = c_1$$

Marking summation explicitly and using $m_{ij} = m_{ji}$, we have:

$$c_1 = \sum_{i=1}^{3} m_{i1} \nu_i - m_{ii} \nu_1 = -(m_{22} + m_{33}) \nu_1 + (m_{12} \nu_2 + m_{13} \nu_3)$$ \hfill (14)$$

$$c_2 = \sum_{i=1}^{3} m_{i2} \nu_i - m_{ii} \nu_2 = -(m_{11} + m_{33}) \nu_2 + (m_{12} \nu_1 + m_{23} \nu_3)$$ \hfill (15)$$

$$c_3 = \sum_{i=1}^{3} m_{i3} \nu_i - m_{ii} \nu_3 = -(m_{11} + m_{22}) \nu_3 + (m_{13} \nu_1 + m_{23} \nu_2)$$ \hfill (16)$$

Thus, (14), (15) and (16) coincide with (11), (12) and (13) respectively for $\lambda = -2$. This allows us to finally express C as:

$$C = -2 \text{Asym}(MA_\nu)$$

Therefore, putting all together in (7), it yields:

$$A_\omega = \text{Tr}(M)A_\nu - 2 \text{Asym}(MA_\nu)$$

□

Since it is always possible to associate an antisymmetric matrix to the axial vector ω and viceversa, this formula holds as long as the axial vector is expressible as a matrix-vector product through M and ν (M symmetric). From this decomposition formula, we can immediately deduce the following result.

Corollary 2.1 Given $a, b \in \mathbb{R}^3$ and a symmetric matrix M, the following relationship is true:

$$M(a \times b) = \text{Tr}(M) a \times b - a \times Mb + b \times Ma$$ \hfill (17)$$

Proof: Consider $\nu \equiv a$ and $\omega = Ma$. Then, using (5), we have:

$$A_{Ma} = \text{Tr}(M)A_a - 2 \text{Asym}(MA_a) = \text{Tr}(M)A_a - \left[MA_a - (MA_a)^T \right] =$$

$$= \text{Tr}(M)A_a - MA_a + A_a^T M = \text{Tr}(M)A_a - MA_a - A_a M$$ \hfill (18)$$

Applying b to both members of (18), one gets:

$$A_{Ma} b = \text{Tr}(M)A_a b - MA_a b - A_a Mb$$

7
Using (2), we can write further:

\[(Ma) \times b = \text{Tr}(M) \times a - M(a \times b) - a \times (Mb)\]

If we reorganize the members and rewrite \((Ma) \times b = -b \times (Ma)\), we obtain exactly:

\[M(a \times b) = \text{Tr}(M) \times a - a \times Mb + b \times Ma\]

3 Conclusion

In the previous section, we have shown how a generic antisymmetric matrix of axial vector \(\omega\) can be decomposed. While it is always trivial to associate any \(A \in A_3(\mathbb{R})\) with a vector of \(\omega \in \mathbb{R}^3\), it is not obvious how to find \(M\) and \(\nu\) such that \(\omega = M\nu\), under the symmetry constraint of \(M\). Future work may consist of showing the existence of the couple \((M, \nu)\) for any given \(\omega \in \mathbb{R}^3\). Moreover, on the basis of that, one could seek for an optimal procedure of determining a three-dimensional vector \(\omega\) from 9 degrees of freedom (6 accounting for \(M\), and 3 for \(\nu\)). Finally, given the vectorial form of equation (17), one could investigate its prospective applications in fields like Vector Calculus, Differential Geometry and Mechanics.

References