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Abstract. The starting point of our paper is Kashihara’s open problem #30, concerning the sequence 
A001292 of the OEIS, asking how many terms are perfect squares of integers. We confirm his last 
conjecture up to the 100128-th term and provide a general theorem which rules out 4/9 of the 
candidates. Moreover, we formulate a new, intriguing, conjecture involving the sequence A352991 
of the OEIS (which includes all the terms of A001292, except the first one). Our conjecture states 
that all the perfect powers of integers belonging to the sequence A352991 are perfect squares and 
they cannot be written as higher order perfect powers. This new conjecture has been checked for any 
integer smaller than 10111121314151617181920212223456789 and no counterexample has been 
found. 

Keywords: Perfect power, Perfect square, Conjecture, Integer sequence. 

2020 Mathematics Subject Classification: 11B50, 11-04. 
 
 
 
 
1 Introduction 
 
In late 2010, the author of this paper found a recreative open problem by Kenichiro Kashihara (see 
[1], open problem #30, p. 25) concerning the sequence A001292 of the On-Line Encyclopedia of 
Integer Sequences (OEIS) [2]. Kashihara’s problem #30 consists of two independent parts and the 
author solved the first one quite easily at the time (the complete solution can be found in [6], Section 
3.3, pp. 12–15), since it asks to find the probability 0 < 𝑝(𝑐) < 1 that the trailing digit of the generic 
term of the sequence A001292 is 𝑐 ∈ {0, 1, 2, . . . ,9} and the formula provided in [6] shows that 𝑝(𝑐) =
!!"#
$$

 for any 𝑐 ≠ 0, whereas 𝑝(0) = 0.0182222 (e.g., if 𝑐 = 7, then 𝑝(7) = %
$$

 = 0.0722222). 
In the present paper, we will focus ourselves on the second part of the above mentioned 

Kashihara’s problem #30, asking how many elements of the sequence A001292 are perfect powers, 
since Kashihara conjectured that there are none. 

Now, bearing in mind that a perfect power of an integer 𝑑 > 0 is a natural number 𝑘 ≥ 2 such that 
𝑎& = 𝑑, where also 𝑎 is a positive integer, we could point out that A001292 (1)	= 1 can be considered 
as a solution and argue how this disproves the conjecture, but (from here on) we will disregard this 
special case and assume that we are looking for a nontrivial counterexample to Kashihara’s 
conjecture. 

Lastly, Section 3 is devoted to introduce a new, fascinating, conjecture concerning perfect powers 
of integers which appear in the OEIS sequence A352991 [4, 5]. 

 
 



2 The {𝟐, 𝟑, 𝟒, 𝟓, 𝟔, 𝟕, 𝟖}(𝐦𝐨𝐝	𝟗) exclusion criterion 
 

In order to be clear on the invoked OEIS sequences, let us introduce a few useful definitions. 
 

Definition 1. We define the 𝑚-th term of the sequence A007908 as A007908(𝑚)	∶=
123_. . . _(𝑚 − 1)_𝑚, where 𝑚 ∈ ℤ'. 

 
Definition 2. We define the sequence A001292 of the OEIS as the concatenations (sorted in 
ascending order) of every cyclic permutation of the elements of the sequence A007908 (e.g., given 
𝑚 = 3, A001292(A007908(3))	= 123, 231, 312). 
 
Definition 3. We define the sequence A352991 of the OEIS as the concatenation of all the distinct 
permutations of the first strictly positive	𝑚	integers, sorted into ascending order (e.g., 12345671089 
is a term of the sequence, while 12345670189 does not belong to A352991, even if all the digits of 
the string 123. . .910 appear once and only once, since “10” is missed). 
 

After having checked the first 100128 terms of the sequence A001292 (see Appendix), exploring 
any exponent at or above 2, we have not found any perfect power, so that Kashihara’s conjecture has 
been verified up to 10!()$ (i.e., the 100129-th term of A001292 is the smallest cyclic permutation 
of A007908(448) and is greater than 10!()$ by construction). 

Moreover, we can prove the following Theorem 1, concerning the sequence A352991 which 
includes every term of A001292. 

 
Theorem 1. For any 𝑚 > 1, A352991(𝑛) cannot be a perfect power of an integer if A352991(𝑛) is a 
permutation of A007908(𝑚) and 𝑚 ∶ 𝑚 ≡ {2, 3, 5, 6}(mod	9). 
Proof. By definition, A007908(𝑚) [3] cannot be a perfect power if 123_. . . _(𝑚 − 1)_𝑚 is divisible 
by 3 and it is not divisible by 3(. Thus, from the well-known divisibility by 3 and 9 criteria, 𝑚 ∶
H3	| ∑ 𝑗*

+,! L ∧ H3( ∤ ∑ 𝑗*
+,! L is a sufficient, but not necessary, condition for letting us disregard any 

permutation of 123_. . . _(𝑚 − 1)_𝑚 (i.e., given 𝑚, if a generic permutation of A007908(𝑚) is 
divisible by 3 and is not congruent to 0(mod	9), then all the permutations of A007908(𝑚) are 
divisible by 3 once and only once, since the commutativity property holds for addition). 

It follows that, for any 𝑛 ∈ ℤ', A352991(𝑛) cannot be a perfect power if it is a permutation of the 
string 123_. . . _(𝑚 − 1)_𝑚, where 𝑚 is such that A134804(𝑚) is divisible by 3. Therefore, the residue 
modulo 9 of every perfect power belonging to A352991 cannot be 2 or 3 or 5 or 6, and this concludes 
the proof of Theorem 1.             £ 

 
Corollary 1. Kashihara’s conjecture is true for the concatenation of any cyclic permutation of 
A007908(𝑚), where 𝑚 ∶ (𝑚 ≡ {2, 3, 5, 6}(mod	9) 	∨ 	𝑚 < 448). 
Proof. We observe that A001292 is a subsequence of A352991 [2, 4]. By invoking Theorem 1, we 
can state that every perfect power candidate has to be the concatenation of a (cyclic) permutation of 
A007908(𝑚), where 𝑚 is such that 𝑚 ≡ {0, 1, 4, 7, 8}(mod	9). On the other hand, all the remaining 
terms up to 99_100_101_. . . _445_446_447_1_2_3_. . . _96_97_98 have been directly checked (see 
Appendix for details) and no perfect power has been found. 

Therefore, Corollary 1 confirms Kashihara’s conjecture for any term of A001292 such that 𝑚 is 
congruent to {2, 3, 5, 6}(mod	9) or 𝑚 ≤ 447.            £ 

 
Corollary 2. ∄𝑛 ∶	A353025(𝑛)	 ≡ {2, 3, 4, 5, 6, 7, 8}(mod	9) and a term of A001292 cannot be a 
perfect power of an integer if the sum of its digits is not congruent to {0, 1}(mod	9).	



Proof. Trivially, 10 ≡ 1(mod	9) and also (1 + 0) ≡ 1(mod	9), so that any positive integer is 
congruent modulo 9 to its digit sum. 

Since from Theorem 1 it follows that every term of the sequence A353025 [5] is a special 
permutation of A007908(𝑚) which is characterized by 𝑚 ≡ {0, 1, 4, 7, 8}(mod	9), in order to prove 
Corollary 2, it is sufficient to note that 

   ∑ 𝑗*
+,! ≡

⎩
⎪
⎨

⎪
⎧
	0(mod	9)			if		𝑚 ∶ 𝑚 ≡ 0(mod	9)
	1(mod	9)			if		𝑚 ∶ 𝑚 ≡ 1(mod	9)
	1(mod	9)			if		𝑚 ∶ 𝑚 ≡ 4(mod	9)
	1(mod	9)			if		𝑚 ∶ 𝑚 ≡ 7(mod	9)
	0(mod	9)			if		𝑚 ∶ 𝑚 ≡ 8(mod	9)

	.       (1)   

                £ 

Remark 1. A well-known property of integers is that every perfect power which is congruent modulo 
5 to 0 is also necessarily congruent to {0, 25, 75}(mod	100), while if a perfect power is congruent 
modulo 10 to 6, then its second last digit is odd. 

Thus, we are free to combine these additional constraints with Corollary 2 in order to reduce the 
number of perfect power candidates among the terms of A352991. 

 
 

3 The conjecture of the perfect squares of A352991 
 

In the first half of April 2022, playing with Kashihara’s conjecture, a more general (and maybe more 
interesting) conjecture arose, it is as follows. 
 
Conjecture 1. Let 𝑛 ∈ ℕ − {0, 1} be given. We conjecture that if 𝑛 is such that A352991(𝑛) is a 
perfect power of an integer, then ∄𝑘 ∈ ℕ − {0, 1, 2} ∶ A352991(𝑛) = 𝑐&, 𝑐 ∈ ℕ. 
 
Remark 2. If confirmed, Conjecture 1 would imply that all the perfect powers (greater than 1) in 
A352991 are perfect squares and only perfect squares (no cube, no square of square, and so forth). 

On April 16 2022, a direct search was performed by the author on the first 10- terms of the 
sequence and no counterexample has been found (42 perfect squares only). 

A few days later, Aldo Roberto Pessolano, performed a deeper search running the Mathematica 
codes published in Appendix, without finding any counterexample and thus confirming Conjecture 1 
(at least) up to the smallest permutation of A007908(22)	(i.e., for any term of A352991 which is 
greater than 1 and smaller than 10111121314151617181920212223456789) meanwhile he 
found 94 distinct perfect squares concatenating all the distinct permutations of A007908(2), 
A007908(3), …,	A007908(15). 
 
Additional open problems. How many perfect squares are there in A352991? Is their number finite? 

 
 

4 Conclusion 
 

Kashihara’s open problem #30 has not been completely solved yet. Even if the first part, concerning 
the probability that the trailing digit of A001292(𝑛) is 𝑐 = 1, 2, . . . , 9, was solved by the author a 
dozen of years ago [6], the second part still needs a proof or a nontrivial counterexample (the smallest 
candidate has 1236 digits) to the related conjecture. 

Moreover, in the present paper, we have introduced a wider conjecture, pertaining the sequence 
A352991 of the OEIS, which allow us to ask to ourselves why there are so many (maybe infinitely 



many) perfect squares in A352991 and not a single higher perfect power has been found among all 
the terms below 10)%. 

 
 

5 Appendix 
 

Aldo Roberto Pessolano helped the author of the present paper by verifying Kashihara’s conjecture 
and Conjecture 1 for a very large number of terms. All the provided Mathematica codes run on the 
M1 processor of his Apple MacBook Air (2020). 

Kashihara’s conjecture has been currently tested up to the 100128-th term of A001292 and we 
confirm that it holds for every perfect power in that range (i.e., the conjecture is true for every integer 
belonging to the set {A001292(2), A001292(3), . . ., A001292(100128)}). The search reached the 
term 99_100_. . . _446_447_1_2_. . . _97_98 ≈ 9.91 ∙ 10!()( in 28823 seconds (about 8 hours of 
calculations) and the code is as follows: 
 
c = True; 
p = Table[Prime[q], {q, 1, 565}]; 
Do[rn = Range[k]; 

n = ToExpression[StringJoin[ToString[#]&/@rn]]; 
If[And[Mod[n, 9] != 3, Mod[n, 9] != 6], 

Do[r = RotateLeft[rn, i - 1]; 
nk = ToExpression[StringJoin[ToString[#]&/@r]]; 
If[IntegerQ[nk^(1/#)], 

Print[nk, " = ", nk^(1/#), "^", #]; c = False; Break[] 
]&/@p, 

{i, 1, k}] 
]; 
If[c, Print["1..", k, " checked."], Break[]], 

{k, 2, 447}] 
 

About our investigation on the perfect powers in A352991, Pessolano has recently completed 
the direct check of every term of A352991 which falls in the interval 
(1, 987654322120191817161514131211110] (see the code below). As expected, the test has not 
returned any perfect power above 2.  

 
z = False; 
h = 3; 
p = Table[Prime[q], {q, 2, 10}]; 
q[x_, k_, d_, m_] := 

( 
y = x^k; 
If[DigitCount[y] == d, 

c = True; 
Do[ 

If[Not[StringContainsQ[ToString[x], ToString[i]]], 
c = False; Break[], 
c = True 

], 
{i, 10, m}], 
c = False 

 ]; 



Return[c] 
) 

Do[r = Range[k]; 
n = ToExpression[StringJoin[ToString[#]&/@r]]; 
If[And[Mod[n, 9] != 3, Mod[n, 9] != 6], 

d = DigitCount[n]; 
( 

s = IntegerPart[(10^(IntegerLength[n] - 1))^(1/#)]; 
f = IntegerPart[(10^(IntegerLength[n]))^(1/#)]; 
Do[ 

If[q[x, #, d, k], Print[x, "^", #, " = ", y]; z = True; Break[]], 
{x, s, f}] 

)&/@p; 
g = 2^h; 
While[g < n, 

If[q[#, h, d, k], Print[x, "^", h, " = ", y]; z = True; Break[]] 
&/@{2, 3, 5, 6, 7}; 

   h++; 
   g = 2^h 
  ] 

]; 
If[z, Break[], Print["1..", k, " checked."]], 

{k, 2, 21}] 
 
On the other hand, the following code run on Pessolano’s M1 processor for 8408.08 seconds and 

returned the complete list of the smallest 94 perfect squares belonging to A352991. 
 

z = 1; 
Do[r = Range[k]; 

n = ToExpression[StringJoin[ToString[#]&/@r]]; 
If[And[Mod[n, 9] != 3, Mod[n, 9] != 6], 

d = DigitCount[n]; 
s = IntegerPart[Sqrt[10^(IntegerLength[n] - 1)]]; 
f = IntegerPart[Sqrt[10^(IntegerLength[n])]]; 
Do[y = x^2; 

If[DigitCount[y] == d, 
c = True; 
Do[ 

If[Not[StringContainsQ[ToString[y], ToString[i]]], 
c = False 

], 
{i, 10, k}]; 
If[c, Print[z, " ", y]; z++] 

], 
{x, s, f}] 

], 
{k, 2, 13}] 

 
These 94 perfect squares correspond to all the perfect powers in 

(1, 98765432131211110] belonging to A352991, while the next perfect square is 



10111382414519161571236 ≈ 1.01 ∙ 10(( (we observe that 100555369894( is a permutation of 
123_. . . _16, as suggested by the statement of Theorem 1). 
 
1  13527684 
2 34857216 
3  65318724 
4  73256481 
5  81432576 
6  139854276 
7  152843769 
8  157326849 
9  215384976 
10  245893761 
11  254817369 
12  326597184 
13  361874529 
14  375468129 
15  382945761 
16  385297641 
17  412739856 
18 523814769 
19  529874361 
20  537219684 
21  549386721 
22  587432169 
23  589324176 
24  597362481 
25  615387249 
26  627953481 
27  653927184 
28  672935481 
29  697435281 
30  714653289 
31  735982641 
32  743816529 
33  842973156 
34  847159236 
35  923187456 
36  14102987536 
37  24891057361 
38  27911048356 
39  28710591364 
40  57926381041 
41  59710832164 
42  75910168324 
43  10135681742311129 
44  10145718212113936 
45  10273411121318569 
46  10391412113852176 
47  10694871331152121 
48  10713293512411681 



49  10947281211113536 
50  11013125389146721 
51  11038121341751296 
52  11053681319247121 
53  11213173481106529 
54  11213472311091856 
55  11213748695310121 
56  11214101328395716 
57  11291351028471361 
58  11318912105421376 
59  11328110357491216 
60  11361038197125241 
61  11613105128317924 
62  11831375612104129 
63  11867213103954121 
64  12131047811153296 
65  12210531113617984 
66  12291331154108176 
67  12311021567131849 
68  12371368115129104 
69  12511389126371041 
70  12598411132110736 
71  12741133825910161 
72  12859110713124361 
73  12861113173295104 
74  13101118612573924 
75  13318759261211041 
76  13751214611018329 
77  15113103721812496 
78  16213112510379841 
79  16798112351131024 
80  18132127110314569 
81  18351311069274121 
82  31329116112107584 
83  32121784510113169 
84  39811362127511104 
85  43139171611081225 
86  51371123211048169 
87  51611037284113129 
88  58911124131067321 
89  71121251383691041 
90  71289611431311025 
91  72511393110124816 
92  83761113421105129 
93  91384713212510116 
94  95641012181133721 
 

In the end, our tests have finally confirmed that all the perfect powers which are smaller than 10)% 
and that belong to the OEIS sequence A352991 are perfect squares (only). 

At the present time, Conjecture 1 has been tested for every integer smaller than 
10111121314151617181920212223456789 and no counterexample has been found. 
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