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Abstract

In this paper, a post-Riemannian formalism is constructed based on
a minimalistic set of modi�cations and suggested as the framework for
a classical alternative to General Relativity (GR) which, notably, can
be formulated in Minkowski spacetime. Following the purely geometri-
cal exposition, arguments are advanced for the transport of matter and
radiation, a Lagrangean quadratic in the gravitational �eld strengths is
considered, and several of the resulting properties are analyzed in brief.
Simple models are then set up to explore the astrophysical and cosmo-
logical reach of the proposed ideas, including their potential (and so far
tentative) agreement with the �classical tests�of GR. Some arguments are
also presented towards quantization within the proposed formalism, and
a few other issues are discussed.
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Men can construct a science with very few instruments, or with
very plain instruments; but no one on earth could construct a science
with unreliable instruments. A man might work out the whole of
mathematics with a handful of pebbles, but not with a handful of
clay which was always falling apart into new fragments, and falling
together into new combinations. A man might measure heaven and
earth with a reed, but not with a growing reed. [1]

1 Introduction

The ongoing search for a fully-developed quantum theory of gravity, probably
the most renowned open problem in theoretical physics, has by now become a
staple to a broad audience of experts and nonexperts alike, as it resisted over a
century of attempts at quantizing it [2]; however, in spite of its prominence, it
also seems to have overshadowed a number of other issues of a purely classical
nature, as illustrated by a fairly recent (meta)list published by Coley [3], which
includes over seventy (!) open problems rooted in plain General Relativity (GR).
The author comments on the situation thus: "GR problems have typically been
under-represented in lists of problems in mathematical physics [...], perhaps due
to their advanced technical nature"; yet at the same time, some of the problems
listed include examples such as "Show that a solution of the linearised (about
Minkowski space) Einstein equations is close to a (non-�at) exact solution" and
"Prove rigorously the existence of a limit in which solutions of the Einstein
equations reduce to Newtonian spacetimes" (RB19 and RB21 respec.), which
are surprisingly basic considering the level of maturity of the �eld.
Aside from unsolved technical problems, however, we can still point to known

(and often well-established) features of GR such as the convoluted treatment
of singularities, and causal and spinor structures [4], the possibility of closed
timelike curves [5], and the lack of a true local conservation law [6] - features
that strike one more like bugs. It is not my point to deny that these (perceived)
bugs can be handled within the current state of the art - indeed, there is exten-
sive literature concerned with each of these issues; rather, it is to suggest that
the conceptual and technical problems that we�re faced with even at the clas-
sical level are due to the idiosyncractic mathematical formulation of GR that
has dominated the �eld since its inception in 1915 - an overly formal one that
tends to alienate a larger audience of physicists, but which, in light of modern
developments in our understanding of di¤erential geometry, might be exchanged
with a simpler, more intuitive apparatus without incurring any loss in any of
the fundamental structures or ideas of physical import.
It may be brie�y pointed, from a historical perspective, that the conventional

view of the physical nature of the metric seems to have taken shape ca. 1907-
1912 - i.e., between the publication of the famous special-relativistic review that
introduced the equivalence principle, and the fateful reencounter of Einstein and
Grossman in Zürich; in particular, Born�s work on the rigid body seems to have
had a major theoretical in�uence in the development of GR, both directly and
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indirectly [7, 8]. After General Relativity was established, it enjoyed empirical
prestige via its prediction of several e¤ects such as the bending of light by
massive bodies - in fact, so much so that by the mid-1970s, alternatives to the
theory weren�t taken very seriously except as possible PPN foils to GR [9], or
something of the sort. At the same time, however, a countercurrent of ideas
inspired by the then-nascent gauge formalism gave rise to a particular family of
theories under the umbrella metric-a¢ ne (gauge) gravity (MAG), which is not
so much an alternative to GR as an augmentation thereof - in which not only
the metric, but also the linear connection and the coframe (or alternatively the
soldering) are taken as dynamical variables [10, 11, 12].
Although we recognize that the MAG programme introduced important in-

sights as to the nature of the gravitational �eld, it is still plagued by di¢ culties
perhaps best expressed by Mielke [12]: "With reference to the proper founda-
tion of a gauge theory of gravity, however, there is no absolute agreement among
the members of the scienti�c community. It is the incorporation of a dynamical
geometry as realized by Einstein via the pseudo-Riemannian metric that seems
to prevent a direct transfer of the Yang�Mills gauge program". Here we see a
sharp con�ict: our best theory for all the non-gravitational interactions is not
only successfully quantized, but it�s also gauged - whereas our best theory for
gravitational interactions is neither; could this be a clue to explain the continued
clash between GR and QFT - and possibly guide us to a better approach?
It was thinking on those lines that lead to the proposal here that this

geometrodynamical (i.e. �gravity-as-metric�) view is fundamentally misguided,
in that the metric need not be taken as a dynamical degree of freedom, and may
be satisfactorily separated from the main machinery of the linear connection;
such an arrangement not only brings about mathematical simpli�cations, but is
also rich with physical implications, such as the restoration of the old �gravity-
as-force�outlook - a viewpoint we will refer to as gravidynamics, to distinguish
it from the previous one. To the best of my knowledge, however, no attempt
has ever been de�nitely forwarded in the literature to pursue such a theory (no
doubt due to the said prestige accumulated by GR over the years, which made
investigators wary of tinkering too much with it); the purpose of the present
work, thus, is towards �lling that gap.
In section II, we review some basic concepts of tensor calculus and develop

an argument leading to the introduction and interpretation of the covariant
derivative; in section III, we augment this covariant machinery by the intro-
duction of some tensorial objects and discuss several di¤erent aspects of their
structure. Section IV introduces physics by means of a transport formalism as
well as a de�nite Lagrangean density; section V further builds on the resulting
physical theory by building and investigating several models with real-world im-
plications. Section VI, then, mentions several loose ends preventing the present
treatment from being a complete theory of gravity, highlighting some challenges
- particularly related to (minimal) coupling and quantization.
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2 Basic Tensor Calculus

Since the reader is assumed to already have some familiarity with tensors and
the relevant multilinear algebra, as well as exterior calculus, we will for the
most part skip several technical de�nitions1 ; for our purposes, it will su¢ ce to
recall just a few. Given is a n-dimensional manifold M , with corresponding
tangent space T (M) and cotangent space T � (M); the meaning of these objects
is readily intuited from observing that, for any point p 2 M , Tp (M) forms a
n-dimensional vector space, and T �p (M) is its dual. Vectors belonging to Tp (M)
can be expanded in terms of a basis feig as v : = v1e1+v2e2+ :::+vnen � viei
, with the vi being the components of the vector, and the familiar Einstein
summation convention is used in the second equality; likewise for covectors,
which are expanded as c : = cie

i , in terms of a (co)basis
�
ei
	
; furthermore,

the outer product 
 allows us to write down the general expression of a tensor
(that itself may be de�ned over any p 2M or the whole M) as

T = T
i1:::ip

j1:::jq
ei1 
 :::
 eip 
 ej1 
 :::
 ejq

= : T
i1:::ip

j1:::jq

pO
n=1

ein

qO
m=1

ejm ; p; q 2 N

We say that T is the tensor itself, the T i1:::ip j1:::jq
are its components,

and the
�
ei1 
 :::
 eip 
 ej1 
 :::
 ejq

	
are the generators of its basis2 . It

displays what is sometimes coloquially referred to as the �tensorial property�of
transforming under chartwise well-de�ned coordinate transformations (x0)i :=
xi

0
= xi

0 �
xi
�
over M as follows:

T
i01:::i

0
p

j01:::j
0
q
= J

i01
i1
:::J

i0p
ip
Jj1 j01

:::J
jq
j0q
T
i1:::ip

j1:::jq
(1)

with a similar expression holding for its generators; here we denote the com-
ponents of the Jacobian matrix of the transformation xi

0
= xi

0 �
xi
�
as J i

0
n
in
:=

@xi
0
n

@xin , whereas J
jm
j0m
:= @xjm

@xj
0
m
are the components of the inverse matrix, as easily

checked using the chain rule of ordinary calculus. Strictly speaking, this is valid
only for coordinate bases

�
ei =

@
@xi ; e

i = dxi
	
, but the above is readily extended

to noncoordinate bases as well, which we denote as
�
e~{ := e

i
~{
@
@xi ; e

~{ := e~{idx
i
	
,

with the
�
ei~{; e

~{
i

	
assumed invertible (ek~{ e

~j
k = �

~j
~{ ; e

~k
i e
j
~k
= �ji ). In this paper, unless

explicitly stated, coordinate bases are always assumed when performing explicit
computations - otherwise, we shall use the tilde notation, to emphasize that the
bases in question are speci�cally noncoordinate (i.e., ei~{ 6= �

i
~{).

This tensorial property, which may more properly be called coordinate-
invariance, or covariance, makes tensors natural objects for the mathematical

1For a brush-up on these mathematical preliminaries, see, e.g., [13, 14, 15].
2 In physics, we write di¤erential equations involving tensors simply because of their nice,

convenient, space-saving properties; as such, the ordering of each individual outer product
ei1 
 ::: 
 eip 
 ej1 
 ::: 
 ejq may, a priori, always be taken to be �normal-ordered� in the
manner shown here.
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description of physical quantities; however, as easily checked from (1), partial
derivatives @k0T

i1:::ip
j1:::jq

= @
@xk0

T
i1:::ip

j1:::jq
are, in general, nontensorial -

which poses a problem for the use of tensors in di¤erential equations. The prob-
lem is simply disposed of in the case of a Riemann space (M;g); this new tensor
g = gije

i 
 ej we call the metric, and it has basically three uses: �rst, is it can
be used to de�ne a notion of distance in the manifold; this is easily illustrated
with the special case of semi-Euclidian metrics (i.e., metrics that can be put as
gij = �ij = diag [�1;�1; :::;�1] in some global chart): given two points x;y,
the distance between them may be written as d (x;y) =

q
�ij (x

i � yi) (xj � yj)
- which indeed corresponds to our ordinary notion of length for strictly Euclid-
ian metrics (i.e., equal to diag [+1;+1; :::;+1] in some global chart). A second
one is that, along with its inverse, g�1 = gijei 
 ej , it allows for raising and
lowering indexes; for example:

T kl:::
i j::: = ging

mkTn l:::
mj:::

A third use will be the construction of the correcting factor we need, by the
introduction of the operation de�ned by�
T
i1:::ip

j:::jq

�
;k

: = rkT i1:::ip j1:::jq
:= @kT

i1:::ip
j1:::jq

+

�
i1
ik

�
T
i:::ip

j1:::jq
+ ::: (2)

:::+

�
ip
ik

�
T i1:::i j1:::jq �

��
j

j1k

�
T
i1:::ip

j:::jq
+ :::+

�
j

jqk

�
T
i1:::ip

j1:::j

�
where the Christo¤el symbol of the second kind

�
l
ij

	
is related to the symbol

of the �rst kind fkjijg by�
l

ij

�
:= glk fkjijg := 1

2
glk
�
@

@xj
gik +

@

@xi
gkj �

@

@xk
gij

�
(3)

and, contrary to common use, we employ a comma rather than a semicolon to
denote the r-operation, for reasons that will be clear later on. After e¤ecting a
change of coordinates gi0j0 = gmlJm i0J

l
j0 from some generic curvilinear system

to another one, we can show the following by straightforward manipulation (mod
standard analytical conditions):�

l0

i0j0

�
=

1

2
gl

0k0
�
@

@xj0
gi0k0 +

@

@xi0
gk0j0 �

@

@xk0
gi0j0

�
= J l

0

lJ
i
i0J

j
j0

�
l

ij

�
+
1

2
J l

0

l

�
Jj j0

@

@xj
J l i0 + J

i
i0
@

@xi
J l j0

�
+
1

2
gl

0k0gij

�
J i i0

�
Jk j0

@

@xk
Jj k0 � J

k
k0
@

@xk
Jj j0

�
+Jj j0

�
Jk i0

@

@xk
J i k0 � Jk k0

@

@xk
J i i0

��
= J l

0

lJ
i
i0J

j
j0

�
l

ij

�
+ J l

0

lJ
j
j0
@

@xj
J l i0
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where in the last equality use was made of the analytical property @
@xi0

J l j0 =
@

@xj0
J l i0 to e¤ect the simpli�cation. This well-known transformation rule not

only shows (explicitly) that the Christo¤el symbols do not form a tensor, but
also allow us to see (and prove by induction) why the r-operation works: it�s
because the extra piece J l

0

lJ
j
j0

@
@xj J

l
i0 in the last equality exactly cancels

out the one that appears due to the derivation of the tensor components.
At this juncture, one must have a very clear picture of what has been es-

tablished, and why: that is, in order to maintain the covariance of our physical
theories, we introduced a �generalized partial derivative�, or covariant derivative,
for the exclusive purpose of bookkeeping coordinate changes in tensor compo-
nents; this requirement, per se, has nothing to do with physics of any kind - it�s
just part of our a priori mathematical framework - in the same vein of number
sets, algebraic structures, and so on.
As for the properties of the Christo¤els, mere inspection of (3) shows that�

l
ij

	
=
�
l
ji

	
; however, arguably more important is its metric compatibility:

gab;c =
@

@xc
gab �

1

2
glk
�
@

@xc
gak +

@

@xa
gkc �

@

@xk
gac

�
glb �

1

2
glk
�
@

@xc
gbk +

@

@xb
gkc �

@

@xk
gbc

�
gal = 0;

�ba;c =
@

@xc
�ba +

1

2
gbk
�
@

@xc
glk +

@

@xl
gkc �

@

@xk
glc

�
�la �

1

2
glk
�
@

@xc
gak +

@

@xa
gkc �

@

@xk
gac

�
�bl = 0

These relations su¢ ce to show that gab ;c = 0 as well.
After the introduction of covariant di¤erentiation, it is customary in GR

and/or tensor calculus textbooks to de�ne the Riemann�Christo¤el (RC) tensor
- typically in terms of transport of a vector along a closed circuit. Such an
undertaking, however, is made considerably more expedient (not to mention
geometrically clear) in the formalism of tensor-valued (multi)forms pioneered
by Cartan [16]. With it, computation of the curvature, as well as other objects
of geometrical interest, becomes quite e¢ cient; indeed, ordinarily, this method
"surpasses in e¢ ciency every other known method for calculating the curvature
2-forms" [9].
A general tensor-valued r-form is de�ned as

T : = T
i1:::ip

j1:::jq

pO
n=1

ein

qO
m=1

ejm = T
i1:::ip

j1:::jqk1:::kr

 
r̂

s=1

�ks

!


 

pO
n=1

ein

qO
m=1

ejm

!
; p; q; r 2 N

Since this formula reduces to our previous de�nition of tensor for r = 0, we
see it is a straightforward generalization of the concept. Also, it is important
to note that, albeit the newly introduced �k are �soldered� to the ek in the
sense that they transform identically under coordinate transformations (e.g.,
�
�k = �

�k
k�

k � e
�k
k�

k), nonetheless the spaces spanned by the �0s and e0s are to
be treated di¤erently - as we shall see below.
With these tensor-valued forms we de�ne the covariant exterior derivative d

by the operation
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dT =
�
rlT i1:::ip j1:::jqk1:::kr

� 
�l ^

r̂

s=1

�ks

!


 

pO
n=1

ein

qO
m=1

ejm

!
(4)

�
�
dT

i1:::ip
j1:::jqk1:::kr

�
^
 

r̂

s=1

�ks

!


 

pO
n=1

ein

qO
m=1

ejm

!

+
�
T
i1:::ip

j1:::jqk1:::kr

�"
d

 
pO

n=1

ein

qO
m=1

ejm

!#
^
 

r̂

s=1

�ks

!

+
�
T
i1:::ip

j1:::jqk1:::kr

� pO
n=1

ein

qO
m=1

ejm

!


"
d

 
r̂

s=1

�ks

!#
In order to satisfy the second equality, one de�nes a 1-form

ba := 
b
ak�

k (5)

that in a coordinate basis is given by bak =
�
b
ak

	
, so that

dea : = ba 
 eb; (6a)

deb : = �ba 
 ea; (6b)

d�c � �ci ^ �i (6c)

The last relation deserves some comment; in a coordinate basis, it is easily
seen to be true: from Clairaut�s theorem, we have d�c = d2xc � 0 - but it is
also true that ci ^ �

i =
�
c
ik

	
�k ^ �i � 0, because of

�
c
ik

	
=
�
c
ki

	
. To see that

it holds even in noncoordinate bases, we will introduce components ~l
~{~j
so that

dv =
�
ej
�
vl
�
+ lijv

i
�
�j 
 el �

h
e~j

�
v
~l
�
+ 

~l
~{~j
v~{
i
�
~j 
 e~l

is covariant (and where the notation e~{ (f) := ei~{
@
@xi f was introduced). This

simpli�es to

~l
~{~j
= e

~l
le
i
~{e
j
~j
lij + e

~l
le
j
~j

�
@je

l
~{

�
from which we get the commutator


~l
~{~j
� ~l~j~{ = e

~l
l

h
ej~j

�
@je

l
~{

�
� ei~{

�
@ie

l
~j

�i
� �c~l

~{~j
(7)

where the c~l
~{~j
are identi�ed with the structure coe¢ cients associated with

the Lie bracketh
e~{; e~j

i
= ei~{

@

@xi

�
ej~j

@

@xj

�
�ej~j

@

@xj

�
ei~{
@

@xi

�
=
h
ei~{

�
@ie

l
~j

�
� ej~j

�
@je

l
~{

�i
e
~l
le~l =: c

~l
~{~j
e~l

But this just happens to match the derivative of �
~l, as well:

d�
~l =

�
@ie

~l
l

�
�i ^ �l =

�
@ie

~l
l

��
ei~{�

~{ ^ el~j�
~j
�
� �ei~{e

~l
l

�
@ie

l
~j

�
�~{ ^ �~j (8)
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where in the third equality we used integration by parts and the fact that

@i

�
e
~l
le
l
~j

�
= @i�

~l
~j = 0. So, comparing eqs. (7) and (8), the result (6c) follows.

As a sanity check, let us compute the metric compatibility in the new for-
malism:

dg = (dgab)
 ea 
 eb + gcb (dec)
 eb + gacea 
 (dec) (9)

� (@cgab)�
c 
 ea 
 eb � (gcbca + gaccb)
 ea 
 eb

� (rcgab)�c 
 ea 
 eb

We thus see the consistency with our previous computation; however, since
this is a tensorial operation, we�re able to rewrite the exact same thing in a
noncoordinate basis

0 � dg = e~c
�
g~a~b
�
�~c 
 e~a 
 e~b �

�
g~c~b

~c
~a + g~a~c

~c
~b

�

 e~a 
 e~b

from which it follows we can perform the linear combinationn
~kj~{~j

o
: =

1

2

h
e~j
�
g~{~k
�
+ e~{

�
g~k~j

�
� e~k

�
g~{~j

�i
=

1

2

h�
~k~{~j + ~{~k~j

�
+
�
~j~k~{ + ~k~j~{

�
�
�
~j~{~k + ~{~j~k

�i
(10)

from which, after some algebra, we recuperate the expression of the Levi-
Civita (LC) connection ~l

~{~j
in any basis:

g~k~l
~l
~{~j
= ~k~{~j =

n
~kj~{~j

o
+
1

2

�
c~j~k~{ + c~{~k~j � c~k~{~j

�
(11)

The combinations of structure coe¢ cients in parenthesis are often called the
Ricci (rotation) coe¢ cients; by inspection, they are seen to be antisymmetric in
~k;~{.
As shown by these examples, the properties of d allow us to breeze through

otherwise laborious calculations - for instance:

d2 (vaea) = d [(dva)
 ea + vadea] =
��
d2va

�

 ea � (dva) ^ dea

�
+
�
(dva) ^ dea + vad2ea

�
�

�
d
�
@jv

a�j
��

 ea + vbd (ab 
 ea) =

�
(@i@jv

a)
�
�i ^ �j

�
+ vb (dab � cb ^ ac )

�

 ea

= : vbRa
b 
 ea (12)

where in the last line the RC tensor is de�ned - from a tensor-valued 2-form.
We can check that this is indeed the same quantity from the textbooks by simply
writing it explicitly:

Ra
b = d

��
a

bj

�
�j
�
�
�
c

bi

��
a

cj

�
�i ^ �j

=

�
@i

�
a

bj

�
�
�
c

bi

��
a

cj

��
�i ^ �j
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From the last line, we see the RC tensor is antisymmetric in i; j, meaning
that, in n dimensions, it has n

3(n�1)
2 independent components; to diminish this,

we can derive (9) again, and, using d2ec = �d
�
cb 
 eb

�
= �Rc

b 
 eb, obtain
the �Ricci identity�

0 � d2g = gcb
�
d2ec

�

eb+gacea


�
d2ec

�
= � (gcbRc

a + gacR
c
b)
ea
eb (13)

which lowers the components down to
h
n(n�1)

2

i2
; we may, however, further

down their number with the help of the algebraic identity, as computed from

d2�a = d
�
ab ^ �b

�
� (Ra

b + 
c
b ^ ac ) ^ �b = Ra

b ^ �b � ac ^
�
cb ^ �b

�
(14)

otherwise known as Ra [bij] = 0. This property further reduces the remain-

ing independent components of Ra bij down to
h
n(n�1)

2

i2
� n

h
n(n�1)(n�2)

3!

i
=

n2(n2�1)
12 ; so, for n = 4, this means we�ve made quite the economy, going from

256 components to just 20 - not too shabby. Finally, we get the so-called Bianchi
identity by a similar procedure:

dRa
b = d

2ab�(dcb)^ac+cb^(dac ) = �
�
Rc
b + 

d
b ^ cd

�
^ac+cb^

�
Ra
c + 

d
c ^ ad

�
(15)

otherwise known (in this paper�s notation) as Ra b[ij;k] = 0; on its turn, this
relation is famous as the starting point in the derivation of the Einstein tensor.
Before closing this section, a �nal word on notation: we can use the metric

to freely lower and raise indexes and rewrite tensor-valued forms however we
prefer, but we have to be careful when nontensorial objects are involved; for
instance, in the case of the RC tensor, its de�ning expression is given by the
structural eq. (12) - but, a posteriori, we may introduce Rab = gacR

c
b, etc. As

another example, consider the covariant derivative U = du of a vector-valued
1-form u; we can read o¤ its components Ua from

Ua 
 ea = d (ua 
 ea) = (dua � uc ^ ac )
 ea

However, if we wish to treat U as a covector-valued 2-form instead, its
components will change to

Ub 
 eb = d
�
ub 
 eb

�
= (dub + uc ^ cb)
 eb

So, if we keep these distinctions in mind, there�ll be no problem with the (ad-
mittedly language-abusing) notationU = Ua
ea = Ub
eb that�ll be employed
later on, because the ambiguity can be eliminated based on the context.

3 Di¤erential A¢ ne Geometry

The concepts thus introduced su¢ ce to formulate a pragmatic, multipurpose
tensor calculus framework fully integrated with exterior algebra, which is par-
ticularly important for problems involving integration and provides a modern,
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more elegant reformulation of the old vector calculus that can be readily gen-
eralized to any dimensionality. Nonetheless, up to now, no explicit mention
has been made of any gravitational phenomena; in particular, the metric was
introduced as an ad hoc, nondynamical mathematical device for the purposes
of providing 1) a formalization of our intuition of �length�, 2) a means to raise
and lower indices, and 3) an explicit expression of the covariant derivative, via
its introduction in the Christo¤els. None of these, we see, has any obvious
gravitational connotation; in fact, since any physical system (whether under
gravitational in�uences or not) may be described in terms of this formalism,
we can appreciate their signi�cance as being purely operational - as part of the
general toolbox of mathematical concepts that we introduce in order to frame
and quantify generic physical phenomena. How, then, can we characterize grav-
itational phenomena as separate from such a toolbox? To this problem we turn
next.
Fortunately, a simple �x is available to us, thanks to the tensor-valued for-

malism: we propose introducing a new operator D that represents a slight gen-
eralization of our previous d by its e¤ect on tensor-valued forms: for d! D,
substitute in eq. (4)

rlT i1:::ip j1:::jqk1:::kr
!

!

rlT i1:::ip j1:::jqk1:::kr

T
i1:::ip

j1:::jqk1:::kr;l
! T

i1:::ip
j1:::jqk1:::kr;l

with DT i1:::ip j1:::jqk1:::kr
= dT

i1:::ip
j1:::jqk1:::kr

, and where now

!

rea � Dea := dea + !
b
a 
 eb + !a; (16a)

!

reb � Deb := deb � !ba 
 ea � !b; (16b)

D�c : = d�c (16c)

with the alternative notation for the components T i1:::ip j1:::jqk1:::kr;l
:=

!

rlT i1:::ip j1:::jqk1:::kr
(thus justifying our previous choice of notation). As seen

from these de�nitions, the tensor-valued 1-form3 !ba and the covector-valued
1-form !a (dual to !b) account for all the deviation between D and d in a
manifestly covariant way; furthermore, it will also prove useful to de�ne from
the general expression of D another operator D0, equivalent to the former but
with !a = 0.
Now that D (respec. D0) has been de�ned, we proceed to once again calcu-

3 Incidentally, this object has already appeared under the name "distortion 1-form" in the
MAG literature at least as early as 1997 [18] - as well as the decomposition of the "total
curvature" into the RC tensor and the "post-Riemannian pieces".
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late the second derivative of the vector v:

D2 (vaea) = D [(dva)
 ea + vaDea] � (Ddva)
 ea + vbD (deb + !ab 
 ea + !b)
�

�
d2va

�

 ea + vb f[d (ab + !ab )� (cb + !cb) ^ (ac + !ac )]
 ea � (cb + !cb) ^ !c +D!bg

� vb f[Ra
b + (d!

a
b � cb ^ !ac � !cb ^ ac )� !cb ^ !ac ]
 ea + [(d!b � cb ^ !c)� !cb ^ !c]g

= : vb [(Ra
b +


a
b )
 ea +
b] (17)

where in the last step we de�ned the tensor-valued 2-form, 
ab , and the
covector-valued 2-form, 
b. In keeping with our previous steps, it is straight-
forward to obtain new Bianchi-like identities associated with them: for instance,

d
ab =
�
d2!ab + d

a
c ^ !cb � ac ^ d!cb + d!ac ^ cb � !ac ^ dcb

�
+ d!ac ^ !cb � !ac ^ d!cb

� 
ac ^ (cb + !cb)� (ac + !ac ) ^
cb + (Ra
c ^ !cb � !ac ^Rc

b)

which, upon rearranging, can be written

D0
 � (!cb ^Ra
c � !ac ^Rc

b)
 ea 
 eb (18)

where 
 := 
ab 
 ea 
 eb. Likewise, noticing that with � := !a 
 ea

D0� = [(d!
a + ac ^ !c) + !ac ^ !c]
 ea =: 
a 
 ea (19)

for the dual of 
b, we have

d
a = d2!a + (dac + d!
a
c ) ^ !c � (ac + !ac ) ^ d!c

� (Ra
c +


a
c ) ^ !c � (ac + !ac ) ^
c

which, de�ning � := d�, rearranges to

d� � (Ra
c ^ !c)
 ea (20)

Up to here, our analysis has led to three sets of objects:
�
ea; e

b;�c
	
; fg;ab ;Ra

bg;
and f!ab ;!a;
ab ;
a;�ag - all of which, with the exception of ab , tensorial in
nature. Consider the �rst of these: even in semi-Euclidian spaces, they can�t
be made to vanish nontrivially, because they�re necessary to de�ne the tensor-
valued forms that�ll be interpreted as physical objects (even in the absence of
gravity); the situation is similar with the Riemannian objects fg;ab ;Ra

bg, be-
cause they�re required to maintain the general covariance of all tensor(-valued)
expressions. This suggests that these objects are not suitable candidates for
being gravitational variables, which we�d like to be able to freely take to van-
ish in a manifestly covariant way; so, we�re left with the post-Riemannian
f!ab ;!a;
ab ;
a;�ag as prime candidates, and to their detailed geometrical
properties we now turn, after introducing some nomenclature; without going
to bundles [19], we shall �nd it convenient to simply refer to them as follows:
a pair of given (!ab ;!

a) de�nes an a¢ ne connection, while a pair (
ab ;

a) an

a¢ ne curvature, whilst !ab and 

a
b considered in isolation de�ne a linear con-

nection and (linear) curvature, respec.; �nally, a given �a will be referred to as
a torsion.
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Let us �rst study the metric compatibility of D (which is identical to that
of D0).

Dg = (dgab)
 ea 
 eb + gcb (Dec)
 eb + gacea 
 (Dec)
� (rcgab)�c 
 ea 
 eb � (gcb!ca + gac!cb)
 ea 
 eb

Since it was already established that gab;c � 0, this shows that the non-
metricity n has a simple dependence on !(ab) =

1
2! (!ab + !ba):

n := !(ab) 
 ea 
 eb � �
1

2
Dg (21)

This observation induces the handy decomposition !ab = �!ab + nab of the
linear connection in terms of the antisymmetric �!ab := ![ab] =

1
2! (!ab � !ba) -

which in turn leads to a similar decomposition of the curvature. After eq. (17),
de�ne

�
ab := d�!
a
b � cb ^�!ac ��!cb ^ ac ��!cb ^�!ac (22)

with �
 :=�
ab 
 ea 
 eb - and substitute it back in that equation:


ab � �
ab + [dn
a
b � (cb +�!cb) ^ nac � ncb ^ (ac +�!ac )� ncb ^ nac ] (23)

= :�
ab +N
a
b

where in the last equality Na
b was de�ned. The above development makes

it natural to de�ne a new operator �D (respec. �D0) as being the same as D
(respec. D0) but with the !ab restricted to �!

a
b only; this will prove useful later

on - though we can already adapt the Ricci identity argument of the previous
section to �D0 and show that �
ab = ��
ba too - just like the RC tensor.
Continuing this process, the nonmetricity can be further decomposed as

� : = ! c
c � n c

c ; (24a)

nab = :
1

n
gab�+ �ab (24b)

from which the curvature can be further decomposed, as well:

Na
b � 1

n
�abd�+ [d�

a
b � (cb +�!cb) ^ �ac � �cb ^ (ac +�!ac )� �cb ^ �ac ](25)

= :
1

n
�abd�+�

a
b

on account of the appearance of terms such as � ^ �, (� ^ �ab + �ab ^ �),
etc., which vanish identically.
This completes the description of our di¤erential a¢ ne formalism. So far in

this and the previous section, we�ve exclusively talked about pure mathematics;
now is the time to transfer these theoretical results into the arena of physics -
but before we do, a last digression will prove useful for bookkeeping purposes:
if we re�ect back on the literature [10, 11, 12], we see references to di¤erent
�geometries�or �spaces�based on criteria such as the (non)vanishing of curvature,
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torsion, nonmetricity, etc. - i.e., starting from the most generic (metric-)a¢ ne
description, one then picks some of the objects describing the geometry to be
dynamical, and such a choice yields a physical theory of gravitation. In our
present formalism, a similar approach can be pursued in terms of the four objects
!a;�!ab;�;�ab comprising the a¢ ne connection; chosing whether or not any of
these vanish yields a total of 16 geometries - some of which I�ve named in Table
I.
Table I. Selected geometries for theories of gravitation.
geometry non-dynamical object
Weyl�Cartan �ab � 0
Weyl�Weitzenböck �!ab � 0;�ab � 0
Weyl !a � 0;�ab � 0
pre-Weyl !a � 0;�!ab � 0;�ab � 0
Cartan � � 0;�ab � 0
Weitzenböck �!ab � 0;� � 0;�ab � 0
Ricci !a � 0;� � 0;�ab � 0
Riemann !a � 0;�!ab � 0;� � 0;�ab � 0
The attempt was made to introduce a nomenclature that mirrors the histori-

cal contributions of several eminent mathematicians; it is necessarily imperfect,
due to the fact these authors did not employ the present schema - its value
being mostly as a mnemonic device, that should be read with care (specially
when comparing with the literature).
In the above list, we deliberately excluded, w.l.o.g., all eight geometries with

�ab 6= 0 guided by physical intuition; however, as the theoretical need for such
geometries may rise, one can easily extend our naming conventions to include
such �elds - though in the present paper, we will not concern ourselves with
them. (Also, the reader will notice the similarity of our taxonomy with that
of the "MAGic cube" of [10]; in fact, by including the �ab �eld, we�d have a
�mAGic tesseract�- an amusing touch.)
At this point, �nally, I will abandon mathematical generality and make

physical commitments in order to obtain a theory of gravity in four-dimensional
spacetime, which will be signaled by the switch to Greek indices. In order to
obtain agreement with Special Relativity, the (nondynamical) metric is taken
to be Minkowski�s (with signature ��� = diag [�1;+1;+1;+1]) - and as a con-
sequence, we have R�

� = 0, which notably simpli�es the previous Bianchi-like
identities obtained with a generic g; as such, the role of gravitational potential
is transferred wholly to the many pieces of the a¢ ne connection that have been
introduced above. Before discussing their dynamics, it is of notice that, from a
purely geometrical perspective, we can �translate�the conventional GR picture
into this framework - which may be surprising to some; but it can be simply
achieved via the assignments

!� = 0;!�� = �
�
� � �� (26)

where the ��� refer to the LC connection computed from the Lorentzian
metric g of Einstein�s theory; it follows from these that the RC tensor in GR
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is equivalent to the curvature in this geometry. This alone might prove the
usefulness of this formalism, for example, in the semiclassical regime - albeit it
doesn�t shed much light on the dynamics, as they�re constrained by the Einstein
�eld equations; henceforth we shall drop this equivalence formalism and instead
deliberately experiment with an approach di¤erent from classic geometrody-
namics, yet closer in philosophy to the gauge �eld theories used in modern
physics.

4 Gravidynamics

The basic requirements for the statement of a gravitational theory are vividly
expressed by the Wheelerian maxim [9]: "Space tells matter how to move; mat-
ter tells space how to curve". In GR, the �rst part essentially alludes to the
geodesic equation, while the second is a shorthand for the EFE. The general con-
ceptual foundation here, however, is no more sophisticated or mysterious than
that of the Lorentz force equation and the Maxwell �eld equations in classical
electrodynamics; thus, what is needed is a framework for the transport of mat-
ter and radiation, as well as a set of �eld equations that govern the strength of
gravitational in�uences a¤ecting said transport. To the question of formulating
such a framework based on the geometries discussed thus far we now turn.
Space tells matter how to move. Our starting point is the recognition that

dv = 0 is essentially the geodesic equation expressed in covariant language; to
see this, write its components w.r.t. a �mixed�basis:

0 = dv =

�
@

@x�
v� + ���v

�

�
�� 
 e� �

�
e�~�

@

@x�
v� + ���v

�e�~�

�
�~� 
 e�

Then, choosing this basis so that e�~0 = v
� =: dx

�

d� , and using the chain rule

to write dx�

d�
@
@x�

dx�

d� � d2x�

d�2 , the
�
�
~0 
 e�

�
-components of the above may be

expressed as
d2x�

d�2
+ ���

dx�

d�

dx�

d�
= 0 (27)

This is the familiar equation of a geodesic in Minkowski spacetime; naturally,
one obtains the GR version by the substitution ��� ! ���� - and by the same
token, it is not di¢ cult to conceive a generalization ��� ! ��� + !

�
�� within

the present scheme; however, let us pause here for a moment, and think about
this physically: since the above expression can be interpreted simply as that
of the acceleration of a particle in the absence of external forces, we see the
��� term must correspond to pseudoforces4 , which appear due to the choice of
coordinate system, and which, by the equivalence principle, must be (locally,
at least) indistinguishable from actual gravitational forces for a free fall. This
would seem to peg the !��� down as the components of the gravitational force;

4We�re all familiar with the concept that gravity can be arti�cially simulated with a cen-
trifuge.
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however, from Newton�s theory, we know those are given by the gradient of a
potential, and this presents a conundrum. It is thus suggestive to re�ect on
the ambiguity we encountered when de�ning the a¢ ne derivative: we found
an expression for the translation potentials, but no natural way to have them
in�uence a vector like the one above; what, then, if we make the heuristic
substitution !��� ! !��� � f���? In that case, we�d be led to a geodesic-like
transport equation (TE)

d2x�

d�2
+
�
��� + !

�
��

� dx�
d�

dx�

d�
= f���

dx�

d�

dx�

d�
(28)

If we then surmise the f��� terms to be related to those of the torsion (which
happens to have the same number of indices as the linear connection), we�d
recover the Newtonian notion of the gravitational force as gradient of a potential,
and we�d make good use of the a¢ ne machinery developed earlier - two birds
with one stone. Thus, let us write for the equation of motion

D0v = a := v
�f���e

�
~��

~� 
 e� (29)

which, we�ll note, is strongly reminiscent of the Euler equation of inviscid
�uid dynamics, provided we interpret D0 as the material derivative - whereas
the �speci�c force�reminds one of the Lorentz force of electrodynamics. Con-
versely, one may write this exact same expression in terms of a Newton(�Cartan)
operator DN, which action on a vector v is given by

DNv := D0v � a = 0 (30)

and resembles Fermi�Walker di¤erentiation; thus, one may in analogy say a
free-falling particle is being �Newton-transported�.
But what is the explicit form of f���? Specializing the transport eq. (28) to

��� = !
�
�� = 0, and making use of x

0 := ct and d�
dt =

�
dt
d�

��1
, we can express

the 3-acceleration of a particle as

d2xk

dt2
=

d�

dt

d

d�

�
d�

dt

dxk

d�

�
=

�
d�

dt

�2�
d

d�

dxk

d�

�
+
dxk

dt

�
d

d�

d�

dt

�
:
= fk��

dx�

dt

dx�

dt
� dx

k

dt

1

c

�
f0��

dx�

dt

dx�

dt

�
(31)

If we want the Newtonian limit, we must ignore all contributions in powers
of the 3-velocity components dxk

dt in the r.h.s. of the last line as well as time

derivatives, leaving us with d2xk

dt2 � fk00c
2 - which tells us that the fk00 are es-

sentially the three components of the Newtonian force - in turn a gradient of
the one potential in the theory. Collecting all this information, let us �nally
introduce5 the Ansatz

f��� =
�
p��p

�
��


��p

�


�
��� (32)

5Although here the force term was essentially guessed on physical grounds, I�ve later found
there are remarkable similarities with the teleparallel approach, as seen, e.g., in [20].
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where the p�s are (unity) projection operators whose sole job is to match
indexes with the appropriate vector spaces; henceforth their presence shall be
implicitly assumed, for brevity. As we see, the only dynamical object in this
formula is the torsion, which in turn depends on the �rst-derivatives of the
connection components !��. Our justi�cation for this is by substitution in the
Newtonian formula together with the stationary condition @

@x0!
�
� = 0, which

then yields

d2xk

dt2
� � @

@xk

�
!00c

2

2

�
(33)

Similarly to GR then, where the Newtonian potential is associated with
(g00+1)c

2

2 , here we see this role is �lled by !00c
2

2 more naturally; con�rmation of
this is found in the FE, which as we�ll see, for only !00 nonvanishing, reduce
to Poisson�s law. Furthermore, as we can see, one may also develop a post-
Newtonian treatment following the lines of, e.g., the bookkeeping formalism of
Weinberg [21]. Before proceeding, we pause to more closely inspect the relation
between !��� and f

�
�� : for in particular, from (32), we see that f��� = �f��� -

just as with �!��� . Bearing this in mind, it is suggestive to introduce the nota-
tion F��� := f

�
�� ��!

�
�� , which encapsulates the ambiguity inherent in telling the

two contributions apart: one may choose the former as to simulate the e¤ects
of the latter, and vice versa, depending on one�s convenience. This remark-
able feature is itself another manifestation of the equivalence principle - which
at this juncture already enables one to incorporate a notion of �gravitoelectro-
magnetism�into the theory: from the discussion just above, we recognize the
f0k� = �fk0� terms as basically gravitoelectric contributions.
A further test of the physical content of these ideas is in the anholonomy of

a vector X = X�e� as measured by the quantity A := r0r0X, where r0 is
just the nonsymmetrized version of D0. From our work above, we have

r2
0X =r0

�
e�~�X

�
;��

~� 
 e�
�
� e�~�

�
e�~�X

�
;�

�
;�
�~� 
 �~� 
 e� (34)

In order to calculate those components, let us �rst de�ne the quantity

B�~� := e
�
~�X

�
;� � e�~�;�X� (35)

so that

A�~�~� = e�~�
�
B�~� + e

�
~�;�X

�
�
;�

� e�~�B
�
~�;� + e

�
~�

�
e�~�;�� � e�~�;��

�
X� + e�~�e

�
~�;��X

� +
�
B�~� + e

�
~�;�X

�
�
e�~�;�

�
�
e�~�B

�
~�;� +B

�
~�e
�
~�;�

�
+ e�~�

�
e�~�;�� � e�~�;��

�
X� +

�
e�~�e

�
~�;�

�
;�
X� (36)

By the reasoning developed previously, we�re speci�cally interested only in
the A�~0~0, so that we can put

A�~0~0 = v
�
�
v�;�� � v�;��

�
X� +

�
v�v�;�

�
;�
X� +

�
v�B�~0;� +B

�
~0
v�;�

�
(37)
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This expression is valid for any X; from this point onwards, we restrict
attention to the particular vectors for which B�~0 = 0 - a condition that, for
given v� , may be seen as a system of �rst-order PDEs on the X��s. Physically
speaking, we can take such vectors to form a basis for a vector that measures
the separation between two neighbouring free-fall curves, so that the quantity
A can be interpreted as the �relative acceleration� between them. With this
restriction, one recognizes this immediately as the Jacobi formula

A�~0~0
:
= �R����v�v�X� (38)

from GR (a.k.a. geodesic deviation), since in that theory the equation of
motion is given by v�v�;� = v

�v�;�
:
= 0 and the only anholonomical contribution

is from the RC tensor. Taking this to be a satisfactory sanity check of the
formalism, let us extend this formula together with its interpretation to the
present scheme, so that the modi�ed formula

A�~0~0
:
= �

h

����v

�v� �
�
f���v

�v�
�
;�

i
X� (39)

is now seen to govern tidal displacements instead, and rather naturally: in
Cartesian coordinates and with vanishing linear connection, the r.h.s. reduces

to X� @
@x�

�
f���v

�v�
�
; for a distribution of matter at rest but stressed, we have

dx0

d� = c;
dxk

d� = 0, and for stationary potentials,
@
@x0!

�
� = 0, so that

A0~0~0
:
= 0; Ak~0~0

:
= ��kjXi@i@j

�
!00c

2

2

�
(40)

Now, from Newtonian theory, we know that the tidal forces depend on the
Hessian of the potential - so the preservation of that behavior is seen to be yet
another consistency check of our previous identi�cation of !

0
0c
2

2 with the classic
Newtonian potential.
As we move to the �eld-theoretical discussion, an interlude on an important

domain of interest is in order. So far, we�ve focused on the transport of matter
(i.e., of time-like vectors); presumably, one may extend the treatment to null-like
vectors in order to obtain the transport of radiation as well, by taking advantage
of the geometric optics approximation [9]: given that the wave vectors for light
rays propagating in the absence of background gravitation do trace out null-like
geodesics, one takes that the a¢ ne equivalent will be traced in the presence
of weak gravitational �elds. While this may be good enough for, say, Solar
System-bound applications, in general we must hold that radiation is in the
�nal analysis the province of the theory of electrodynamics. That theory was
developed by Maxwell and others for the special case of a Minkowski, gravity-less
spacetime; it can be extended as to be compatible with GR - the extension being
thus broadly referred to as Maxwell�Einstein theory. Based on the analogies
we�ve drawn with our a¢ ne geometry, it isn�t di¢ cult to see that there must
be an analogous formalism which, for the sake of clarity, one may refer to as
the Maxwell�Newton(�Cartan) theory ; such a theory, however, lies beyond the
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scope of the present article. We�ll hence treat it as an open-ended question, and
brie�y revisit it later on.
Matter tells space how to curve. Let�s now shift attention to the Lagrangean

density aspect of gravitational dynamics. After all the trouble separating our-
selves from the Riemannian formalism, it is now quite natural to turn to a
Lagrangean quadratic in the �eld strengths, rather than just linear, after all the
desirable features that made them a mainstay in the Standard Model of Particle
Physics - not the least of which being agreeable to quantization6 . With that in
mind, we postulate the (free) gravitational Lagrangean scalar-valued 4-form

LagGD =
1

2�0

�

� ^ ?
� +
�� ^ ?
��

�
(41)

where �0 is the gravitational constant, and ? is the Hodge star7 . Researchers
interested in the rigorous variational treatment are referred to Bleecker [22].
Here, a quick heuristic will su¢ ce: with ~
 as shorthand for the a¢ ne curvature,
Taylor-expanding the Lagrangean up to �rst order in � around a perturbation
�~
 yields

LagGD

�
~
+ ��~


�
=: LagGD

�
~

�
+ ��LagGD

�
~
; �~


�
+O

�
�2
�

(42)

from which we can immediately read o¤ the �rst variation �LagGD and
simplify it further:

�LagGD =
1

�0

�
1

2

�

� ^ ?�
� + �
� ^ ?
�

�
+
1

2

�

�� ^ ?�
�� + �
�� ^ ?
��

��
� 1

�0

�
�
� ^ ?
� + �

�
�
�� +

1

4
���d�

�
^ ?
�
�
�� +

1

4
���d�

��
� 1

�0

�
�
� ^ ?
� + ��
�� ^ ?�
�� +

1

4
�d� ^ ?d�

�
where in the second equality we explicitly constrained ourselves to Weyl�

Cartan geometry, for reasons that�ll be considered later. Now, in order to pro-
ceed, we have to rearrange this quantity to

�LagGD

�
~
; �~


�
=: �~!LagGD (~!;d~!) ^ �~! (43)

where the newly-introduced notation is another self-evident shorthand. Thus,
to obtain �~!LagGD, there is a need for the explicit expression for the variations
of the �eld strengths

�
� =
�
�d!� � �� ^ �!�

�
�
�
�!�� +

1

4
����

�
^ �!� �

�
��!�� +

1

4
�����

�
^ !�

��
�� = �d�!�� � �� ^ ��!�� � ��!�� ^ �� � ��!�� ^�!�� ��!�� ^ ��!��
6Another important aspect of such Lagrangeans pertains to gauge-invariance ; it is pretty

clear that the general a¢ ne group GA (4;R) = GL (4;R) n T (4) and its subgroups are inti-
mately related to the symmetries here - although the exact details remain to be ellucidated.

7The Hodge operator requires a metric which is not to be confused with g = gabe
a 
 eb -

but thanks to the soldering, we may map this g into g� := gab�a 
 �b.
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Notice how, consistent with our philosophy, no term like ��� appears above,
as such variations are physically meaningless. The road is now clear: putting
as usual �d�!�� = d��!

�
� , etc., then integrating by parts, putting the �eld varia-

tions in evidence and dropping the boundary terms, we�re left, after algebraic
manipulation, with

�~!LagGD ^ �~! � � 1

�0

1

4

�
d ? d�� !� ^ ?
�

�
^ ��� 1

�0

�
d ?
� +

�
�� +�!

�
� +

1

4
����

�
^ ?
�

�
^ �!�

� 1

�0

h
d ?�
�� � (�� +�!��) ^ ?�
�� +

�
�� +�!

�
�

�
^ ?�
�� � !� ^ ?
�

i
^ ��!��

The Euler�Lagrange (EL) equations are �nally obtained by equating the
above term with

J~! ^ �~! := �
1

4
C ^ ���T� ^ �!� � L�� ^ ��!�� (44)

where C;T := T� 
 e�;L := L�� 
 e� 
 e� are obviously the current 3-
forms associated with the potentials. All of this can be put in the compact (and
elegant) form:

d ? d�� !� ^ ?
� = �0C (45a)

�D0 ?�+
1

4
� ^ ?� = �0T (45b)

�D0 ?�
� � ^ ?� = �0L (45c)

The equations above showcase the degree of coupling between the di¤erent
pieces of the connection - therefore presenting an opportunity to examine their
asymptotic �atness (i.e., the regimes under which one or more potentials are
taken to zero), which in turn e¤ectively (�weakly�) change the underlying geom-
etry from Weyl�Cartan to one of the other geometries listed in Table 1. It is
apparent from our dynamical laws that this procedure will consistently leave
the currents associated with the vanishing �elds to vanish also - unless !a 6= 0
(thus, for the Weyl�Weitzenböck, Cartan and Weitzenböck cases). Because of
this di¢ culty, we suggest the following (provisional) workaround: referring back
to the above calculation, if we de�ne

�
� ^ ?
� =: ��� ^ ?�� � �0 (Jgrav)~! ^ �~! (46)

where Jgrav is interpreted as the current piece that arises due to gravity
itself, the previous J being that from matter (i.e., non-gravitational sources),
Jmat, the FE may be put in the form

d ? d� = �0 (Cmat +Cgrav) (47a)

d ?� = �0 (Tmat +Tgrav) (47b)
�D0 ?�
 = �0 (Lmat + Lgrav) (47c)
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for which, provided the net currents in the r.h.s. vanish, we do get appro-
priate vacuum behavior; furthermore, if the theoretical need arises, one may
introduce Lagrange multipliers so as to properly take care of the Jgrav at the
Lagrangean level (�strongly�). This is ultimately the reason for our introduction
of �� as �eld strength, instead of 
� .
Having said this, if we keep to a Weitzenböck geometry (for which
� � ��),

we get simply

d ?� = �0T (48a)

d� = 0 (48b)

Hopefully, the formal similarity with the Maxwell equations of electrody-
namics will not be lost on the reader - specially as we show the Bianchi identity
alongside the EL law. It is an unsurprising result, actually, due to the well-
known fact that both Coulomb�s and Newton�s gravitational laws are derived
from the same di¤erential equation (namely, Poisson�s), on the one hand, and
the fact that both the translation subgroup T (4) and the unitary U (1) of quan-
tum electrodynamics are Abelian, on the other. This showcases the prospects
of the framework we�re advocating, as it allows the immediate application of
familiar electrodynamical techniques [23], which are relevant to establishing the
Newtonian limit, the existence of gravitational waves, and even hint at hitherto
unexplored possibilities, such as analogues of a �macroscopic�formulation sim-
ilar to that used for dielectrics, or of magnetic monopoles (which in this case
would signal the breakdown of the Bianchi-like identity). From these arguments,
this (sub)theory is seem to o¤er a rich phenomenological testbed that can be
explored with known theoretical tools, as well as a rather convenient starting
point for a quantum theory of gravity; for these reasons, it�ll be convenient to
give this special case its own name: we�ll call it teledynamics, to honor also the
old teleparallelism theory.
Another important consequence of the laws thus formulated pertains to the

phenomenology of the (relativistic) stress-momentum T: just as we did to com-
pute the anholonomy associated with a (co)vector in the �rst section, we easily
verify that

d2 ?� � (?�)� ^ d2e� � (?�)� ^R�
� 
 e�

Since we restrict attention to R�
� � 0, it follows from the FE that dT :

= 0 -
or to put in words: the statement of the conservation of the stress-momentum
follows as a consequence of the �eld equations - just like in GR! Indeed, we can
con�rm that this expression gives a set of (four) conservation laws by writing
the components explicitly:

dT =
1

6

�
r�T����

�
�� ^ �� ^ �� ^ �� 
 e� (49)

=
�
r0T�[123] �r1T�[023] �r2T�[031] �r3T�[012]

�
�0 ^ �1 ^ �2 ^ �3 
 e�

Analogous considerations for the case of only �!�� nonvanishing lead us to
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the formulae

�D0 ?�
 = �0L (50a)
�D0
�
 = 0 (50b)

which are simply the Yang�Mills (YM) equations associated with the (non-
Abelian) Lorentz group; for this reason, one may call this subtheory orthody-
namics. Contrasted with the Maxwellian nature of teledynamics, this orthody-
namics doesn�t have an immediate interpretation in Newtonian terms, but at
the same time may be tied to the presence of a conserved current associated
with, e.g., rotations. Unsurprising, again, if we interpret this in light (mutatis
mutandis) of the pioneering works of Uchiyama [24] and Kibble [25]; doubly so,
if we also heed the no less prophetic words of Cartan [17]: "La translation révèle
la torsion, la rotation révèle la courbure de la variété donnée". This is then the
physical motivation, or justi�cation, for keeping to Weyl�Cartan geometry: it
is large enough to allow us to formulate a gauge theory for the Poincaré group
(prominent in SR), from which the gravitational force is seen to emerge as a
natural consequence thereof. All that is left to interpretation is the single extra
�eld �, which may always be taken to vanish identically if no theoretical neces-
sity of it is apparent; more interestingly, however, it might be associated with
the subgroup of scalings of the conformal group, which is a symmetry group for
the source-free Maxwell equations [26], and/or be made to perform a function
similar to that of the Higgs �eld in the Standard Model, which at present seems
to be the only elementary boson that is not the carrier of any force, being intro-
duced in ad hoc fashion in order to spontaneously break the symmetry of the
electroweak theory. In a similar vein, another possible speculative use of this
�eld might be in the context of in�ationary cosmology.

5 Gravitational mechanics

We shall now study several di¤erent teledynamical models in order to explore
the consequences of the theory. For what follows, it will prove convenient to
introduce the following: for a given solution of the TE with velocity components
dx�

d� , we de�ne the (dimensionless) time dilation factor �

��c2 := ���
dx�

d�

dx�

d�
(51)

to best keep track of its e¤ects on transport. From the de�nition, it follows
that � must be always locally nonnegative (depending on whether the curve is
time-like or null-like); furthermore, one would like to check that it can be made
constant everywhere the curve is evaluated - so that the curve may be regarded
as physically realistic.
As our �rst (and simplest) example of a solution of the FE (48a), we consider

plane-waves; taking a cue from Maxwell�s theory, we also notice there�s a gauge
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freedom associated with the torsion, in that we�re free to add the derivative of
a vector � to the potential:

� = d (!a 
 ea)! d [!a 
 ea + d�]
= �+ �bRa

b 
 ea

This leaves � invariant due to our choice of Minkowski geometry; thus, we
may impose a further condition in !a without altering the �eld strength, which
governs observable outcomes. A particularly attractive condition would be the
PDEs compactly written as d ? � = 0; this reads, in components,

j��j�
1
2 @�

�
j��j

1
2 ���!��

�
+ ���!��

�
�� = 0 (52)

which are now recognizable: in Cartesians, they reduce simply to the �four-
fold Lorenz condition����@�!�� = 0 - as expected from the electrodynamical
analogy. The nice thing about this �gauge�is that it condenses the teledynamical
FE down to the single formula

�2!�� � �0 j��j
� 1
2

�
1

6
j��j

1
2 ���������"����T

�
���

�
=: �0 j��j�

1
2 T�� (53)

where �2 := r2 � @20 := @2x + @
2
y + @

2
z � @20 is the d�Alembertian operator

and T�� the Hodge dual8 of the stress-momentum. From such manipulations,
it is evident that in a vacuum plane-waves derived from linear combinations of
e�� exp

�
�ik�x�

�
with e��k

� = 0 satisfy the �eld equations, provided k�k� = 0
(i.e., they travel at the speed of light, as in GR).
Next, let us consider a perfect (isotropic) �uid in Cartesians, for which the

stress-momentum reads in full

Tpf : =
�
�mc

2
�
e0 
 dxx ^ dxy ^ dxz + (P ) ex 
 dx0 ^ dxy ^ dxz +

(P ) ey 
 dx0 ^ dxz ^ dxx + (P ) ez 
 dx0 ^ dxx ^ dxy (54)

As an immediate consequence of this de�nition, it follows from the conser-
vation laws (49) that such a system has of necessity stationary speci�c density
(i.e., @0�m = 0) and uniform hydrostatic pressure (i.e., @kP = 0). In keeping to
these two restrictions, and putting !00 = !

0
0 (x; y; z) and !

x
x = !

y
y = !

z
z = a

�
x0
�

as the only nonvanishing components, the �eld equations reduce to the pair9

r2!00
:
= �0�mc

2; (55a)

�@20a
:
= �0P (55b)

which o¤ers no mathematical di¢ culty; indeed, as mentioned previously, it
even contains Poisson�s law as a special case. If, however, we�re interested in

8Cf. [27].
9We�re not working in the Lorenz gauge - not here, nor in any further example.
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more realistic models for systems of astrophysical interest like collapsing stars
and polytropes, or even cosmologies, it becomes clear that Tpf must be suitably
modi�ed. As an illustration of the general method, consider adding a ~T to Tpf ,
and extending the dependency of !00 to !

0
0 = !00

�
x0; x; y; z

�
; provided ~T does

not modify the density nor the pressure, the only other conditions it needs to
meet in order for the given Newtonian potential to satisfy the FE are

@0
�
@k!

0
0

� :
= �0 ~T

0
k (56)

So, we choose the ~T 0k as to satisfy this relation �weakly�, and put the remain-
ing ones to zero. The e¤ect of this can be seen in the conservation laws directly,
for � = 0:

0
:
= @0

�
�mc

2
�
� @x

�
~T 0[0yz]

�
� @y

�
~T 0[0zx]

�
� @z

�
~T 0[0xy]

�
:
= @0

�
�mc

2
�
� 1

�0
@0
�
r2!00

�
But the last line vanishes identically, due to Poisson�s law, and no new

relations are introduced. We can actually do better, and interpret this little
trick physically: if the above represents a statement of the conservation of mass,
then the ~T 0k just introduced correspond naturally to a current responsible for
dynamically displacing such a mass, in much the same way as electric current
displaces charge; if there were no such currents, it�d be impossible to transport
it continuously across any given spatial boundary. Similar justi�cations may
equally be invoked in extending the dependency of a to spatial coordinates, as
well; in that case, they have to do with the transport of momentum.
Be as it may, we can now consider cosmological models for which �m =

�m
�
x0
�
and P = P

�
x0
�
: separating !00 = �0�mc

2f (x; y; z), the sole nonvan-

ishing torsion components are seen to be �0k0 =
�0�mc

2

2 @kf and �k0k =
1
2@0a.

We�re not interested in the detailed evolution of the Cosmos, though; instead,
let us assume that, at some epoch in the past, we have �m; P ! 0. The rea-
soning here is physically self-explanatory: low-density �uids tend to have low
internal pressure as well, and both conditions seem adequate for treating the
highly diluted intergalactic medium. Substituting these quasivacuum conditions
into the pressure equation, we have that a = 2H0

c x
0 is a solution, where H0 is

a constant with dimensions of time�1. Under these general conditions, we also
have �0k0 � 0, leading us to the transport equations

d2x0

d�2
� F 0xx

dxx

d�

dxx

d�
� F 0yy

dxy

d�

dxy

d�
� F 0zz

dxz

d�

dxz

d�
= 0 (57a)

d2xx

d�2
� F x0x

dx0

d�

dxx

d�
= 0 (57b)

d2xy

d�2
� F y0y

dx0

d�

dxy

d�
= 0 (57c)

d2xz

d�2
� F z0z

dx0

d�

dxz

d�
= 0 (57d)
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The three spatial components are numerically identical, and readily inte-

grated after multiplication by exp
�
�
R x0

F i0idx
00
�
to

Ki := exp

 
�
Z x0

F i0idx
00

!
dxi

d�
(58)

which may in turn be substituted into the temporal equation after multipli-
cation by 2dx

0

d� to yield

d

d�

"�
dx0

d�

�2
�
�
K2
x +K

2
y +K

2
z

�
exp

 
2

Z x0

F i0idx
00

!#
= 0 (59)

Thus, de�ning the term in brackets as K0, we �nally obtain ��c2 = �K0;
since � = 0 for a light-beam, we can solve for the frequency shift in terms of���dx0d� ���:

��

�
:=

���dx0d� ���
then

�
���dx0d� ���

now��dx0
d�

��
then

= 1� exp
 Z x0now

x0then

F i0idx
00

!
(60)

We need now solve for the F i0i, in order to obtain an empirically observable re-
sult. If we take advantage of the Minkowski geometry to put�

�
x0now � x0then

�2
+

D2 = 0, where D is the spatial distance between emitter and receiver as de-
termined from observed luminosities, and Taylor-expand the exponential in the
above formula, we get

��

�
= 1� exp

�
�H0
c
D

�
� H0

c
D (61)

which closely mirrors Hubble�s law for distances small compared to a �Hubble
radius� c

H0
. This is rather convenient, because it gives free range to cosmogonical

models such as a Big Bang-like scenario to �t parameters related to the relative
elemental abundances of H and He, the temperature of the cosmic blackbody
radiation, and the distribution of galaxies and other astronomical structures,
independently of cosmographical considerations such as the redshift-luminosity
dependence; one need only be careful when matching the current dusty epoch
with the earlier, denser one (as it is currently thought to have been).
For our third case study, we shift to spherical coordinates. A more extensive

discussion of a generalized �uid model and the associated FE was relegated
to an Appendix; here, we focus on some consequences for the special case of
a stationary, spherically symmetrical vacuum: taking only !00 and !

'
0 to be

nonvanishing, the FE reduce to the pair

@r
�
r2@r!

0
0

�
= 0; (62a)

@r
�
r2@r!

'
0

�
+ 2r@r!

'
0 = 0 (62b)
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for the two unknowns, whose asymptotically admissible nontrivial solutions
are given by !00 = ��

r ; !
'
0 =

�
r3 , � and � being constants of integration; the �rst

of these corresponds, naturally, to the Schwarzschild radius, as we�d expect from
Newtonian theory - while the other is a new parameter, tentatively identi�ed
as a measure of the rotation of the point-like source generating the �eld. Now,
since the only nonvanishing components of the �eld strength are given by

�00r = �1
2
@r!

0
0;

�r0' = �1
2
r''!

'
0 ;

��0' = �1
2
�''!

'
0 ;

�'0r = �1
2
@r!

'
0 �

1

2
''r!

'
0 ;

�'0� = �1
2
''�!

'
0 ;

we can explicitly calculate the nonvanishing force components appearing in
the TE (28), ending up with the system

d2x0

d�2
�
�
F 0r0

dxr

d�

dx0

d�
+ F 0'r

dx'

d�

dxr

d�
+ F 0'�

dx'

d�

dx�

d�
+ F 0r'

dxr

d�

dx'

d�
+ F 0�'

dx�

d�

dx'

d�

�
= 0

d2xr

d�2
+ r��

dx�

d�

dx�

d�
+ r''

dx'

d�

dx'

d�
�
�
F r00

dx0

d�

dx0

d�
+ F r0'

dx0

d�

dx'

d�

�
= 0

d2x�

d�2
+ �''

dx'

d�

dx'

d�
+ 2�r�

dxr

d�

dx�

d�
�
�
F �0'

dx0

d�

dx'

d�

�
= 0

d2x'

d�2
+ 2'r'

dxr

d�

dx'

d�
+ 2''�

dx'

d�

dx�

d�
�
�
F'0r

dx0

d�

dxr

d�
+ F'0�

dx0

d�

dx�

d�

�
= 0

Rather than considering this generally, we�ll restrict ourselves as usual to
x�

:
= �

2 , which we see is indeed a solution for the third equation, leaving then
the remaining three simpli�ed down to

d2x0

d�2
�
�
F 0r0

dxr

d�

dx0

d�
+ F 0'r

dx'

d�

dxr

d�
+ F 0r'

dxr

d�

dx'

d�

�
= 0 (63a)

d2xr

d�2
+ r''

dx'

d�

dx'

d�
�
�
F r00

dx0

d�

dx0

d�
+ F r0'

dx0

d�

dx'

d�

�
= 0 (63b)

d2x'

d�2
+ 2'r'

dxr

d�

dx'

d�
�
�
F'0r

dx0

d�

dxr

d�

�
= 0 (63c)

Before proceeding, we wish to check that ��c2 is indeed an integral of
motion; to do so, �rst we solve the � = 0 problem to obtain the constants of
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integration

K0 : = exp

 
�
Z xr

F 0r0dx
r0

!
dx0

d�
; (64a)

Kr : =

�
dxr

d�

�2
+

K2
'

(xr)
2 �K

2
0 exp

 
2

Z xr

F 0r0dx
r0

!
; (64b)

K� : =
dx�

d�
= 0; (64c)

K' : = (xr)
2 dx

'

d�
(64d)

from which we see that ��c2 � Kr; then, for � 6= 0, we employ the same
notation but this time around without assuming K0;Kr;K' to be constant.
Rewriting the equations in terms of these K�s, we end up with

dK0

d�
= exp

 
�
Z xr

F 0r0dx
r0

!�
F 0'r + F

0
r'

� dx'
d�

dxr

d�
; (65a)

dKr

d�
= 2

dxr

d�

��
F r00 � F 0r0

� dx0
d�

dx0

d�
+
�
F r0' � F 0r'

� dx0
d�

dx'

d�

+
�
F'0r (x

r)
2 � F 0'r

� dx0
d�

dx'

d�

�
; (65b)

dK'

d�
= (xr)

2
F'0r

dx0

d�

dxr

d�
(65c)

But notice that because of the symmetry Fr00 = �F0r0, etc. of the force
terms, the curly brackets in the r.h.s. of (65b) vanishes identically, leaving
us with dKr

d� � � d
d��c

2 = 0, as we wished to show. Additionally, the scheme
presents an approach to treating the � 6= 0 problem perturbatively, by expanding

K0 = K
(0)
0 + �K 0

0 (�) ; (66a)

K' = K(0)
' + �K 0

' (�) (66b)

and treating the r.h.s. of (65a) and (65c) as �rst-order in the perturbation
parameter �; then, the resulting equations for the perturbations of the K�s can
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be immediately integrated to

K 0
0 �

Z 264�F 0'r + F 0r'� K
(0)
'�

xr(0)

�2 exp
 
�
Z xr(0)

F 0r0dx
r0

(0)

!
dxr(0)

d�

375 d�
� �K

(0)
'

2

1�
xr(0)

�3 ; (67a)

K 0
' �

Z "
K
(0)
0

�
xr(0)

�2
exp

 Z xr(0)

F 0r0dx
r0

(0)

!
F'0r

dxr(0)

d�

#
d�

� �K
(0)
0

2

1

xr(0)
; (67b)

where we take for brevity xr(0) to refer to the unperturbed solution, and
expanded the exponentials to zeroth order in the small (dimensionless) quantity
�
xr
(0)
, since this yields the leading contributions.

Alternatively, if one is interested in exact solutions for eqs. (63a-63c), it is
easily checked that

x0 = c� ; xr = R; x' =
2�

T
� (68)

for R; T constant give one such solution, provided the constraint�
2�

T

�2
= � 1

R

�
F r00c

2 + F r0'
2�

T
c

�
=

1

R3

�
�c2

2
+ �c

2�

T

�
(69)

is met (which incidentally, for � = 0, we recognize as a particular instance
of Kepler�s third law); in this case, we compute

��c2 := �c2 +R2
�
2�

T

�2
= �

�
1� 1

Rc2

�
�c2

2
+ �c

2�

T

��
c2 (70)

so that the expression in the square brackets is seen to provide a constraint
on the radius of a timelike solution, such as a planetary orbit.
Having laid all this groundwork for the transport across our simple vacuum

two-parameter model, we can now produce estimates of e¤ects relevant to obser-
vation and of interest to astronomy; for example, if we ignore the small quantity
K 0
0, (64a) can be used to model the gravitational redshift observed between a

location at radius R and one at the slightly larger radius R+ h :

��

�
:=

�
dx0

d�

����
R
�
�
dx0

d�

����
R+h�

dx0

d�

���
R

� 1� exp
�

�

2 (R+ h)
� �

2R

�
� �h

2R2
(71)

This result seems to match the GR prediction as famously tested by the
Pound�Rebka experiment [28].
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Next, we return to the exact solution (68). Our interest isn�t in this trajec-
tory per se, but rather in the transport of a spacelike vector s along it. Based
on the discussion in the previous section, such a transport can be expressed by
the formula

u�
@

@x�
s� + u�s���� = u

�s�F��� (72)

where ��� and F
�
�� are both evaluated w.r.t. the components of the free-fall

curve, with tangent u� = dx�

d� . Putting
ds�

d� =
dx�

d�
@s�

@x� , this can then be written
in components as follows:

ds0

d�
�
�
F 0r0s

r dx
0

d�
+ F 0r's

r dx
'

d�

�
= 0 (73a)

dsr

d�
+ r''s

' dx
'

d�
�
�
F r00s

0 dx
0

d�
+ F r0's

0 dx
'

d�

�
= 0 (73b)

ds�

d�
= 0 (73c)

ds'

d�
+ 'r's

r dx
'

d�
= 0 (73d)

By deriving the radial equation and substituting in the others, we get

d2sr

d�2
+�

�
2�

T

�2
sr = 0 (74)

For � > 0, we see from this that vr is sinusoidal; for de�niteness, let us pick

sr = S cos
�
�

1
2
2�
T �
�
. Substituting this into the remaining equations, we can

integrate them to

s0 = ��� 1
2
2�R

cT
S sin

�
�

1
2
2�

T
�

�
; s� = s�0; s

' = ��� 1
2
S

R
sin

�
�

1
2
2�

T
�

�
(75)

and compute (for general �)

���s
�s� = S2 +R2

�
s�0
�2
> 0 (76)

thus corroborating that s is indeed spacelike. The signi�cance of this result
lies in the fact that, for an observer falling freely alongside the curve with
components x�, it takes a period T as measured in local time to complete a full
revolution - but by the time that is accomplished, sr and s' don�t return to
their respective initial values; this occurs only a little later, after

T 0 = ��
1
2T �

�
1 +

1

2Rc2

�
�c2

2
+ �c

2�

T

��
T =

�
1 +

(1� �)
2

�
T; (77)

which in turn translates to an excess angle of

� � 2�
�
1 +

(1� �)
2

�
� 2� = (1� �)� (78)
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swept by the orbit. This can be interpreted as a form of frame-dragging,
analogous to the Lense�Thirring e¤ect in GR - although the presence of �
already suggests the value to be at variance with that expected from Einstein�s
theory, or at least an experimental constraint on the parameters of this model.
Finally, as our third application of (63a-63c), we consider the anomalous

perihelion precession. We assume for simplicity � � 0, and treat the orbit
variationally, by assuming it can be suitably approximated by the Keplerian
expression

1

xr
=
f1 + e cos [(1��)x' � !]g

p
(79)

where the eccentricity e, the semi-latus rectum p, the longitude of perihelion
! and the quantity � are all constants that parameterize it. Since it�s possible
to rewrite

�
dxr

d�

�2
in terms of this 1

xr , substitution in (64b) yields

Kr
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��
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(80)

after expanding the exponential. In this expansion lies the nature of the
approximation being invoked: for suppose we require the r.h.s. to be a constant,
only up to �rst order in �

xr ; in that case we may put � = 0 and solve for p by
taking the second brackets to vanish, obtaining the quasi-Newtonian result

p = p0 :=
2K2

'

�K2
0

(81)

for K0 = c. Likewise, extension to second order in �
xr would obtain a pair

of algebraic equations on the two unknowns � and p via the vanishing of the
second and third brackets; these in turn immediately reduce to the conditions
p = p0 � � and

0 = �2 � 2� + �

p0

) � = 1�
r
1� �

p0
� 1�

�
1� �

2p0

�
(82)

Taking the negative-sign root, then, leaves us with � � �
2p for p � �.

In the case of an elliptic orbit, 2�� would seem to give us the anomalous
amount of precession after one revolution; this result is roughly a third of what
is predicted by GR [21]. Keep in mind, though, that the above calculations were
all done in a purely relativistic context which does not immediately translate
to what is observed astronomically; based on (64a), putting x0 = ct implies
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that dt
d� = exp

�R xr
F 0r0dx

r0
�
- so that there�s a correction that needs to be

taken into account when writing the components of the orbit as a function of
t. Arguably10 , this correction might just be what is needed to obtain the full
empirical e¤ect (technical details nonwithstanding).
At any rate, for the readers tempted to rush to the conclusion that this pur-

ported discrepancy falsi�es the model from the outset (not to mention the entire
theory so far discussed!), I would suggest the exercise of caution: for it may be
noted that the result was obtained under extremely simple assumptions, as well
as the use of a number of approximations; between inclusion of rotational (i.e.,
� 6= 0) e¤ects and post-Newtonian corrections, as well as a careful comparison
with observational data (all of which falling beyond the scope of this article),
there is still a lot of room within the theory to accomodate the apparent dispar-
ity - being thus at this juncture unseemly to outright dismiss the e¤ort, just yet.
Similar considerations naturally extend to other testable e¤ects of gravitational
theories we haven�t addressed here, like lensing and echo delay.

6 Miscellaneous questions

The paradigm here presented and explored is relatively new, whereas General
Relativity has the bene�t of a century of peer-reviewed publications, and of
astronomical and Earthbound observations, which were (and are) interpreted
by the lens of the theory. In absence of a working �theory of everything�, I�d like
to address a few objections that the (rightfully so) skeptic may level against this
framework, before it even gets o¤ the ground. The �rst (possibly more stringent
even than the �classic tests�touched upon in the last section) is that, even at
the classical level, the formalism we�ve developed is incomplete: one needs to
show how all the varied subjects such as thermodynamics, hydrodynamics11 and
electrodynamics would adapt or otherwise be made compatible with the tensor-
valued formalism, in such a way as to include a proper variational treatment,
suitable interpretation of the gauge aspects, and miscellaneous items of interest
formulated covariantly; to see how these interconnect, consider that in the case
of the Maxwell�Newton theory one wants not only the form of the Maxwell FE
and Lorentz force equation in the presence of gravity while guaranteeing the
former will satisfy the geometric optics limit, but also the Maxwell�Poynting
stress tensor written as a vector-valued 3-form that may be used as a source
for the gravitational �eld. For the moment such details present a theoretical
corner that remains to be explored; said exploration amounts to a non-negligible
undertaking, true, and I do not purport to have completed such a large-scale
project. Nonetheless, such di¢ culties should not distract us from the fact that
the incompleteness in display is not of a fundamental nature, but rather an
artifact of ignorance.

10Another thing to keep in mind is that in the end of the Appendix it is pointed out that a
�quadrupole�contribution to the Newtonian potential may also be a solution to this problem.
11For an approach to continuum mechanics similar in spirit to my take here, cf. [29].
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Moving to speci�c issues in the previous section; �rst, gravitational waves.
Although the solutions were obtained in elementary fashion, it is not entirely
clear how cogent they are to the quantization program: for it can be objected
that the �polarizations�e�� are not compatible with spin-2 waves, and this raises
further questions. Gravitational-wave astronomy, however, does not seem to
provide a severe challenge, because agreement with interferometric observation
might be met just by constraining the stress-momentum of the matter that
sources the waves, and applying appropriate boundary conditions; in principle,
one simply refurbishes the GR calculations for, say, the luminosity due to the
orbital decay of close binaries, and accounts for discrepancies by adjusting T��
accordingly for one�s model. This might even be useful as an analytical tool for
probing astrophysical systems.
Speaking of quantizing: the current proposal is compatible with standard

quantum �eld-theoretical techniques for dealing with non-Abelian groups; this
can be seen with the help of a simple recipe: �rst, one writes down a gauge theory
of the Lorentz group that keeps only the (antisymmetric) curvature-bearing
piece of the free Lagrangean (41). Naturally, it is the associated potential that
is quantized as well as treated as a gauge �eld; in order to understand what
is being �gauged�here, however, we remind ourselves that in particle physics
one deals with �internal� symmetries associated with abstract labels that we
attach to quantum states [30]. What kind of label should we have here, given
everything is already Lorentz-invariant by construction? Since it�s also the case
that each elementary particle already belongs to some spinorial representation
[31], unitary operators for in�nitesimal transformations in spin-space can be
constructed with appropriate generators of the Lie algebra of the Lorentz group,
so as to leave the state invariant; gauging this theory then means making such
spin-transformations spacetime-dependent (i.e., local) via a minimal coupling
prescription.
The general procedure delineated in the previous paragraph is familiar to

particle physicists - meaning it probably won�t cost much in terms of theoretical
machinery to implement it. Once this Lorentz gauge theory is laid down, one
then proceeds to the next step: invoking the equivalence principle, make the
substitution �!��� ! �F��� for the �eld components of the gauge �eld - where
the torsion is naturally also present in the now full-blown Lagrangean (41),
whose associated potential is also quantized. This can be tentatively treated as
a form of gauging the Poincaré group - and while the nonminimal coupling will
likely introduce challenges in the description of particle interactions, it seems to
be the most straightforward route towards a quantum theory of gravity based on
the present framework and established particle physics. If, however, it proves to
be nonrenormalizable, or otherwise intractable, one is still free to look for other
quantization schemes; the situation would be no worse than the many current
attempts at quantizing GR.
Let us now comment on the concept of black holes, since it can lend itself

to some confusion and possible equivocation. At peril of sounding pedantic, I�d
like to draw some logical distinctions for clarity: �rst, one may talk of a black
hole as a particular kind of vacuum solution of the gravitational �eld equations;
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secondly, one may talk of a collapsar as a particular kind of compact object
akin to neutron stars; and thirdly, one may talk of certain dynamical phenomena
observed by astronomers that hint at high concentrations of unobserved matter.
In regards to the �rst one, we�d also like to brie�y comment on the curious

happenstance that a black hole model also doubles as the theoretical underpin-
ning for the classical tests of General Relativity, in the form of the Schwarzschild
metric. It is a rather unfortunate circumstance that seemingly only a minority
of authors are vocal (or even cognizant) about the fact that the vacuum solution
published by Schwarzschild in 1915 is not actually the same black hole metric
featured ubiquitously and prominently in textbooks under his name. Develop-
ing the claim12 would only serve to stretch this article further and lose focus on
the bigger picture, so we�ll concentrate on just two points: �rst one is that, in
modern textbook notation (and in my favored signature convention), Schwarz-
schild�s original solution [34] can be written

g� = �
h
1� �

�
r3 + �

�� 1
3

i
c2dt2+

24 r4
�
r3 + �

�� 4
3

1� � (r3 + �)�
1
3

35 dr2+�r3 + �� 23 �d�2 + sin2 �d'2�
(83)

where � and � are constants of integration. By introducing the coordinate

transformationR� :=
�
r3 + �

� 1
3 , it is readily shown that dR� = r2

�
r3 + �

�� 2
3 dr,

so the above may be put as

g� = �
�
1� �

R�

�
c2dt2 +

�
1� �

R�

��1
dR2� +R

2
�

�
d�2 + sin2 �d'2

�
(84)

which is quite familiar to physics students everywhere. So, is this a black
hole? Not necessarily - but it is understandable why one would interpret it
as such; part of the confusion seems to stem from a misappreciation of the
concept of di¤eomorphism invariance by more physics-minded researchers. One
way to see this is the following: if the range of the coordinate r is [0;+1),
that makes the range of R� to be

h
�
1
3 ;+1

�
- meaning that, for � = �3, the

metric singularity R� = � is identi�ed with the origin r = 0 of the coordinate
system; this was noticed by Schwarzschild himself, and is the basis of his choice
for this parameter, as well as of his claim that the resulting solution represents
physically a point-mass (as explicited in the title of the paper). To insist that
the range of R� be extended to [0; �) as well in this case would be tantamount
to glueing a �pocket universe�at the origin - and needless to say, there is no
physically compelling, observational reason to do so; nonetheless, it�s important
to realize that, incidentally, putting � = 0 also obtains a (di¤erent) solution to
the vacuum EFE, the Hilbert�Droste metric. That they can be both made to
look the same via coordinate transformation is ultimately irrelevant, because
form-invariance is not the same as general covariance, is the moral of this story.
12For a historical overview, see sec. 2 and refs therein of [32]; for an opposing viewpoint,

see [33].
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Another important point, which to my knowledge is not su¢ ciently em-
phasized (or even mentioned) anywhere in the literature, is that, from a post-
Newtonian perspective, both solutions reduce to the same expression when ex-
panded to low order13 in �

r :

�
�
1� 1�

r
+ 0

�2

r2
+O

�
�3

r3

��
c2dt2 +

�
1 + 1

�

r
+O

�
�2

r2

��
dr2 (85)

+ r2
�
1 + 0

�

r
+O

�
�2

r2

�� �
d�2 + sin2 �d'2

�
Thus, to the extent that Solar System experiments probe only gravitational

in�uences up to this order in the metric components (and ignoring frame-
dragging e¤ects), we see the classical tests cannot distinguish between the two
solutions - therefore providing a mathematical justi�cation for the use of the
Hilbert�Droste vacuum to model the solar gravitational �eld, in spite of the fact
that the Sun is obviously not a black hole in any sensible use of that nomencla-
ture. That this is not a mere philosophical digression is due to the fact that the
distinction just pointed is more poignant in the present proposal: it is not clear
at all what (if any) solution would correspond to a black hole in the Hilbert�
Droste sense, whereas the vacuum exterior to a point-mass in the Schwarzschild
sense does not present any di¢ culty of principle, and is the one more directly
related to the classical solar tests, anyway. If we go beyond those tests, however,
we can still entertain the astrophysical idea of the collapsar by a more careful
study of the FE for the interior of a compact object - and indeed an idealized
model of the equations that might govern such an object has been delineated in
the Appendix. Finally, one can also ask whether Penrose�s argument [35] may
not be adapted to the present discussion, with appropriate modi�cations as sug-
gested by the generalized form of the Jacobi equation (39); this complements
the collapsar discussion not only insofar the simpli�cation of spherical symmetry
is concerned, but also in terms of observed phenomenology, given astronomers
don�t observe collapsars (or black holes) directly, but only infer their presence
via dynamical e¤ects that are interpreted in gravitational terms, such as stellar
motion around a seemingly empty region that can be explained by packing a
large mass into a small volume therein.
This line of reasoning segues naturally into another open puzzle of astro-

nomical interest - namely, the collection of phenomena that fall under the dark
matter umbrella. As an illustration of the possibilities a¤orded by the proposed
framework, we notice one such phenomenon explained by the dark matter hy-
pothesis, that of the anomalous galactic rotation curves, may be framed not in
terms of �missing�mass (presumably of matter not accounted for in the Standard
Model of Particle Physics), but rather as missing acceleration [36]; based on the
transport equation (28), this in turn suggests two simple explanatory routes:
either by a gravito(electro)magnetic e¤ect (which has indeed been entertained
[37] in the GR context), or the presence of a nonvanishing linear connection that

13Cf. [21], p. 183.
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adds to the Newtonian expectation, thanks to the equivalence principle - and
there is always, of course, the combination of both. There may be even more
possibilities to explore, before the necessity of postulating a hitherto undetected
form of matter to explain observations imposes itself.
In view of this development, one may want to ask as to other modern mys-

teries such as the e¤ect that came to be referred as �dark energy�; at this point,
however, we �nd it more �tting to conclude this section with a rather poignant
quote by Sachs & Wu [38]: "Cosmology (like the rest of physics) is circular
reasoning in the following sense: one cannot really discuss the empirical data
coherentIy without using, explicitIy or implicitly, some tentative theoretical
model; one cannot sensibly choose even a tentative theoretical model without
some reference to the empirical data".

7 Concluding remarks

Since the introduction of GR in the beginning of the 20th century, the Rie-
mannian paradigm has dominated the theoretical framework of classical gravi-
tation - partly because it was then the state-of-art of di¤erential geometry, and
partly because of the tremendous empirical successes it undoubtedly enjoyed
since. The geometrical alternative de�ned and discussed in this paper stands on
its own mathematical merits regardless of any further physical consideration,
and indeed may be studied on its own right - however, as we�ve shown, it also
displays a list of potentially desirable features for a gauge theory of gravity -
perhaps even as a competitor to the Einstein theory. Nonetheless, a complete
understanding of how it can be used to describe real-world gravitational phe-
nomena is still wanting and riddled with open problems which, in particular,
currently preclude us from contrasting it empirically with GR. While this might
at �rst sight seem like a fatal weakness dooming the whole enterprise, one should
remind oneself that the perspective being advocated here is rather new and as
such should not be readily dismissed without due consideration of its contents,
incomplete they may be; indeed, I wanted to leave the matter of the gauge
content as open-ended as possible for now to showcase the phenomenological
power of the formalism - questions of symmetry pose a rich scenario to explore
from here (not least those touching subjects such as reframing the �cosmological
principle�in this language). Furthermore, the very nature of this incompleteness
represents a de�niteness in terms of a research programme exploring these ques-
tions systematically - not the least being that (apart from the caveats already
addressed) these ideas do not seem to require a substantial revision of previous
physics, as it seems to be the case with several modern attempts at quantizing
gravity.
Given the current status of research, it is of interest to explore as many

di¤erent avenues as possible. The revision of our geometric intuition being here
proposed comes with pros and cons, but it is hoped that the impression will
be that the pros outweigh the cons. It is in this sense that we posit the the-
ory presents, at the current stage of inquiry, a contender for the Einsteinian
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paradigm; the simple fact we obtained results that agree with experiment qual-
itatively and/or within an order of magnitude, which is no mean feat, should at
the very least raise some eyebrows - thus encouraging a more rigorous study of
the problem; where there�s smoke, often one �nds �re.
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8 Appendix: Axisymmetrical, rigidly rotating,
time-dependent �uid model

For spherical coordinates

x0;

x = r sin � cos';

y = r sin � sin';

z = r cos �

the metric reads

� = �dx0 
 dx0 + dxr 
 dxr + r2
�
dx� 
 dx� + sin2 �dx' 
 dx'

�
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Based on this, we propose the following Ansatz for the potentials !�� that
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vanish from the get-go (in addition to demanding that @'!�� = 0):0BB@
!00 !0r !0� = 0 !0'
!r0 !rr !r� = 0 !r' = 0

!�0 = 0 !�r = 0 !�� !�' = 0
!'0 !'r = 0 !'� = 0 !''
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Substitution into (48a) yields the �nal expression for the �eld equations
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We now construct a model for the stress-momentum: starting from the per-
fect �uid with components

Tpf =
�
�mc

2r2 sin �
�
e0 
 dxr ^ dx� ^ dx' +

�
Pr2 sin �

�
er 
 dx0 ^ dx� ^ dx' +

(P sin �) e� 
 dx0 ^ dx' ^ dxr +
�

1

sin �
P

�
e' 
 dx0 ^ dxr ^ dx�

we e¤ect a transformation x0 = x0
0
; r = r0; � = �0; ' = '0 � 
t0 into a

primed coordinate system rotating at constant speed 
; the perfect �uid stress-
momentum changes to

Tpf =
�
�mc

2r2 sin �
�
e0 
 dxr ^ dx� ^ dx' +Tkpf 
 ek
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�mc
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where the Tk
0

pf 
 ek0 piece is form-invariant w.r.t. the unprimed system.
Based on this, we de�ne a new T
 by the components of the above expression
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but with the primes removed (i.e., as in the original, untransformed system).
The rationale for this procedure is that an active rigid rotation can be simulated
by a passive one - i.e., we interpret T
 to be the stress-momentum of an (ideal-
ized) rigidly rotating perfect �uid. Finally, in order to account for more complex
�uid behavior, we introduce a �correction�term ~T, so that the stress-momentum
to be considered in the FE can be put in the form T = T
 + ~T.
Since all the ~T���� are in principle arbitrary (or rather, problem-dependent),

we �nd it useful to specify the diagonal components ~T 0[r�'];
~T r[0�'];

~T �[0'r];
~T'[0r�]

in the following manner: specializing to !0r = !
r
0 = 0 and !

'
' = !

�
� = !

r
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and substitute these into the FE (while keeping in mind that @'!�� � 0),
the latter are seen to simplify to the two comprehensive formulae

�2!00
:
= �0�mc

2; (87a)

�2!rr
:
= �0P (87b)

To check whether this simple result is compatible with the conservation law
dT

:
= 0, we just substitute eqs. (86) alongside the FE in:
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Thus, our choice (86) is seen to be consistent with eqs. (87); that takes care

of the speci�c density and pressure.
While the above treatment provides a way to study more complex situations

such as stellar collapse, it is also useful to consider more idealized cases of interest
- in particular, something that we might recognize as more or less equivalent to
the Kerr solution in GR. Such a solution is, presumably, simple in nature, as
well as stationary; this reduces the problem, then, to the system

�0�mc
2 :
=

1

r2
@r
�
r2@r!

0
0

�
+

1

r2 sin �
@�
�
sin �@�!

0
0

�
; (88a)

�0P
:
=

1

r2
@r
�
r2@r!

r
r

�
+

1

r2 sin �
@� (sin �@�!

r
r) ; (88b)

�0

�
�

c
�mc

2r2 sin �

�
:
=

1

sin �

�
@r
�
@r!

0
'

�
+ sin �@�

�
1

r2 sin �
@�!

0
'

��
;(88c)

�0

�



c
�mc

2r2 sin �

�
:
= r2 sin �

�
1

r2
@r
�
r2@r!

'
0

�
+
2

r
@r!

'
0 (88d)

+
1

r2 sin �
[@� (sin �@�!

'
0 ) + 2 cos �@�!

'
0 ]

�
where for simplicity we assumed that ~T 0[0r�] =

~T'[r�'] = 0. The problem now
bifurcates into an interior solution and an exterior vacuum (�m = P = 
 = 0)
that may be matched at the boundary of the distribution of matter; one can
solve the former by introducing a speci�c equation of state such as the one for
a relativistic gas of free fermions [39], but we�ll con�ne our interest to the latter
case. This is a simple matter of using the method of separation of variables to
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write

!00 = Al (r)C
1
2

l (cos �) ;

!0' = Ql (r)C
� 1
2

l (cos �) ;

!'0 = Rl (r)C
3
2

l (cos �)

with the help of the Gegenbauer polynomials [40] C�l (and ignoring !
r
r since

it has the same equation as !00), so as to obtain from (88) the ODEs

@2rAl +
2

r
@rAl =

l (l + 1)

r2
Al; (89a)

@2rQl =
l (l � 1)
r2

Ql; (89b)

@2rRl +
4

r
@rRl =

l (l + 3)

r2
Rl (89c)

The above is then easily solved using Euler�s method: putting Al / rk; Ql /
rm and Rl / rn we get

k (k + 1) = l (l + 1) ;

m (m� 1) = l (l � 1) ;
n (n+ 3) = l (l + 3)

Consideration of the asymptotic behavior leads us to pick o¤ k = � (l + 1)
for l � 0, m = � (l � 1) for l � 2, and n = � (l + 3) for l � 0. Notice that
in the special case of spherical symmetry (i.e., l = 0) the potential !0' doesn�t
drop o¤with radial distance; this in turn justi�es modeling the exterior vacuum
of a spherically symmetrical (but rotating) point-like source by putting !0' = 0.
If, furthermore, we also take !rr = 0, we end with a two-parameter model,
comparable with Kerr�s.
Incidentally, an interesting alternative to this �; �-model is presented by

the above discussion: suppose we take only !00 nonzero, but this time make

it a combination of C
1
2
0 (cos �)
r and C

1
2
2 (cos �)
r3 (for de�niteness, call this the �; �0-

model). In this case new terms F 0�0; F
�
00 dependent on the torsion component

�0�0 will arise; however, since it can be checked that the latter vanishes for
� = �

2 , it follows that we can still use eqs. (64)! The only di¤erence is that F
0
r0

will now include a term proportional to r�4, and this seems to agree with the
GR transport, for judicious choice of �0.
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