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Abstract

Modern gravitation theory is couched in Riemannian geometry. In this
paper, a post-Riemannian formalism is constructed based on a minimalis-
tic set of modi�cations and principles (such as that of manifest covariance)
and suggested as the framework for a classical alternative to General Rel-
ativity which, notably, can be formulated in Minkowski spacetime. Fol-
lowing the purely geometrical exposition, a Lagrangean quadratic in the
gravitational �eld strengths is considered, and some of the properties of
the resulting �eld equations, including their limiting Newtonian behavior,
are analyzed in brief, as well as continuum phenomenology. Some ten-
tative arguments are presented towards a description of the coupling of
matter with gravitation within the proposed formalism, and a few issues
with the paradigm are discussed.

1 Introduction

The ongoing search for a fully-developed quantum theory of gravity, probably
the most renowned open problem in theoretical physics, has by now become a
staple to a broad audience of experts and nonexperts alike, as it resisted over a
century of attempts at quantizing it [1]; however, in spite of its prominence, it
also seems to have overshadowed a number of other issues of a purely classical
nature, as illustrated by a fairly recent (meta)list published by Coley [2], which
includes over seventy (!) open problems rooted in plain General Relativity (GR).
The author comments on the situation thus: "GR problems have typically been
under-represented in lists of problems in mathematical physics [...], perhaps due
to their advanced technical nature"; yet at the same time, some of the problems
listed include examples such as "Show that a solution of the linearised (about
Minkowski space) Einstein equations is close to a (non-�at) exact solution" and
"Prove rigorously the existence of a limit in which solutions of the Einstein
equations reduce to Newtonian spacetimes" (RB19 and RB21 respec.), which
are surprisingly basic considering the level of maturity of the �eld.
Aside from unsolved technical problems, however, we can still point to known

(and often well-established) features of GR such as the convoluted treatment
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of singularities, and causal and spinor structures [3], the possibility of closed
timelike curves [4], and the lack of a true local conservation law [5] - features
that strike one more like bugs. It is not my point to deny that these (perceived)
bugs can be handled within the current state of the art - indeed, there is exten-
sive literature concerned with each of these issues; rather, it is to suggest that
the conceptual and technical problems that we�re faced with even at the clas-
sical level are due to the idiosyncractic mathematical formulation of GR that
has dominated the �eld since its inception in 1915 - an overly formal one that
tends to alienate a larger audience of physicists, but which, in light of modern
developments in our understanding of di¤erential geometry, might be exchanged
with a simpler, more intuitive apparatus without incurring any loss in any of
the fundamental structures or ideas of physical import.
It may be brie�y pointed, from a historical perspective, that the conventional

view of the physical nature of the metric seems to have taken shape ca. 1907-
1912 - i.e., between the publication of the famous special-relativistic review that
introduced the equivalence principle, and the fateful reencounter of Einstein and
Grossman in Zürich; in particular, Born�s work on the rigid body seems to have
had a major theoretical in�uence in the development of GR, both directly and
indirectly [6]. After General Relativity was established, it enjoyed empirical
prestige via its prediction of several e¤ects such as the bending of light by
massive bodies - in fact, so much so that by the mid-1970s, alternatives to the
theory weren�t taken very seriously except as possible PPN foils to GR [8], or
something of the sort. At the same time, however, a countercurrent of ideas
inspired by the then-nascent gauge formalism gave rise to a particular family of
theories under the umbrella metric-a¢ ne (gauge) gravity (MAG), which is not
so much an alternative to GR as an augmentation thereof - in which not only
the metric, but also the linear connection and the coframe (or alternatively the
soldering) are taken as dynamical variables [9�11].
Although we recognize that the MAG programme introduced important in-

sights as to the nature of the gravitational �eld, it is still plagued by di¢ culties
perhaps best expressed by Mielke [11]: "With reference to the proper founda-
tion of a gauge theory of gravity, however, there is no absolute agreement among
the members of the scienti�c community. It is the incorporation of a dynamical
geometry as realized by Einstein via the pseudo-Riemannian metric that seems
to prevent a direct transfer of the Yang�Mills gauge program." Here we see a
sharp con�ict: our best theory for all the non-gravitational interactions is not
only successfully quantized, but it�s also gauged - whereas our best theory for
gravitational interactions is neither; could this be a clue to explain the continued
clash between GR and QFT - and possibly guide us to a better approach?
It was thinking on those lines that lead to the proposal here that this

geometrodynamical (i.e. "gravity-as-metric") view is fundamentally misguided,
in that the metric need not be taken as a dynamical degree of freedom, and may
be satisfactorily separated from the main machinery of the linear connection;
such an arrangement not only brings about mathematical simpli�cations, but is
also rich with physical implications, such as the restoration of the old "gravity-
as-force" outlook - a viewpoint we will refer to as gravidynamics, to distinguish
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it from the previous one. To the best of my knowledge, however, no attempt
has ever been de�nitely forwarded in the literature to pursue such a theory (no
doubt due to the said prestige accumulated by GR over the years, which made
investigators wary of tinkering too much with it); the purpose of the present
work, thus, is towards �lling that gap.
In section II, we review some basic concepts of tensor calculus and develop

an argument leading to the introduction and interpretation of the covariant
derivative; in section III, we augment this covariant machinery by the intro-
duction of some tensorial objects and discuss several di¤erent aspects of their
structure. Section IV introduces physics by means of a de�nite Lagrangean,
as well as a phenomenological exploration of relativistic hydrodynamics in the
present formalism. Section V, then, mentions several loose ends preventing the
present treatment from being a complete theory of gravity, highlighting some
challenges - particularly related to (minimal) coupling.

2 Basic Tensor Calculus

Since the reader is assumed to already have some familiarity with tensors and
the relevant multilinear algebra, as well as exterior calculus, we will for the
most part skip several technical de�nitions1 ; for our purposes, it will su¢ ce
to recall just a few. Given a n-dimensional manifold M , with corresponding
tangent space T (M) and cotangent space T � (M); the meaning of these objects
is readily intuited from observing that, for any point p 2 M , Tp (M) forms a
n-dimensional vector space, and T �p (M) is its dual. Vectors belonging to Tp (M)
can be expanded in terms of a basis feig as v : = v1e1+v2e2+ :::+vnen � viei
, with the vi being the components of the vector, and the familiar Einstein
summation convention is used in the second equality; likewise for covectors,
which are expanded as c : = cie

i , in terms of a (co)basis
�
ei
	
; furthermore,

the outer product 
 allows us to write down the general expression of a tensor
(that itself may be de�ned over any p 2M or the whole M) as

T = T
i1:::ip

j1:::jq
ei1 
 :::
 eip 
 ej1 
 :::
 ejq

= : T
i1:::ip

j1:::jq

pO
n=1

ein

qO
m=1

ejm ; p; q 2 N

We say that T is the tensor itself, the T i1:::ip j1:::jq
are its components,

and the
�
ei1 
 :::
 eip 
 ej1 
 :::
 ejq

	
are the generators of its basis2 . It

displays what is sometimes coloquially referred to as the "tensorial property" of
transforming under chartwise well-de�ned coordinate transformations (x0)i :=

1For a brush-up on these mathematical preliminaries, see, e.g., [12�14].
2 In physics, we write di¤erential equations involving tensors simply because of their nice,

convenient, space-saving properties; as such, the ordering of each individual outer product
ei1 
 :::
 eip 
 ej1 
 :::
 ejq may, a priori, always be taken to be "normal-ordered" in the
manner shown here.
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xi
0
= xi

0 �
xi
�
over M as follows:

T
i01:::i

0
p

j01:::j
0
q
= J

i01
i1
:::J

i0p
ip
Jj1 j01

:::J
jq
j0q
T
i1:::ip

j1:::jq
(1)

with a similar expression holding for its generators; here we denote the com-
ponents of the Jacobian matrix of the transformation xi

0
= xi

0 �
xi
�
as J i

0
n
in
:=

@xi
0
n

@xin , whereas J
jm
j0m
:= @xjm

@xj
0
m
are the components of the inverse matrix, as easily

checked using the chain rule of ordinary calculus. Strictly speaking, this is valid
only for coordinate bases

�
ei =

@
@xi ; e

i = dxi
	
, but the above is readily extended

to noncoordinate bases as well, which we denote as
�
e~{ := e

i
~{
@
@xi ; e

~{ := e~{idx
i
	
,

with the
�
ei~{; e

~{
i

	
assumed invertible (ek~{ e

~j
k = �

~j
~{ ; e

~k
i e
j
~k
= �ji ). In this paper, unless

explicitly stated, coordinate bases are always assumed when performing explicit
computations - otherwise, we shall use the tilde notation, to emphasize that the
bases in question are speci�cally noncoordinate (i.e., ei~{ 6= �

i
~{).

This tensorial property, which may more properly be called coordinate-
invariance, or covariance, makes tensors natural objects for the mathematical
description of physical quantities; however, as easily checked from 1, partial
derivatives @k0T

i1:::ip
j1:::jq

= @
@xk0

T
i1:::ip

j1:::jq
are, in general, nontensorial -

which poses a problem for the use of tensors in di¤erential equations. The prob-
lem is simply disposed of in the case of a Riemann space (M;g); this new tensor
g = gije

i 
 ej we call the metric, and it has basically three uses: �rst, is it can
be used to de�ne a notion of distance in the manifold; this is easily illustrated
with the special case of semi-Euclidian metrics (i.e., metrics that can be put as
gij = �ij = diag [�1;�1; :::;�1] in some global chart): given two points x;y,
the distance between them may be written as d (x;y) =

q
�ij (x

i � yi) (xj � yj)
- which indeed corresponds to our ordinary notion of length for strictly Euclid-
ian metrics (i.e., equal to diag [+1;+1; :::;+1] in some global chart). A second
one is that, along with its inverse, g�1 = gijei 
 ej , it allows for raising and
lowering indexes; for example:

T kl:::
i j::: = ging

mkTn l:::
mj:::

A third use will be the construction of the correcting factor we need, by the
introduction of the operation de�ned by�
T
i1:::ip

j:::jq

�
;k

: = rkT i1:::ip j1:::jq
:= @kT

i1:::ip
j1:::jq

+

�
i1
ik

�
T
i:::ip

j1:::jq
+ ::: (2)

:::+

�
ip
ik

�
T i1:::i j1:::jq �

��
j

j1k

�
T
i1:::ip

j:::jq
+ :::+

�
j

jqk

�
T
i1:::ip

j1:::j

�
where the Christo¤el symbol of the second kind

�
l
ij

	
is related to the symbol

of the �rst kind fijjkg by�
l

ij

�
:= glk fkjijg := 1

2
glk
�
@

@xj
gik +

@

@xi
gkj �

@

@xk
gij

�
(3)
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and, contrary to common use, we employ a comma rather than a semicolon to
denote the r-operation, for reasons that will be clear later on. After e¤ecting a
change of coordinates gi0j0 = gmlJm i0J

l
j0 from some generic curvilinear system

to another one, we can show the following by straightforward manipulation (mod
standard analytical conditions):�
l0

i0j0

�
=

1

2
gl

0k0
�
@

@xj0
gi0k0 +

@

@xi0
gk0j0 �

@

@xk0
gi0j0

�
= J l

0

lJ
i
i0J

j
j0

�
l

ij

�
+
1

2
J l

0

l

�
Jj j0

@

@xj
J l i0 + J

i
i0
@

@xi
J l j0

�
+
1

2
gl

0k0gij

�
J i i0

�
Jk j0

@

@xk
Jj k0 � J

k
k0
@

@xk
Jj j0

�
+ Jj j0

�
Jk i0

@

@xk
J i k0 � Jk k0

@

@xk
J i i0

��
= J l

0

lJ
i
i0J

j
j0

�
l

ij

�
+ J l

0

lJ
j
j0
@

@xj
J l i0

where in the last equality use was made of the analytical property @
@xi0

J l j0 =
@

@xj0
J l i0 to e¤ect the simpli�cation. This well-known transformation rule not

only shows (explicitly) that the Christo¤el symbols does not form a tensor, but
also allow us to see (and prove by induction) why the r-operation works: it�s
because the extra piece J l

0

lJ
j
j0

@
@xj J

l
i0 in the last equality exactly cancels

out the one that appears due to the derivation of the tensor components.
At this juncture, one must have a very clear picture of what has been estab-

lished, and for why: that is, in order to maintain the covariance of our physical
theories, we introduced a "generalized partial derivative", or covariant deriv-
ative, for the exclusive purpose of bookkeeping coordinate changes in tensor
components; this requirement, per se, has nothing to do with physics of any
kind - it�s just part of our a priori mathematical framework - in the same vein
of number sets, algebraic structures, and so on.
As for the properties of the Christo¤els, mere inspection of 3 shows that�

l
ij

	
=
�
l
ji

	
; however, arguably more important is its metric compatibility:

gab;c =
@

@xc
gab �

1

2
glk
�
@

@xc
gak +

@

@xa
gkc �

@

@xk
gac

�
glb �

1

2
glk
�
@

@xc
gbk +

@

@xb
gkc �

@

@xk
gbc

�
gal = 0;

�ba;c =
@

@xc
�ba +

1

2
gbk
�
@

@xc
glk +

@

@xl
gkc �

@

@xk
glc

�
�la �

1

2
glk
�
@

@xc
gak +

@

@xa
gkc �

@

@xk
gac

�
�bl = 0

These relations su¢ ce to show that gab ;c = 0 as well.
After the introduction of covariant di¤erentiation, it is customary in GR

and/or tensor calculus textbooks to de�ne the Riemann-Christo¤el (RC) tensor
- typically in terms of transport of a vector along a closed circuit. Such an
undertaking, however, is made considerably more expedient (not to mention
geometrically clear) in the formalism of tensor-valued (multi)forms pioneered
by Cartan [15]. With it, computation of the curvature, as well as other objects
of geometrical interest, becomes quite e¢ cient; indeed, ordinarily, this method
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"surpasses in e¢ ciency every other known method for calculating the curvature
2-forms." [8].
A general tensor-valued r-form is de�ned as

T : = T
i1:::ip

j1:::jq

pO
n=1

ein

qO
m=1

ejm = T
i1:::ip

j1:::jqk1:::kr

 
r̂

s=1

�ks

!


 

pO
n=1

ein

qO
m=1

ejm

!
; p; q; r 2 N

Since this formula reduces to our previous de�nition of tensor for r = 0, we
see it is a straightforward generalization of the concept. Also, it is important
to note that, albeit the newly introduced �k are "soldered" to the ek in the
sense that they transform identically under coordinate transformations (e.g.,
�
�k = �

�k
k�

k � e
�k
k�

k), nonetheless the spaces spanned by the �0s and e0s are to
be treated di¤erently - as we shall see below.
With these tensor-valued forms we de�ne the covariant exterior derivative d

by the operation

dT =
�
rlT i1:::ip j1:::jqk1:::kr

� 
�l ^

r̂

s=1

�ks

!


 

pO
n=1

ein

qO
m=1

ejm

!
(4)

�
�
dT

i1:::ip
j1:::jqk1:::kr

�
^
 

r̂

s=1

�ks

!


 

pO
n=1

ein

qO
m=1

ejm

!

+
�
T
i1:::ip

j1:::jqk1:::kr

�"
d

 
pO

n=1

ein

qO
m=1

ejm

!#
^
 

r̂

s=1

�ks

!

+
�
T
i1:::ip

j1:::jqk1:::kr

� pO
n=1

ein

qO
m=1

ejm

!


"
d

 
r̂

s=1

�ks

!#

In order to satisfy the second equality, one de�nes a 1-form


ba := 

b
ak�

k (5)

that in a coordinate basis is given by 
bak =
�
b
ak

	
, so that

dea : = 
ba 
 eb; (6)

deb : = �
ba 
 ea; (7)

d�c � �
ci ^ �i (8)

The last relation deserves some comment; in a coordinate basis, it is easily
seen to be true: from Poincaré�s lemma, we have d2�c � 0 - but it is also true
that 
ci ^ �

i =
�
c
ik

	
�k ^ �i � 0, because of

�
c
ik

	
=
�
c
ki

	
. To see that it holds

even in noncoordinate bases, we will introduce components 
~l
~{~j
so that

dv =
�
ej
�
vl
�
+ 
lijv

i
�
�j 
 el �

h
e~j

�
v
~l
�
+ 


~l
~{~j
v~{
i
�
~j 
 e~l
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is covariant (and where the notation e~{ (f) := ei~{
@
@xi f was introduced). This

simpli�es to


~l
~{~j
= e

~l
le
i
~{e
j
~j

lij + e

~l
le
j
~j

�
@je

l
~{

�
from which we get the commutator



~l
~{~j
� 
~l~j~{ = e

~l
l

h
ej~j

�
@je

l
~{

�
� ei~{

�
@ie

l
~j

�i
� �c~l

~{~j
(9)

where the c~l
~{~j
are identi�ed with the structure coe¢ cients associated with

the Lie bracketh
e~{; e~j

i
= ei~{

@

@xi

�
ej~j

@

@xj

�
�ej~j

@

@xj

�
ei~{
@

@xi

�
=
h
ei~{

�
@ie

l
~j

�
� ej~j

�
@je

l
~{

�i
e
~l
le~l =: c

~l
~{~j
e~l

But this just happens to match the derivative of �
~l, as well:

d�
~l =

�
@ie

~l
l

�
�i ^ �l =

�
@ie

~l
l

��
ei~{�

~{ ^ el~j�
~j
�
� �ei~{e

~l
l

�
@ie

l
~j

�
�~{ ^ �~j (10)

where in the third equality we used integration by parts and the fact that

@i

�
e
~l
le
l
~j

�
= @i�

~l
~j = 0. So, comparing eqs. 9 and 10, the result 8 follows.

As a sanity check, let us compute the metric compatibility in the new for-
malism:

dg = (dgab)
 ea 
 eb + gcb (dec)
 eb + gacea 
 (dec) (11)

� (@cgab)�
c 
 ea 
 eb � (gcb
ca + gac
cb)
 ea 
 eb

� (rcgab)�c 
 ea 
 eb

We thus see the consistency with our previous computation; however, since
this is a tensorial operation, we�re able to rewrite the exact same thing in a
noncoordinate basis

0 � dg = e~c
�
g~a~b
�
�~c 
 e~a 
 e~b �

�
g~c~b


~c
~a + g~a~c


~c
~b

�

 e~a 
 e~b

from which it follows we can perform the linear combinationn
~kj~{~j

o
:=
1

2

h
e~j
�
g~{~k
�
+ e~{

�
g~k~j

�
� e~k

�
g~{~j

�i
=
1

2

h�

~k~{~j + 
~{~k~j

�
+
�

~j~k~{ + 
~k~j~{

�
�
�

~j~{~k + 
~{~j~k

�i
(12)

from which, after some algebra, we recuperate the expression of the Levi-
Civita (LC) connection 
~l

~{~j
in any basis:

g~k~l

~l
~{~j
= 
~k~{~j =

n
~kj~{~j

o
+
1

2

�
c~j~k~{ + c~{~k~j � c~k~{~j

�
(13)

The combinations of structure coe¢ cients in parenthesis are often called the
Ricci (rotation) coe¢ cients; by inspection, they are seen to be antisymmetric in
~k;~{.
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As shown by these examples, the properties of d allow us to breeze through
otherwise laborious calculations - for instance:

d2 (vaea) = d [(dva)
 ea + vadea] =
��
d2va

�

 ea � (dva) ^ dea

�
+
�
(dva) ^ dea + vad2ea

�
�

�
d
�
@jv

a�j
��

 ea + vbd (
ab 
 ea) =

�
(@i@jv

a)
�
�i ^ �j

�
+ vb (d
ab � 
cb ^ 
ac )

�

 ea

= : vbRa
b 
 ea (14)

where in last line the RC tensor is de�ned - from a tensor-valued 2-form. We
can check that this is indeed the same quantity from the textbooks by simply
writing it explicitly:

Ra
b =

�
d

��
a

bj

�
�j
��
�
�
c

bi

��
a

cj

��
�i ^ �j

�
(15)

=

�
@i

�
a

bj

�
�
�
c

bi

��
a

cj

�� �
�i ^ �j

�
From the last line, we see the RC tensor is antisymmetric in i; j, meaning

that, in n dimensions, it has n
3(n�1)
2 independent components; to diminish this,

we can derive 11 again, and, using d2ec = �d
�

cb 
 eb

�
= �Rc

b
eb, obtain the
"Ricci identity"

0 � d2g = gcb
�
d2ec

�

eb+gacea


�
d2ec

�
= � (gcbRc

a + gacR
c
b)
ea
eb (16)

which lowers the components down to
h
n(n�1)

2

i2
; we may, however, further

down their number with the help of the algebraic identity, as computed from

d2�a = d
�

ab ^ �b

�
� (Ra

b + 

c
b ^ 
ac ) ^ �b = Ra

b ^ �b � 
ac ^
�

cb ^ �b

�
(17)

otherwise known as Ra [bij] = 0. This property further reduces the remain-

ing independent components of Ra bij down to
h
n(n�1)

2

i2
� n

h
n(n�1)(n�2)

3!

i
=

n2(n2�1)
12 ; so, for n = 4, this means we�ve made quite the economy, going from

256 components to just 20 - not too shabby. Finally, we get the so-called Bianchi
identity by a similar procedure:

dRa
b = d

2
ab�(d
cb)^
ac+
cb^(d
ac ) = �
�
Rc
b + 


d
b ^ 
cd

�
^
ac+
cb^

�
Ra
c + 


d
c ^ 
ad

�
(18)

otherwise known (in this paper�s notation) as Ra b[ij;k] = 0; on its turn, this
relation is famous as the starting point in the derivation of the Einstein tensor.
Before closing this section, a �nal word on notation: we can use the metric

to freely lower and raise indexes and rewrite tensor-valued forms however we
prefer, but we have to be careful when nontensorial objects are involved; for
instance, in the case of the RC tensor, its de�ning expression is given by the
structural eq. 14 - but, a posteriori, we may introduce Rab = gacR

c
b, etc. As
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another example, consider the covariant derivative U = du of a vector-valued
1-form u; we can read o¤ its components Ua from

Ua 
 ea = d (ua 
 ea) = (dua � uc ^ 
ac )
 ea (19)

However, if we wish to treat U as a covector-valued 2-form instead, its
components will change to

Ub 
 eb = d
�
ub 
 eb

�
= (dub + uc ^ 
cb)
 eb (20)

So, if we keep these distinctions in mind, there�ll be no problem with the (ad-
mittedly language-abusing) notationU = Ua
ea = Ub
eb that�ll be employed
later on, because the ambiguity can be eliminated based on the context.

3 Di¤erential A¢ ne Geometry

The concepts thus introduced su¢ ce to formulate a pragmatic, multipurpose
tensor calculus framework fully integrated with exterior algebra, which is par-
ticularly important for problems involving integration and provides a modern,
more elegant reformulation of the old vector calculus that can be readily gen-
eralized to any dimensionality. Nonetheless, up to now, no explicit mention
has been made of any gravitational phenomena; in particular, the metric was
introduced as an ad hoc, nondynamical mathematical device for the purposes of
providing 1) a formalization of our intuition of "length", 2) a means to "raise
and lower indices", and 3) an explicit expression of the covariant derivative,
via its introduction in the Christo¤els. None of these, we see, has any obvious
gravitational connotation; in fact, since any physical system (whether under
gravitational in�uences or not) may be described in terms of this formalism,
we can appreciate their signi�cance as being purely operational - as part of the
general toolbox of mathematical concepts that we introduce in order to frame
and quantify generic physical phenomena. How, then, can we characterize grav-
itational phenomena as separate from such a toolbox? To this problem we turn
next.
Fortunately, a simple �x is available to us, thanks to the tensor-valued for-

malism: we propose introducing a new operator D that represents a slight gen-
eralization of our previous d by its e¤ect on tensor-valued forms: for d! D,
substitute in eq. 4

rlT i1:::ip j1:::jqk1:::kr
!

!

rlT i1:::ip j1:::jqk1:::kr
(21)

T
i1:::ip

j1:::jqk1:::kr;l
! T

i1:::ip
j1:::jqk1:::kr;l

(22)

with DT i1:::ip j1:::jqk1:::kr
= dT

i1:::ip
j1:::jqk1:::kr

, and where now

!

rea � Dea := dea + !
b
a 
 eb; (23)

!

reb � Deb := deb � !ba 
 ea; (24)

D�c : = d�c ��c (25)
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with the alternative notation for the components T i1:::ip j1:::jqk1:::kr;l
:=

!

rlT i1:::ip j1:::jqk1:::kr
(thus justifying our previous choice of notation). As seen

from these de�nitions, the tensor-valued 1-form3 !�� and the vector-valued 2-
form�� account for all the deviation betweenD and d in a manifestly covariant
way; furthermore, it will also prove useful to de�ne from the general expression
of D another operator D0, obtained from the former by putting �� = 0.
Now that D (respec. D0) has been de�ned, we proceed to once again calcu-

late the second derivative of the vector v:

D2 (vaea) = D [(dva)
 ea + vaDea] � (Ddva)
 ea + vbD (deb + !ab 
 ea)
�

��
d2va � (@cva)�c

�
+ vb [d (
ab + !

a
b )� (
abc + !abc)�c � (
cb + !cb) ^ (
ac + !ac )]

	

 ea

�
�
vb [Ra

b + (d!
a
b � 
cb ^ !ac � !cb ^ 
ac )� !cb ^ !ac ]� va ;c�

c
	

 ea

= :
�
vb (Ra

b +

a
b )� va ;c�

c
�

 ea (26)

where in the last step we de�ned the tensor-valued 2-form, 
ab . In keep-
ing with our previous steps, it is straightforward to obtain a new Bianchi-like
identity associated with it:

d
ab =
�
d2!ab + d


a
c ^ !cb � 
ac ^ d!cb + d!ac ^ 
cb � !ac ^ d
cb

�
+ d!ac ^ !cb � !ac ^ d!cb

� 
ac ^ (
cb + !cb)� (
ac + !ac ) ^
cb + (Ra
c ^ !cb � !ac ^Rc

b) (27)

which, upon rearranging, can be written

D0
 � (!cb ^Ra
c � !ac ^Rc

b)
 ea 
 eb (28)

where 
 := 
ab 
 ea 
 eb.
Up to here, our analysis has led to three sets of objects: ea; eb;�

c; g;
ab ;R
a
b ;

and !ab ;�
c;
ab - all of which, with the exception of 


a
b , tensorial in nature.

Consider the �rst three of these: even in semi-Euclidian spaces, they can�t
be made to vanish nontrivially, because they�re necessary to de�ne the tensor-
valued forms that�ll be interpreted as physical objects (even in the absence
of gravity); the situation is similar with the Riemannian objects g;
ab ;R

a
b ,

because they�re required to maintain the general covariance of all tensor(-valued)
expressions. This suggests that these objects are not suitable candidates for
being gravitational variables, which we�d like to be able to freely take to vanish in
a manifestly covariant way; so, we�re left with the post-Riemannian !ab ;�

c;
ab
as prime candidates, and to their detailed geometrical properties we now turn,
after introducing some nomenclature: without going to bundles [18], we shall
simply refer to them as the linear connection, torsion and (linear) curvature,
respec.

3 Incidentally, this object has already appeared under the name "distortion 1-form" in the
MAG literature at least as early as 1997 [17] - as well as the decomposition of the "total
curvature" into the RC tensor and the "post-Riemannian pieces".
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Let us �rst study the metric compatibility of D (which is identical to that
of D0).

Dg = (dgab)
 ea 
 eb + gcb (Dec)
 eb + gacea 
 (Dec) (29)

� (rcgab)�c 
 ea 
 eb � (gcb!ca + gac!cb)
 ea 
 eb

Since it was already established that gab;c � 0, this shows that the non-
metricity n has a simple dependence on !(ab) =

1
2! (!ab + !ba):

n := !(ab) 
 ea 
 eb � �
1

2
Dg (30)

This observation induces the handy decomposition !ab = �!ab + nab of the
linear connection in terms of the antisymmetric �!ab := ![ab] =

1
2! (!ab � !ba) -

which in turn leads to a similar decomposition of the curvature. After eq. 26,
de�ne

�
ab := d�!
a
b � 
cb ^�!ac ��!cb ^ 
ac ��!cb ^�!ac (31)

with �
 :=�
ab 
 ea 
 eb - and substitute it back in that equation:


ab � �
ab + [dn
a
b � (
cb +�!cb) ^ nac � ncb ^ (
ac +�!ac )� ncb ^ nac ] (32)

= :�
ab +N
a
b

where in the last equality Na
b was de�ned. The above development makes

it natural to de�ne a new operator �D (respec. �D0) as being the same as D
(respec. D0) but with the !ab restricted to �!

a
b only; this will prove useful later

on - though we can already adapt the Ricci identity argument of the previous
section to �D0 and show that �
ab = ��
ba too - just like the RC tensor.
Continuing this process, the nonmetricity can be further decomposed as

� : = ! c
c � n c

c ; (33)

nab = :
1

n
gab�+ �ab (34)

from which the curvature can be further decomposed, as well:

Na
b � 1

n
�abd�+ [d�

a
b � (
cb +�!cb) ^ �ac � �cb ^ (
ac +�!ac )� �cb ^ �ac ](35)

= :
1

n
�abd�+�

a
b

on account of the appearance of terms such as � ^ �, (� ^ �ab + �ab ^ �),
etc., which vanish identically.
Next, we must make sense of the vector-valued 2-form �c; for while it is

quite natural to regard 
ab as the "�eld strength" associated to the "potential"
!ab , no such association is apparent concerning the torsion. At this point, we
must go beyond linear structures and investigate a¢ ne ones; thankfully, this is
easily done in terms of the former by the use of a Möbius map [9] that imbeds
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tensors over our target n-dimensional base space M onto ones over a (n+ 1)-
dimensional base instead. This is accomplished via a foliation

g(n+1) = g�1�1e
�1 
 e�1 + g(n)ab (x

c) ea 
 eb (36)

of a �ctitious (n+ 1)-dimensional metric space whose slices are isomorphic
to our target n-dimensional metric space (and where, just for convenience, we
allow the indexes the value �1, associated to an extra coordinate x�1 in the
(n+ 1)-manifold). If, for simplicity, we keep to a coordinate basis, and put
g�1�1 = �1, the only nonvanishing Christo¤els are seen to be the same

�
l
ij

	
of

the n-slices; furthermore, if we restrict attention to coordinate transformations
x�1 ! x�1; xc ! xc

0
(xc), this result maintains - and it�s trivial to extend it for

noncoordinate bases, as well. The point to be taken is this: since the general
covariance of the n-slices is all that matters to us (as opposed to that of the entire
foliation), we may de�ne a modi�ed LC connection ~
 in this space characterized

by
�
~
�1�1 � 0 ~
a�1 � 0
~
�1b � 0 ~
ab � 
ab

�
. Based on this representation, we can make sense of

covariant di¤erentiation in the (n+ 1)-space via a ~D that is essentially the
same as the D0 de�ned previously in (n+ 1) dimensions, but with the modi�ed

~
 in place of 
, and an a¢ ne connection ~! given by
�
~!�1�1 ~!a�1
~!�1b ~!ab � !ab

�
; with

these, we write explicitly the components
�
~
�1�1

~
a�1
~
�1b

~
ab

�
of the associated a¢ ne

curvature, and notice two particularly interesting choices in fully determining
~!: for the �rst one, by putting ~!�1�1 � 0; ~!�1b � 0, the only nonvanishing
components will be ~
ab � 
ab and ~
a�1 =

�
d~!a�1 � ~!c�1 ^ 
ac

�
� ~!c�1 ^ ~!ac .

There�s a strong suggestion here that the latter may be identi�ed with the
torsion; indeed, this idea gains weight if ~!a�1 is identi�ed with some covector-
valued 1-form !a in the original n-space, whose derivative is given by

D0� = [(d!
a + 
ac ^ !c) + !ac ^ !c]
 ea =: 
a 
 ea (37)

where we de�ned the shorthand � := !a
ea; from here, the by now familiar
procedure will yield

d
a = d2!a + (d
ac + d!
a
c ) ^ !c � (
ac + !ac ) ^ d!c (38)

� (Ra
c +


a
c ) ^ !c � (
ac + !ac ) ^
c

which, using � := 
a 
 ea, rearranges to

D0� � (Ra
c +


a
c ) ^ !c 
 ea (39)

and may be interpreted as another Bianchi identity. This looks very promis-
ing, but we must not forget the second choice alluded previously: putting
~!�1�1 � 0; ~!a�1 � 0 - in this case, we�re left with ~
ab � 
ab and ~
�1b =

12



�
d~!�1b � 
cb ^ ~!

�1
c

�
� ~!cb ^ ~!�1c . With analogous reasoning, we can show that

this ~!�1b can be identi�ed with a vector-valued 1-form
�
!]
�
b
in the n-space,

whose derivative is identical to ~
; in fact, it introduces a new geometrical ob-
ject in our space, which we�ll call the dual torsion �] :=

�
�]
�
b

 eb. This

quantity, we stress, is not merely a rewriting of gba�a (hence the special label);
however, under this understanding, we shall often drop the "]" notation for the
sake of brevity, while at the same time employing omegas !;
 in a manner
similar to Cartan�s.
This completes the description of our di¤erential a¢ ne formalism. So far in

this and the previous section, we�ve exclusively talked about pure mathematics;
now is the time to transfer these theoretical results into the arena of physics -
but before we do, a last digression will prove useful for bookkeeping purposes:
if we re�ect back on the literature [9�11], we see references to di¤erent "geome-
tries" or "spaces" based on criteria such as the (non)vanishing of curvature,
torsion, nonmetricity, etc. - i.e., starting from the most generic (metric-)a¢ ne
description, one then picks some of the objects describing the geometry to be
dynamical, and such a choice yields a physical theory of gravitation. In our
present formalism, a similar approach can be pursued in terms of the four ob-
jects !a;�!ab;�;�ab comprising the a¢ ne connection; chosing whether or not
any of these vanish yields a total of 16 geometries - some of which I�ve named
in Table 1.
Table 1. Selected geometries for theories of gravitation.
geometry non-dynamical object
Weyl-Cartan �ab � 0
Weyl-Weitzenböck �!ab � 0;�ab � 0
Weyl !a � 0;�ab � 0
pre-Weyl !a � 0;�!ab � 0;�ab � 0
Cartan � � 0;�ab � 0
Weitzenböck �!ab � 0;� � 0;�ab � 0
Ricci !a � 0;� � 0;�ab � 0
Riemann !a � 0;�!ab � 0;� � 0;�ab � 0
The attempt was made to introduce a nomenclature that mirrors the histori-

cal contributions of several eminent mathematicians; it is necessarily imperfect,
due to the fact these authors did not employ the present schema - its value
being mostly as a mnemonic device, that should be read with care (specially
when comparing with the literature).
In the above list, we deliberately excluded, w.l.o.g., all eight geometries with

�ab 6= 0 guided by physical intuition; however, as the theoretical need for such
geometries may rise, one can easily extend our naming conventions to include
such �elds - though in the present paper, we will not concern ourselves with
them. (Also, the reader will notice the similarity of our taxonomy with that of
the "MAGic cube" of [9]; in fact, by including the �ab �eld, we�d have a "mAGic
tesseract" - an amusing touch.)
At this point, �nally, I will abandon mathematical generality and make

physical commitments in order to obtain a theory of gravity in four-dimensional
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spacetime, which will be signaled by the switch to Greek indices. In order to
obtain agreement with Special Relativity, the (nondynamical) metric is taken
to be Minkowski�s (with signature ��� = diag [�1;+1;+1;+1]) - and as a con-
sequence, we have R�

� = 0, which simpli�es some of the previous identities ob-
tained with a generic g; as such, the role of gravitational potential is transferred
wholly to the many pieces of the a¢ ne connection that have been introduced
above. Before discussing their dynamics, it is of notice that, from a purely geo-
metrical perspective, we can "translate" the conventional GR picture into this
framework - which may be surprising to some; but it can be simply achieved via
the assignments

!� = 0;!�� = �
�
� � 
�� (40)

where the ��� refer to the LC connection computed from the Lorentzian
metric g of Einstein�s theory; it follows from these that the RC tensor in GR
is equivalent to the curvature in this geometry. This alone might prove the
usefulness of this formalism, for example, in the semiclassical regime - albeit it
doesn�t shed much light on the dynamics, as they�re constrained by the Einstein
�eld equations; henceforth we shall drop this equivalence formalism and instead
deliberately experiment with an approach di¤erent from classic geometrody-
namics, yet closer in philosophy to the gauge �eld theories used in modern
physics.

4 Gravidynamics

In order to make speci�c claims about gravitational dynamics, one needs a
Lagrangean. After all the trouble separating ourselves from the Riemannian
formalism, it is now quite natural to turn to a Lagrangean quadratic in the
�eld strengths, rather than just linear, after all the desirable features that made
them a mainstay in the Standard Model of Particle Physics - not the least
of which being agreeable to quantization. (Another important aspect of such
Lagrangeans pertains to gauge-invariance, but we will not get into this topic -
except to comment it is pretty clear that the general a¢ ne group GA (4;R) =
GL (4;R) n T (4) and its subgroups are intimately related to the symmetries
here.)
Reverting to the Möbius foliation of the previous section, as well as to Latin

indexes (now taken to extend to the "-1" coordinate as well), we write for the
gravitational Lagrangean scalar-valued 5-form

LagGD =
1

4�0

��
~
]
�a
b
^ ?~
ba + ~
ab ^ ?

�
~
]
�b
a

�
(41)

where �0 is the gravitational constant, ? is the Hodge star4 , and the "]"
indicates the presence of the dual torsion in the formula - without which the

4The Hodge operator requires a metric. Two observations here: �rst, this metric is not to
be confused with g = gab 
 ea 
 eb - but thanks to the soldering, we may map this g into
g� := gab 
 �a 
 �b; second, the star de�ned over the 5-foliation has a simple relation with
that over 4-spacetime, so we use the same symbol for both.
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torsion-related pieces would be seen to drop o¤ the indicial sum; performing
said sum, and simplifying, this can be written over spacetime as

LagGD =
1

2�0

�

� ^ ?
� +
�� ^ ?
��

�
(42)

Researchers interested in the rigorous variational treatment are referred to
Bleecker [19]. Here, a quick heuristic will su¢ ce: Taylor-expanding the La-
grangean up to �rst order in � around a perturbation �~
 of the a¢ ne curvature

LagGD

�
~
+ ��~


�
=: LagGD

�
~

�
+ ��LagGD

�
~
; �~


�
+O

�
�2
�

(43)

we can immediately read o¤ the �rst variation �LagGD and simplify it fur-
ther:

�LagGD =
1

�0

�
1

2

�

� ^ ?�
� + �
� ^ ?
�

�
+
1

2

�

�� ^ ?�
�� + �
�� ^ ?
��

��
� 1

�0

�
�
� ^ ?
� + �

�
�
�� +

1

4
���d�

�
^ ?
�
�
�� +

1

4
���d�

��
� 1

�0

�
�
� ^ ?
� + ��
�� ^ ?�
�� +

1

4
�d� ^ ?d�

�
(44)

where in the second equality we explicitly constrained ourselves to Weyl-
Cartan geometry. Now, in order to proceed, we have to rearrange this quantity
to

�LagGD

�
~
; �~


�
=: �~!LagGD (~!;d~!) ^ �~! (45)

where the newly-introduced notation is a self-evident shorthand. Thus, to
obtain �~!LagGD, there is a need for the explicit expression for the variations
of the �eld strengths

�
� =
�
�d!� � 
�� ^ �!�

�
�
�
�!�� +

1

4
����

�
^ �!� �

�
��!�� +

1

4
�����

�
^ !�

��
�� = �d�!�� � 
�� ^ ��!�� � ��!�� ^ 
�� � ��!�� ^�!�� ��!�� ^ ��!��
Notice how, consistent with our philosophy, no term like �
�� appears above,

as such variations are meaningless. The road is now clear: putting as usual
�d�!�� = d��!�� , etc., then integrating by parts, putting the �eld variations in
evidence and dropping the boundary terms, we�re left, after algebraic manipu-
lation, with

�~!LagGD ^ �~! � � 1

�0

1

4

�
d ? d�� !� ^ ?
�

�
^ ��� 1

�0

�
d ?
� +

�

�� +�!

�
� +

1

4
����

�
^ ?
�

�
^ �!�

� 1

�0

h
d ?�
�� � (
�� +�!��) ^ ?�
�� +

�

�� +�!

�
�

�
^ ?�
�� � !� ^ ?
�

i
^ ��!�� (47)

The Euler-Lagrange (EL) equations are �nally obtained by equating the
above term with

J~! ^ �~! := �
1

4
C ^ ���T� ^ �!� � L�� ^ ��!�� (48)

15



where C;T := T�
e�;L := L��
e�
e� are obviously the current 3-forms
associated with the potentials. All of this can be put in a very compact (and
elegant) form:

d ? d�� !� ^ ?
� = �0C (49a)

�D0 ?�+
1

4
� ^ ?� = �0T (49b)

�D0 ?�
� � ^ ?� = �0L (49c)

The equations above showcase the degree of coupling between the di¤er-
ent pieces of the connection - therefore presenting an opportunity to examine
their asymptotic �atness (i.e., the regimes under which one or more potentials
are taken to zero), which in turn e¤ectively ("weakly") change the underlying
geometry from Weyl-Cartan to one of the other geometries listed in Table 1.
It is apparent from our dynamical laws that this procedure will consistently
leave the currents associated with the vanishing �elds to vanish also - unless
!a 6= 0 (thus, for the Weyl-Weitzenböck, Cartan and Weitzenböck cases). The
residual currents Cres = � 1

�0
!� ^ ?
� and/or Lres = � 1

�0
� ^ ?� we obtain

this way could be a manifestation of spontaneous symmetry breaking, or simply
of an illegal move; however, since their physical meaning is unclear to me, I
refrain to comment further on their signi�cance, beyond suggesting that they
may possibly have cosmological interest.
Having said this, we can also work out the �eld equations by taking poten-

tials to vanish at the Lagrangean level ("strongly"); if we do this to obtain a
Weitzenböck geometry, we get

d ?� = �0T (50a)

d� = 0 (50b)

Hopefully, the formal similarity with the Maxwell equations of electrody-
namics will not be lost on the reader - specially as we show the Bianchi identity
alongside the EL law. It is an unsurprising result, actually, due to the well-
known fact that both Coulomb�s and Newton�s laws are derived from the same
di¤erential equation (namely, Poisson�s), on the one hand, and the fact that
both the translation subgroup T (4) and the unitary U (1) of quantum electro-
dynamics are Abelian, on the other. Not only that, but these equations allow
an immediate interpretation in terms of known electrodynamical results, from
which we readily establish the Newtonian limit, the existence of gravitational
waves, and even an exact quadrupole formula [20]; they also hint at hitherto un-
explored prospects, such as the possibility of a "macroscopic" formulation that
accounts for a bound current contribution Tbound in terms of a "gravitational
polarization", and that of "gravimagnetic monopoles" through the dynamiza-
tion of the Bianchi identity. So, from these arguments, we see this (sub)theory
o¤ers a rich phenomenological testbed that can be explored with known theoret-
ical tools, as well as a rather convenient starting point for a quantum theory of
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gravity; for these reasons, it�ll be convenient to give to this special case its own
name: we�ll call it teledynamics, to honor also the old teleparallelism theory.
Analagous considerations for the case of only �!�� nonvanishing lead us to

the formulae

�D0 ?�
 = �0L (51a)
�D0
�
 = 0 (51b)

which are simply the Yang-Mills (YM) equations associated with the (non-
Abelian) Lorentz group; for this reason, one may call this subtheory orthody-
namics. Contrasted with the Maxwellian nature of teledynamics, the dynamics
here doesn�t have an immediate interpretation in Newtonian terms, but at the
same time may be tied to the presence of a conserved current associated with,
e.g., rotations. Unsurprising, again, if we interpret this in the light (mutatis
mutandis) of the pioneering works of Uchiyama [21] and Kibble [22]; doubly so,
if we also heed the no less prophetic words of Cartan [16]: "La translation révèle
la torsion, la rotation révèle la courbure de la variété donnée."
Discussing the gravitational degrees of freedom is nice and all, but it�d be

nicer if we could say something about the phenomenology of the currents, as well;
thus, to furnish physical motivation, let us consider (in sketch) the set of three
di¤erential equations that comprise Euler�s theory of inviscid hydrodynamics -
that of conservation of energy, of mass, and �nally the dynamical law of the
3-momentum ("Newton�s 2nd law for continua") [23]. Ignoring the �rst one, it
is possible to glom the latter two into a single relativistic equation5

dt = F� dP (52)

where the vector-valued 3-form t is the intrinsic momentum of the �uid, the
vector-valued 3-form P is the stress applied to the �uid, and �nally the vector-
valued 4-form F is the density of applied forces; one might refer to these as the
Euler-Einstein equations. Consider now a system described by these equations
but in absence of gravity; it is quite clear from this formula that, for a system
for which F vanishes identically, the total stress-momentum T : = t + P is a
conserved quantity; now, if we "turn on" gravity, we will immediately obtain a
generalized conservation law of the form

0 = DT � d
�
T�e�

�
�
�
T� ^ !�� + 3T ����
� ^ �� ^ ��

�

 e� (53)

= : dT� Fgrav

If we interpret the �rst equality as the condition for a free-falling �uid, it
follows from the second one that this condition can be simulated by applying a
"force" Fgrav to the special-relativistic �uid; isn�t this a little too reminiscent
of the equivalence principle?

5For the sake of brevity, we skip this derivation; it is based on application of the Leibniz-
Reynolds transport theorem to the Newtonian equations, which are then "relativized". As
such, new terms are seen to appear, compared to the original equations - but those can be
taken to vanish in the nonrelativistic limit. For an approach to continuum mechanics similar
in spirit to my take here, cf. [24].
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As a bonus, basing ourselves solely in complete analogy with eq. 52, we can
immediately propose the formula

dl = � � dS (54)

where the tensor -valued 3-form l is the mechanical angular momentum of
the �uid, the tensor -valued 3-form S is its spin, and �nally the tensor -valued
4-form � is the density of applied torques; needless to say, the total angular
momentum L : = l + S is then also a conserved quantity, provided the system
is torque-free - whereas the substitution d ! D will lead to the appearance of
an equivalent "torque" ���grav. The liberality of language here is justi�ed by the
pure phenomenology of the description, but it already raises some interesting
questions concerning the physical relation between t and S [25,26], as well as the
classical symmetry condition6 commonly imposed to P. Indeed, one of the most
peculiar features of the Einstein-Cartan theory is precisely a modi�cation of the
current term in the Einstein �eld equations dependent on the spin content of the
system; this observation may prove not only illuminating towards a more precise
discussion of the current situation, but also point to observational implications.

5 Miscellaneous questions

Despite the rather encouraging developments so far, one is still warily conscious
of the Wheelerian maxim [8]: "Space tells matter how to move; matter tells
space how to curve." In terms of the present work, we�ve already addressed
the second part at length - but the �rst one, so far untouched, has proven
stubborn. In standard geometrodynamics, it is well understood to refer to the
geodetic equation, which covers a large class of motions7 and therefore looks
more favorably on the edge of Occam�s razor; however, the di¢ culty here is
not so much one of sheer simplicity, but rather of adapting electrodynamics,
hydrodynamics and particle mechanics to the tensor-valued formalism, as well
as describing how electromagnetism and matter (minimally) couple to gravity
- all of which, in total, represents a non-negligible undertaking that nonetheless
cannot be avoided if we want to apply the theory to problems of cosmological
and astrophysical interest, as well as check how well it performs w.r.t. to the
"classic tests" of GR.
I do not purport to have completed such a large-scale project; instead, the

arguments that will be now presented are to be taken simply as possible pointers
towards the full picture, and the equations that will be henceforth derived must
be seen as strictly provisional, and illustrative.
About electrodynamics: writing the EM potential as A = A��

� and the
�eld strength (a.k.a. Faraday tensor) F := dA, the Maxwell equations may be

6See footnote in [23], pp. 14-15.
7 I.e., such as the trajectories of both timelike particles (e.g. electrons) and null-like particles

(e.g. photons), as well as associated e¤ects like time dilation and red/blueshift; �one equation
to rule them all�.
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written in the celebrated form

d ? F = �0JEM (55a)

dF = 0 (55b)

Furthermore, if one de�nes Fe := F��e�^e� , the Lorentz force acting upon a
given particle can be obtained from the interior product of Fe with the particle�s
velocity [12]. This is all well and good, but it is not quite clear how this argument
ought to be extended to continua, if we understand the Lorentz force density
FL to be a (co)vector-valued 4-form8 , and if, qualitatively (and empirically)
speaking, we wish the formula to go like

FL / current density� �eld strength; (56)

for in the present case, JEM is a scalar-valued 3-form, so that neither F nor
Fe will �t. This complication also leads to trouble in writting down an explicit
formula for the (four-dimensional) Maxwell stress PM , which is known [20] to
behave as

PM / (�eld strength)2 (57)

and must also be a source term in the gravidynamical/teledynamical 49b/50
- or in other words, a (co)vector-valued 3-form, which, on account of 52, we
may expect to be related to the Lorentz force as FL = dPM . Thus, such
considerations aren�t just of electrodynamical concern, even as one still has to
describe the coupling of gravitation to the EM �eld, as to be able to account
for such phenomena of interest in GR as lensing; we may, for instance, try
the same argument as the previous section and substitute dPM ! DPM to
get a modi�ed Lorentz force in the presence of gravity. Without appeal to
a quantum theory, another, perhaps obvious guess, is to simply modify the
l.h.s. of 55a to d ? F ! D ? DA; this way, the presence of a gravitational
�eld (in this case torsion) is immediately seen to introduce a deviation from the
special-relativistic behavior which can already be discussed in light of established
empirical knowledge.
This one does by introducing a weak-�eld linearization A ' A0 + �A1;� '

��1, so that

0 = D ?DA ' d ? dA0 + �
n
d ? dA1 � d ?

h
(A0)�


�
1

i
� 2 (?dA0)�� 


�
1 ^ �

�
o

= : d ? dA0 + � (d ? dA1 � �0Jbend) (58)

Since the "current" Jbend de�ned in the last equation does not depend on
A1, this can be interpreted as a sort of refraction [20].
Next, we would also want a description of the motion of (massive) particles

under an external gravitational �eld, which is the least obvious one so far; but,
using the previous discussion of continua as a guidance, we recall that Fgrav
displays a coupling of the stress-momentum components with both the torsion

8Cf. [27�31].
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� and the linear potential !��. Since t is proportional to the mass density, this
implies that, in the present schema, the law of motion for point particles should
include a torsion piece as well as a (linear) potential one; this is rather surprising,
because it comes across as a con�uence of intuitions from both the Lorentz force
law (proportionality with a �eld strength), as well as the Einsteinian geodetic
equation (proportionality with the connection). In light of this, it seems sensible
to introduce the ansatz

m
�
v� ;� � v�
 �

��

� dX�

d�
= 0 (59)

with m the mass, v� the components of the particle�s velocity and X� those
of the particle�s trajectory (which is parameterized by �). As an educated guess,
it fares a bit better than a mere dumbing down of hydrodynamics, because not
only it incorporates the weak equivalence principle (i.e., the equality of iner-
tial and gravitational masses) explicitly, but it also seems to have a promising
Newtonian limit for teledynamics (i.e., with v� ;� = v

�
;�).

The physical argument just given is borderline semiquantitative and has no
pretentions otherwise; however, some tentative calculations within a Weitzen-
böck geometry suggest that the teledynamical equivalent of the Schwarzschild
solution (i.e., one restricted by spherical symmetry, stationarity, etc.) might
potentially reduce simply to the ordinary Newtonian theory; if this conjecture
is shown to be correct, eq. 59 would then con�ict with observation, because it
wouldn�t be able to account for the anomalous perihelion precession of Mercury.
However, the problem also suggests the solution here, because such a conclusion
requires the vanishing of the linear connection - but suppose we didn�t impose
this, and instead used a more general geometry - like Cartan�s? By pure phe-
nomenology, such a term could account for the e¤ect, in principle; physically,
this might be interpreted (curiously enough) as a kind of frame-dragging - which
in turn, and contrary to current thinking, would likely be attributed to the Sun�s
rotation, as it contributes to the L current associated with the potential. My
remarks are getting increasingly speculative, but the point here is not so much
to stake controversial claims, as to illustrate the di¢ culties inherent to trans-
lating gravitational phenomena into the new formalism proposed in this paper
- which on its turn translate into the di¢ culty of which models to pick for the
classic tests, as well as any other empirical criteria we care to subject them to.
Finally, while still wading the waters of controversy, we may note in pass-

ing that the phenomenology just described might be appropriated to possibly
explain the famous mystery of the anomalous galactic rotation curves: instead
of introducing a halo of "matter" to �t the deviation from Keplerian behavior,
one instead introduces "frame-dragging" of the sort discussed, and ties it to the
angular momentum of the whole galaxy; stirred, not shaken. From where we
stand now, though, this is but an aperitif.
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6 Concluding remarks

Since the introduction of GR in the beginning of the 20th century, the Rie-
mannian paradigm has dominated the theoretical framework of classical gravi-
tation - partly because it was then the state-of-art of di¤erential geometry, and
partly because of the tremendous empirical successes it undoubtedly enjoyed
since. The geometrical alternative de�ned and discussed in this paper stands on
its own mathematical merits regardless of any further physical considerations,
and indeed may be studied on its own right - however, as we�ve shown, it also
displays a list of potentially desirable features for a gauge theory of gravity -
perhaps even as a competitor to the Einstein theory. Nonetheless, a complete
understanding of how it can be used to describe real-world gravitational phe-
nomena is still wanting and riddled with open problems which, in particular,
currently preclude us from contrasting it empirically with GR. While this might
at �rst sight seem like a fatal weakness dooming the whole enterprise, one should
remind oneself that the perspective being advocated here is rather new and as
such should not be readily dismissed without due consideration of its contents,
incomplete they may be; indeed, I wanted to leave the matter of the gauge con-
tent as open-ended as possible for now to showcase the phenomenological power
of the formalism - questions of symmetry pose a rich scenario to explore from
here (not least those touching subjects such as reframing the "cosmological prin-
ciple" in this language). Furthermore, the very nature of this incompleteness
represents a de�niteness in terms of a research programme exploring these ques-
tions systematically - not the least being that (apart from the caveats already
addressed) these ideas do not seem to require a substantial revision of previous
physics, as it seems to be the case with several modern attempts at quantizing
gravity.
Given the current status of research, it is of interest to explore as many

di¤erent venues as possible. The revision of our geometric intuition being here
proposed comes with pros and cons, but it is hoped that the impression will be
that the pros outweigh the cons - that there are enough nuggets, here and there,
to a¤ord su¢ cient motivation for researchers from various disciplines to pursue
solutions to these problems, and give the theory its �nal classical touches - so
that we can move on to better and quantum things.
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