DOMINATION NUMBER OF EDGE CYCLE GRAPHS

N. Shunmugapriya

Department of Mathematics, G. Venkataswamy Naidu College, Kovilpatti
Thoothukudi District, Tamil Nadu, India, E-mail: nshunmugapriya2013@gmail.com

Abstract

Let $G=(V, E)$ be a simple connected graph.A set $S \subset V$ is a dominating set of G if every vertex in $V \backslash S$ is adjacent to some vertex in S. The domination number $\gamma(G)$ of G is the minimum cardinality taken over all dominating sets of G. An edge cycle graph of a graph G is the graph $G\left(C_{k}\right)$ formed from one copy of G and $|E(G)|$ copies of P_{k}, where the ends of the $i^{\text {th }}$ edge are identified with the ends of $i^{\text {th }}$ copy of P_{k}. In this paper, we investigate the domination number of $G\left(C_{k}\right), \quad k \geq 3$.

2010 Mathematics Subject Classification: 05C69

Keywords: dominating set, domination number, edge cycle graph.

1 Introduction

Let $G=(V, E)$ be a simple connected, finite, undirectd graph with no loops and multiple edges. The degree of a vertex of a graph is the number of edges incident to the vertex. The degree of a vertex v is denoted by $\operatorname{deg}(v)$. The maximum and minimum degree of a graph is denoted by $\Delta(G)$ and $\delta(G)$ respectively. We denote $N(v)$ and $N[v]$ as the open and closed neighbors of a vertex v respectively. A vertex $v \in G$ is called pendent vertex or end vertex of G if $\operatorname{deg}(v)=1$. A covering of a graph G is a subset K of V
such that every line of G is incident with a vertex in K. A vertex cover in a graph G is a subset K of vertices such tht every edge of G is incident with at least one vertex of K. The minimum cardinality taken over all minimal vertex covers of G is the vertex covering number of G and is denoted by $\alpha(G)$.

A set S of vertices in a graph G is a dominating set if every vertex in $V \backslash S$ is adjacent to some vertex in S. The domination number $\gamma(G)$ of G is the minimum cardinality taken over all dominating sets of G.
J.P and N.S introduced edge cycle graph in [4]. An edge cycle graph of a graph G is the graph $G\left(C_{k}\right)$ formed from one copy of G and $|E(G)|$ copies of P_{k}, where the ends of the $i^{\text {th }}$ edge are identified with the ends of $i^{\text {th }}$ copy of P_{k}. A graph G and its edge cycle graph $G\left(C_{k}\right)$ are shown in Fig 1.1.

Fig 1.1 A graph G and its edge cycle graph

In this paper, we investigate the domination number of $G\left(C_{k}\right), \quad k \geq 3$.

2 Domination in Edge Cycle Graphs

Theorem 2.1. Let G be a graph of order $n \geq 2$. Then $\gamma\left(G\left(C_{3}\right)\right)=\alpha(G)$.

Proof. Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E(G)=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ be the edges
of G. Then $C_{1}, C_{2}, \ldots, C_{m}$ be the edge cycles of $e_{1}, e_{2}, \ldots, e_{m}$ respectively.
We have to prove that $\gamma\left(G\left(C_{3}\right)\right) \leq \alpha(G)$.
Let $e_{i}=v_{i} v_{j}$ be in G. Then, let $v_{i j}$ be the new vertex in $G\left(C_{3}\right)$ corresponding to the edge $v_{i} v_{j}$.

Let S be any covering set of G.
Since each covering set of G is a dominating set of G and G is the induced subgraph of $G\left(C_{3}\right), v_{1}, v_{2}, \ldots v_{n}$ are dominate by S in $G\left(C_{3}\right)$.

Also, since each new vertex in $G\left(C_{3}\right)$ is adjacent to a $S, \quad\left\{v_{i j} / 1 \leq i \leq\right.$ $m\}$ are dominated by S.

Thus $\gamma\left(G\left(C_{3}\right)\right) \leq \alpha(G)$.
Next, we have to prove that $\gamma\left(G\left(C_{3}\right)\right) \geq \alpha(G)$.
Suppose that $\gamma\left(G\left(C_{3}\right)\right) \leq \alpha(G)-1$.
Let S be a dominating set of $G\left(C_{3}\right)$. Since $\gamma\left(G\left(C_{3}\right)\right) \leq \alpha(G)-1$, there exists at least one edge in G which is incident with no vertex of S. Let e_{m} be a such edge. Let $e_{m}=v_{i} v_{j}$. Then $v_{i j}$ is dominated by no vertes of S, which is a contradiction.

Thus $\gamma\left(G\left(C_{3}\right)\right) \geq \alpha(G)$.
Hence $\gamma\left(G\left(C_{3}\right)\right)=\alpha(G)$.
Theorem 2.2. Let G be a graph of order $n \geq 2$. Then $\gamma\left(G\left(C_{4}\right)\right)=n$.

Proof. Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E(G)=\left\{e_{2}, e_{2}, \ldots, e_{m}\right\}$.
Initially, we show that $\gamma\left(G\left(C_{4}\right)\right) \leq n$.
Let $C_{1}, C_{2}, \ldots, C_{m}$ be the edge cycles of $e_{1}, e_{2}, \ldots, e_{m}$ respectively.
Let $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Then clearly, $N\left[v_{1}, v_{2}, \ldots, v_{n}\right]=V\left(G\left(C_{4}\right)\right)$. Therefore each vertex of $G\left(C_{4}\right)$ is adjacent to at least one vertex of S. It follows that S is a dominating set of G. Thus $\gamma\left(G\left(C_{4}\right)\right) \leq n$.

Next, we have to prove that $\gamma\left(G\left(C_{4}\right)\right) \geq n$.
Let S be a dominating set of $G\left(C_{4}\right)$.
Since G is connected, $d\left(v_{i}\right) \geq 1$ for all $1 \leq i \leq n$.

Now, let $d\left(v_{i}\right)=d_{i}$.
Let $v_{i 1}, v_{i 2}, \ldots, v_{i d_{i}}$ be the new neighbors of v_{i} in $G\left(C_{4}\right)$.
Then $\left\langle\left\{v_{i}, v_{i 1}, v_{i 2}, \ldots, v_{i d_{i}}\right\}\right\rangle=K_{1, d_{i}}$ for all $1 \leq i \leq n$ and $V\left(G\left(C_{4}\right)\right)=$ $\left\{v_{i}, v_{i 1}, v_{i 2}, \ldots, v_{i d_{i}} / 1 \leq i \leq n\right\}$. Thus $\left|S \cap\left\{v_{i}, v_{i 1}, v_{i 2}, \ldots, v_{i d_{i}}\right\}\right| \geq 1$ for all $1 \leq i \leq n$. It follows that $\gamma\left(G\left(C_{4}\right)\right) \geq n$.

Hence $\gamma\left(G\left(C_{4}\right)\right)=n$.

Theorem 2.3. Let G be a graph of order $n \geq 2$ and m be the number of edges of G. Let $k \geq 6$ and $k \equiv 0(\bmod 3)$. Then $\gamma\left(G\left(C_{k}\right)\right)=\alpha(G)+m\left(\frac{k-3}{3}\right)$.

Proof. Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E(G)=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$.
Let $C_{1}, C_{2}, \ldots, C_{m}$ be the corresponding edge cycles of $e_{1}, e_{2}, \ldots e_{m}$.
Let $V\left(C_{i}\right)=\left\{v_{i 1}, v_{i 2}, \ldots, v_{i k}\right\}$ and let $e_{i}=v_{i 1} v_{i k}$ and $v_{i 2}, v_{i 3}, \ldots, v_{i(k-1)}$ are the new consecutive two degree vertices in $G\left(C_{k}\right)$. Here $v_{i 1}$ is adjacent to $v_{i 2}$ and $v_{i k}$ is adjacent to $v_{i(k-1)}$.

Then we have $\left\langle\left\{v_{i 1}, v_{i k} / 1 \leq i \leq m\right\}\right\rangle \cong G$. Let $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}=\left\{v_{i 1}, v_{i k} / 1 \leq\right.$ $i \leq m\}$.

First, we have to prove that $\gamma\left(G\left(C_{k}\right)\right) \leq \alpha(G)+m\left(\frac{k-3}{3}\right)$.
Let $X=\left\{v_{1}, v_{2}, \ldots, v_{\alpha(G)}\right\}$ be the minimum covering set of G.
Since X is a covering set of G, all the edges of G covered by a vertex of X. Therefore each edge in G is incident with a vertex of X.

Since every covering set is a dominating set, X is a dominating set of $\left\{v_{i 1}, v_{i k} / 1 \leq i \leq m\right\}$.

We observe that $\left\langle V\left(G\left(C_{k}\right)\right) \backslash K\right\rangle \cong m P_{k-3}$ and we know that $\gamma\left(P_{n}\right)=$ $\left\lceil\frac{n}{3}\right\rceil$.

Let $G_{1}, G_{2}, \ldots, G_{m}$ be the union of m paths of $\left\langle V\left(G\left(C_{k}\right)\right) \backslash K\right\rangle$. Then $\gamma\left(G_{i}\right)=\left(\frac{k}{3}-1\right)$ for all $1 \leq i \leq m$. Let S_{i} be the minimum dominating set of G_{i} for all $1 \leq i \leq m$.

Consequently, we have $S \cup S_{1} \cup S_{2} \cup \ldots \cup S_{m}$ is a dominating set of
$G\left(C_{k}\right)$.
Therefore $\gamma\left(G\left(C_{k}\right)\right) \leq|S|+\left|S_{1}\right|+\left|S_{2}\right|+\ldots+S_{m}$.
Thus $\gamma\left(G\left(C_{k}\right)\right) \leq \alpha(G)+m\left(\frac{k-3}{3}\right)$.
Next, we have to prove that $\gamma\left(G\left(C_{k}\right)\right) \geq \alpha(G)+\left(\frac{k-3}{3}\right)$.
Let S be a dominating set of $G\left(C_{k}\right)$.
We observe that all the new vertiecs are of degree two. Therefore $S \cap\left\{v_{i 2}, v_{i 3}, \ldots, v_{i(k-1)} / 1 \leq i \leq m\right\} \geq \frac{k}{3}-1$ for all $1 \leq i \leq m$.

Next, we claim that $\left|G\left(C_{k}\right) \backslash S \cap\left\{v_{i 2}, \ldots, v_{i(k-1)} / 1 \leq i \leq m\right\}\right| \geq \alpha(G)$.
Suppose $\left\langle G\left(C_{k}\right) S \cap\left\{v_{i 2}, \ldots, v_{i(k-1) / 1 \leq i \leq m\}}\right\rangle \leq \alpha(G)-1\right.$. Let X be a such set. Then at least one edge of $\left\langle\left\{v_{i 1}, v_{i 2} / 1 \leq i \leq m\right\}\right\rangle$ is not covered by X. Let $e_{1}=u_{1} u_{2}$ be such an edge. Then new two degree vertex which is adjacent to u_{1} or u_{2} is not dominated by X when S is a minimum dominating set of $G\left(C_{k}\right)$.

$$
\begin{aligned}
& \text { Thus } \gamma\left(G\left(C_{k}\right)\right) \geq \alpha(G)+m\left(\frac{k-3}{3}\right) . \\
& \gamma\left(G\left(C_{k}\right)\right)=\alpha(G)+m\left(\frac{k-3}{3}\right) .
\end{aligned}
$$

Theorem 2.4. Let G be a graph of order $n \geq 2$ and m be the number of edges of G. Let $k \geq 7$ and $k \equiv 1(\bmod 3)$. Then $\gamma\left(G\left(C_{k}\right)\right)=n+m\left(\frac{k-1}{3}\right)$.

Proof. Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E(G)=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$.
Let $C_{1}, C_{2}, \ldots, C_{m}$ be the corresponding edge cycles of $e_{1}, e_{2}, \ldots e_{m}$.
Let $V\left(C_{i}\right)=\left\{v_{i 1}, v_{i 2}, \ldots, v_{i k}\right\}$ and let $e_{i}=v_{i 1} v_{i k}$ and $v_{i 2}, v_{i 3}, \ldots, v_{i(k-1)}$ are the new consecutive two degree vertices in $G\left(C_{k}\right)$. Here $v_{i 1}$ is adjacent to $v_{i 2}$ and $v_{i k}$ is adjacent to $v_{i(k-1)}$.

Then we have $<\left\{v_{i 1}, v_{i k} / 1 \leq i \leq m\right\}>\cong G$. Let $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}=$ $\left\{v_{i 1}, v_{i k} / 1 \leq i \leq m\right\}$.

First, we have to prove that $\gamma\left(G\left(C_{k}\right)\right) \leq n+m\left(\frac{k-1}{3}\right)$.
Let $S=V(G) \cup X_{1} \cup X_{2} \cup \ldots X_{m}$, where $X_{i}=\left\{v_{i 4}, v_{i 7}, \ldots, v_{i(k-3)}\right\}$ for all $1 \leq i \leq m$.

Then the vertices of $N[V(G)]$ are dominated by $V(G)$ and the vertices of $V\left(G\left(C_{k}\right)\right) \backslash\left(V(G)\right.$ are dominate $\cup_{i=}^{m} X_{i}$.
$\gamma\left(G\left(C_{k}\right)\right) \leq|V(G)|+\left|X_{1}\right|+\ldots+\left|X_{m}\right|$.
But we have $\left|X_{i}=\left\{v_{i 4}, v_{i 7}, \ldots, v_{i(k-3)}\right\}\right|=\frac{k-1}{3}$ for all $1 \leq i \leq m$.
It follows that $\gamma\left(G\left(C_{k}\right)\right) \leq n+m\left(\frac{k-1}{3}\right)$.
Next, we have to prove that $\gamma\left(G\left(C_{k}\right)\right) \geq n+m\left(\frac{k-1}{3}\right)$.
Let $V\left(C_{i}\right)=\left\{v_{i 1}, v_{i 2}, \ldots, v_{i k}\right\}$, where $v_{i 1}, v_{i k} \in V(G)$.
It follows that $|S| \geq n+m\left(\frac{k-1}{3}\right)$
Thus $\gamma\left(G\left(C_{k}\right)\right) \geq n+m\left(\frac{k-1}{3}\right)$.
Hence $\gamma\left(G\left(C_{k}\right)\right)=n+m\left(\frac{k-1}{3}\right)$.

Theorem 2.5. Let G be a graph of order $n \geq 2$ and m be the number of edges of G. Let $k \geq 5$ and $k \equiv 2(\bmod 3)$. Then $\gamma\left(G\left(C_{k}\right)\right)=\gamma(G)+m\left(\frac{k-2}{3}\right)$.

Proof. Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E(G)=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$.
Let $C_{1}, C_{2}, \ldots, C_{m}$ be the corresponding edge cycles of $e_{1}, e_{2}, \ldots e_{m}$.
Let $V\left(C_{i}\right)=\left\{v_{i 1}, v_{i 2}, \ldots, v_{i k}\right\}$ and let $e_{i}=v_{i 1} v_{i k}$ and $v_{i 2}, v_{i 3}, \ldots, v_{i(k-1)}$ are the new consecutive two degree vertices in $G\left(C_{k}\right)$. Here $v_{i 1}$ is adjacent to $v_{i 2}$ and $v_{i k}$ is adjacent to $v_{i(k-1)}$.

Let $V(G)=\left\{v_{i}, v_{i k} / 1 \leq i \leq m\right\}$.
Then $V\left(G\left(C_{k}\right)\right)=V(G) \cup\left\{v_{i 2}, v_{i 3}, \ldots, v_{i(k-1)} / 1 \leq i \leq m\right\}$.
Let X be a minimum dominating set of G and S_{i} be the minimum dominating set of $\left\langle\left\{v_{i 2}, v_{i 3}, \ldots, v_{i(k-1)}\right\}\right\rangle$ for all $1 \leq i \leq m$.

Then $\gamma\left(G\left(C_{k}\right)\right) \leq|X|+\left|S_{1}\right|+\left|S_{2}\right|+\ldots\left|S_{m}\right|=\gamma(G)+m\left(\frac{k-2}{3}\right)$.
Hence $\gamma\left(G\left(C_{k}\right)\right) \leq \gamma(G)+m\left(\frac{k-2}{3}\right)$.
Next, we have to prove that $\gamma\left(G\left(C_{k}\right)\right) \geq \gamma(G)+m\left(\frac{k-2}{3}\right)$.
We observe that all the new vertices in $G\left(C_{k}\right)$ are of degree two and $\left\langle\left\{v_{i 3}, v_{i 4}, \ldots, v_{i(k-2)}\right\}\right\rangle \cong P_{k-4}$ for all $1 \leq i \leq m$.

We know that $\gamma\left(P_{k-4}\right)=\left\lceil\frac{k-4}{3}\right\rceil$.

Also $\left\langle\left\{v_{i 2}, v_{i 4}, \ldots, v_{i(k-1)}\right\}\right\rangle \cong P_{k-2}$ and $\gamma\left(P_{k-2}\right)=\left\lceil\frac{k-2}{3}\right\rceil=\frac{k-2}{3}$. Since $\left\lceil\frac{k-4}{3}\right\rceil=\frac{k-2}{3}, \quad \left\lvert\, S \cap\left\{v_{i 2}, v_{i 3}, \ldots, v_{i(k-1)}\right\} \geq \frac{k-2}{3}\right.$ for all $1 \leq i \leq m$.
We observe that $\left\langle G\left(C_{k}\right) \backslash\left\{v_{i 2}, v_{i 3}, \ldots, v_{i(k-1)} / 1 \leq i \leq m\right\}\right\rangle \cong G$.
Therefore, $\left|S \cap G\left(C_{k}\right) \backslash\left\{v_{i 2}, v_{i 3}, \ldots, v_{i(k-1)} / 1 \leq i \leq m\right\}\right| \geq \gamma(G)$.
Consequently, $\left|S \cap V\left(G\left(C_{k}\right)\right)\right| \geq \gamma(G)+m\left(\frac{k-2}{3}\right)$.
Thus $\gamma\left(G\left(C_{k}\right)\right) \geq \gamma(G)+m\left(\frac{k-2}{3}\right)$.
Hence $\gamma\left(G\left(C_{k}\right)\right)=\gamma(G)+m\left(\frac{k-2}{3}\right)$.

References

[1] Douglas B. West, Introduction to Graph Theory, Second Edition, PHI Learning Private Limited, New Delhi(2012).
[2] T. W. Haynes, S. T. Hedetniemi, P.J. Slater, Fundamental of Domination in graphs, Marcel Dekker, Inc., New York, 1998,
[3] T. W. Haynes, S. T. Hedetniemi, P.J. Slater, Domination in graphs, Advanced Topics, Marcel Dekker, Inc., New York, 1998,
[4] J. Paulraj Joseph and N. Shunmugapriya, Resolving Number of Edge Cycle Graphs, Aryabhatta Journal of Mathematics and Informatics, Vol 10 , No. 1, (2018), ISSN(P) 0975-7139, ISSN(O), 2394-9309.

