Summations of Single Terms and Successive Terms of Geometric Series

Chinnaraji Annamalai School of Management, Indian Institute of Technology, Kharagpur, India Email: <u>anna@iitkgp.ac.in</u> <u>https://orcid.org/0000-0002-0992-2584</u>

Abstract: This paper presents the summations of separate terms and successive terms of geometric series. This will be useful for the researchers who are involving to solve the scientific problems.

MSC Classification codes: 40A05 (65B10)

Keywords: geometric series, summation, successive terms

Summations of successive terms of geometric series

In this paper, the summations [1-3] of single term and successive terms of geometric series are constituted for the researchers. The geometric series are used in the areas of science, technology, and management [4].

Summation of one term of geometric series:

 $1 = \frac{x-1}{x-1}, \qquad x = \frac{x^2 - x}{x-1}, \qquad x^2 = \frac{x^3 - x^2}{x-1}, \qquad x^3 = \frac{x^4 - x^3}{x-1}, \qquad x^n = \frac{x^{n+1} - x^n}{x-1}.$

Summation of two successive terms of geometric series:

$$1 + x = \frac{x^2 - 1}{x - 1}, x + x^2 = \frac{x^3 - x}{x - 1}, \ x^2 + x^3 = \frac{x^4 - x^2}{x - 1}, \dots, \ x^{n - 1} + x^n = \frac{x^{n + 1} - x^{n - 1}}{x - 1}.$$

Summation of three successive terms of geometric series:

$$1 + x + x^{2} = \frac{x^{3} - 1}{x - 1}, \qquad x + x^{2} + x^{3} = \frac{x^{4} - x}{x - 1}, \cdots, \qquad x^{n - 2} + x^{x - 1} + x^{n} = \frac{x^{n + 1} - x^{n - 2}}{x - 1}$$

Similarly, this process continues up to multiple successive terms of geometric series. The summations of numerous successive terms [1-3] of geometric series are given below.

Summation of various successive terms of geometric series:

$$\sum_{i=k}^{n} x^{i} = x^{k} + x^{k+1} + x^{k+2} + \dots + x^{n-1} + x^{n} = \frac{x^{n+1} - x^{k}}{x-1}.$$

$$\sum_{i=-k}^{n} x^{i} = x^{-k} + x^{-k+1} + x^{-k+2} + \dots + x^{n-1} + x^{n} = \frac{x^{n+1} - x^{-k}}{x-1}.$$
$$\sum_{i=1}^{n} x^{i} = 1 + x + x^{2} + x^{3} + \dots + x^{n-1} + x^{n} = \frac{x^{n+1} - 1}{x-1}.$$

References

- [1] Annamalai C (2009), "A Novel Computational Technique for the Geometric Progression of Powers of Two", Journal of Scientific and Mathematical Research, Vol. 3, pp 16-17.
- [2] Annamalai C (2018) "Annamalai's Computing Model for Algorithmic Geometric Series and its Mathematical Styructures", Journal of Mathematics and Computer Science, Vol. 3(1), PP 1-6.
- [3] Annamalai C (2019), "Extension of ACM for Computing the Geometric Progression", Journal of Advances in Mathematics and Computer Science, Vol. 31(5), pp 1-3.
- [4] Annamalai C (2010) "Applications of Exponential Decay and Geometric Series in Effective Medicine", Advances in Bioscience and Biotechnology, Vol.1 (1), pp 51-54.