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1 Introduction to Many-Slit Interference 
 

1.1 Overview of MSI 
 

 
__________________________________________________________________ 

 
Welcome to Lectures on Symmetry Optics.  I’m Paul Mirsky.  This is Lecture 2 of the series, and 
the topic of this lecture is: Plenary and Singular Factors. 
 
One of the most important phenomena in symmetry optics is many-slit interference.  Let’s 
review.  Imagine a flat wavefront of light, all at one wavelength.  The light passes through a 
grating, which is an opaque screen containing many slits.  Some light gets absorbed by the 
grating, but some passes through and forms a many-slit pattern. 
 

https://youtu.be/DMfN_PrR0tw
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We actually won’t be so concerned about how this pattern gets formed.  What matters is that 
now we have a pattern of stripes, and the wavefronts all lie in one plane, which is why we call 
this plane the flat.  These are our ‘initial conditions’. In other words, when we do calculations, we 
are usually given this pattern.  And the purpose of the calculations is to determine what happens 
next. 
 
Because, as the light propagates forward, the pattern doesn’t just stay the same.  Instead, it 
diffracts and interferes, and it forms a diffraction pattern, which can also be called an 
interference pattern.  That pattern is what we want to calculate. 
 
Finally, we have the far limit.  This is a plane, and it’s not necessarily a physical boundary, but it’s 
a mathematical boundary to our model.  Our model only goes up to the far limit, although we’re 
allowed to set it as far back as we like. 
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1.2 Planes at every value of Z 

 

 
__________________________________________________________________ 

 
We’re going to shift perspective now; now we’re looking down from above. 

 
This (arrow) is the direction of propagation.  We label this axis with the letter Z.   At Z=0, we have 
the flat.  And for every point along Z, there is another plane lying perpendicular, and each of 
these planes has some pattern in it. 
 
Now, this drawing is not perfectly realistic, because it shows the patterns as though they have 
some thickness along Z.  That’s not actually true; the pattern actually lies in just one plane, but 
we draw it this way so that you can see it. 
 
What we’re looking at is called the free configuration.  It’s one of two main configurations. 
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1.3 The lens-limited configuration 

 

 
__________________________________________________________________ 

 
The other is the lens-limited configuration. 
 
First, let’s review some basics about lenses. Every lens has a focal length, and we’ll call it F.  F is 
the parameter that makes it a strong or a weak lens.  And it defines two planes: the front focal 
plane which lies a distance F in front of the lens, and the rear focal plane which lies a distance F 
behind the lens. 
 
Now let’s assume that the flat is lying in the front focal plane.  The light propagates and becomes 
curved, and passes through the lens, and eventually the wavefronts become flat again at the rear 
focal plane. We call the initial plane the front flat, and the final plane the rear flat. 
 
You might think that the rear flat is the far limit, but actually for mathematical purposes, the lens 
plane acts as the far limit.  So, the far limit is equal to F, the focal length. 
 
The most key principle of the lens-limited configuration is: The pattern at the rear flat is the 
Fourier transform of the pattern at the front flat.  This one fact is the basis for the whole subfield 
of Fourier optics, which is related to symmetry optics.  This lecture will not discuss the Fourier 
transform in detail, but the main thing to know is that it’s not simply an image of the front flat.  
Instead, it’s a pattern that typically looks quite different. 
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2 Features Composed From Features 
 

2.1 Features and widths at the flat 
 

 
__________________________________________________________________ 

 
Now let’s take a close look at the pattern at the flat.  We’re going to illustrate by looking at this 
one specific example.  To begin with, we see a pattern with red areas and light blue areas.  The 
red indicates bright space, where light is present. The blue indicates dark space, where there is 
no light.  Now, there are 5 different features which define the pattern, and each one of them 
parameterized with a width. 
 
The first feature is the patch.  The pattern is made up of discrete patches of space, all of them 
identical in size, almost like individual pixels.  Its width is the wavelength.  In this example, it’s 
two micrometers (μm), also called two microns. 
 
The next feature is the stripe.  This is the bright area drawn in red; right after the grating, this is 
the light from one slit.  All instances are identical, so the stripe width is a single parameter.  Here, 
it’s 10μm.  Notice here that sometimes we are a little bit loose with our terminology, and for 
example, instead of saying ‘the stripe width is 10μm’, we may just say ‘the stripe is 10μm’ which 
is unambiguous enough. 
 
The next feature is the period.  This is the stripe plus the dark space adjacent to it.  The period is 
the distance from one stripe to the next.  Again, they are all evenly spaced so it’s a single 
parameter, which in this example is 20μm.  But you should note that it’s not always two times 
the stripe – that’s just this particular case. 
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The next feature is the array.  This is the whole region of the pattern that contains any bright 
space, even though that bright space isn’t contiguous.  And note where the exact edges of the 
array are. The array is always made up of increments of a full period, so the right edge is the 
edge of this stripe, but on the left edge, it’s not the edge of the stripe, but rather the edge of the 
period, so it includes this dark space.  The width of the array here is 80μm. 
 
And finally, the last feature is the wide limit.  This sets the full size of the pattern.  So the pattern 
isn’t just the array; it also includes dark space.  The wide limit has the same value as the far limit, 
but it’s measured along a different axis – the far limit is the distance in Z between two planes, 
but the wide limit is a distance within a single plane.  So in this case, the wide limit is 240 μm, 
implying that the far limit is also 240 μm. 
 
Now, we’ve been discussing this one particular pattern, but this is just one member of a large 
family of possible patterns, and what we’ve said applies to all of them.  Every member of this 
family has a patch, a stripe, a period, an array, and a wide limit. The only difference is the widths 
that these features have, which can be set more-or-less arbitrarily. 
 
But widths are only one way of parameterizing this pattern.  We now want to shift to a different 
set of parameters. 
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2.2 Wide limit composed from bright and dark arrays 

 

 
__________________________________________________________________ 

 
First, it’s helpful to notice that each feature can be composed from smaller features, and they 
form a nested series.  Let’s look at this: 
 
We’ll start at the top with the wide limit. We can think of it as being composed of 3 distinct 
segments.  The segment in the middle is unique, because it’s the normal array.  All the other 
segments are what we can call dark copies of the array, because they are the same size as the 
array, but all the patches are dark.  So at this level of nesting, the wide limit is the whole and the 
array is the component. 
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2.3 Array composed from periods 

 

 
__________________________________________________________________ 

 
But, in the next step we zoom in and look at the components of the array itself.  Similar to the 
last step, the array is composed from 4 copies of the period.  But the logic is a little different 
here, because there are no dark copies.  Instead, they’re all normal copies. 
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2.4 Period composed from bright and dark stripes 

 

 
__________________________________________________________________ 

 
We can continue zooming in and look at the period.  It’s made up of 2 segments: the normal 
stripe, and a dark copy.  This is like the first step, because there is only one normal component, 
and the rest are dark copies. 
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2.5 Stripe composed from bright patches 

 

 
__________________________________________________________________ 

 
And finally, we examine the stripe.  It’s composed of 5 normal copies of a bright patch.   
 
Now we are down to a single wavelength, and this is as far as we can go.  This gives you a good 
picture of the nested structure of the pattern. 
 
Now, we’re going to formalize it and clarify it, by introducing the concept of factors.  We’re going 
to shift away from thinking in terms of features and widths, we’re going to shift towards thinking 
in terms of factors.  Factors are a new concept that is unique to symmetry optics. 
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3 Features and Factors 
 

3.1 Plenary and singular factors 

 

 
__________________________________________________________________ 

 
A factor is represented mathematically by a vector.  Here are two examples:  On the left, we 
have the vector 1-1-1-1.  On the right, we have the vector  0-0-0-1-0-0.  Every factor has a size 
and a type.   
 
The size is the number of components in the vector.  So, the vector on the left is size 4, and the 
vector on the right is size 6.   
 
The Type can be either plenary, or singular.  In a plenary factor, all of the vector components are 
equal to 1, like the vector on the left: 1, 1, 1, 1.  In a singular factor, a single one of the 
components is equal to 1, and all the other components are zero.  By convention, we put the 1 in 
the middle, or if the size is an even number then we’ll put it just to the right of the middle.  For 
now, we’ll only consider factors that fit one of these two formulas.  There do exist other 
variations of singular and plenary factors, but those won’t come until much later on.   
 
Alternatively, we can represent factors using factor diagrams, because they are convenient and 
easy to interpret.  This is really just a way to draw the vector.  A factor diagram is drawn as set of 
boxes; each box can be either open or filled. An open box represents a 0; a filled box represents 
a 1.  So, the vector 1-1-1-1 is drawn as four filled boxes.  0-0-0-1-0-0 is drawn as open box, open 
box, open box, filled box, open box, open box.  Easy. 
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3.2 Combining factors into a ranked series or chain 

 

 
__________________________________________________________________ 

 
Now, to create the pattern we saw earlier, we need to combine 4 factors into a factor chain.  In 
this table, each column is one link of the chain, and they are in a sequence from lowest rank to 
highest rank.  In this example, the lowest-ranking factor is size-5, plenary.  The next-lowest is 
size-2, singular, then size-4, plenary, and the highest-ranking factor is size-3, singular.  For a 
many-slit pattern like our example, it always goes plenary-singular-plenary-singular. 
 
We can express this factor chain equivalently with a chain of factor vectors, or with a factor 
diagram.  The lowest-ranking factor, the size-5 plenary, is 1-1-1-1-1, or 5 filled boxes.  The size-2 
singular is 0-1, or open-box filled-box.  The size-4 plenary is 1-1-1-1 or 4 filled boxes.  And the 
size-3 singular is 0-1-0, or open-filled-open. 
 
A minute ago, we broke the pattern down step by step; now we’ll learn an algorithm to build the 
pattern up, step by step.  We can think of the factor chain as a recipe for doing this building-up. 
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3.3 Factor 1 / 4 (lowest-ranking) 
 

 
__________________________________________________________________ 

 
We always start with a single bright patch, which is the simplest possible pattern. 
 
Now let’s take the lowest-ranking factor: size-5 plenary.  Every factor expands a smaller feature 
into a larger feature.  The factor size is the multiple that we expand by – so, here, we expand the 
patch 5-fold.  The pattern type tells us how to expand: if it’s a plenary factor, like in this case, we 
expand by adding normal copies.  This gives us 5 bright patches in a row, which is the stripe. 
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3.4 Factor 2 / 4 

 

 
__________________________________________________________________ 

 
Next up, we have a size-2 singular factor.  Like before, we expand the stripe – this time, 2-fold 
But this time it’s a singular factor, so instead of adding normal copies, we add dark copies, which 
in this case is just one.  This gives us the period.  
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3.5 Factor 3 / 4 

 

 
__________________________________________________________________ 

 
Next comes a size-4 plenary factor, so we expand the period 4-fold, adding normal copies.  This 
gives us the array.  
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3.6 Factor 4 / 4 (highest-ranking) 
 

 
__________________________________________________________________ 

 
And finally, we have a size-3 singular factor, so we expand the array 3-fold, adding dark copies.  
This gives us the wide limit, which is the full pattern.   
 
We’re done!  
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3.7 Feature widths vs factors 

 

 
__________________________________________________________________ 

 
But let’s clarify a very confusing point.  There are factors and there are widths (features), but 
they are not the same thing, so be careful not to mix them up. 
 
The difference is that the widths are cumulative products of many links of the chain, then 
multiplied by the wavelength.  For example, the stripe is the lowest-ranking factor size, times the 
wavelength.  The period is the product of the two lowest factor sizes, times the wavelength.  The 
array is the product of the three lowest factor sizes, times the wavelength.  And the wide limit is 
the product of all four factor sizes, times the wavelength.  The widths all carry length units, like 
microns or meters.  But the factor sizes are dimensionless. 
 
We can put this a different way: the factor sizes are ratios between two different widths.  For 
instance, the lowest-ranking factor is the ratio of the stripe to the wavelength.  The second-
lowest factor is the ratio of the period to the stripe.  The second-highest factor is the ratio of the 
array to the period.  And the highest factor is the ratio of the wide limit to the array. 
 
These formulas on the left are going to let us ‘cheat’ a little bit in some of our calculations.  What 
I mean is that formally, every factor size is supposed to be an integer.  That’s because it’s the 
number of components in a vector, and a vector can have 4 components (for example) or 5 
components, but it can’t have 4½ components.  But there is some flexibility.  If you don’t actually 
need to build up a pattern, and you just need to calculate a size or a width, then it’s OK to use 
non-integer factor sizes.  Use your judgment.  
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4 Factors as Vectors 
 

4.1 Discrete patches, binary intensity 

 

 
__________________________________________________________________ 

 
We’ve just learned one algorithm for calculating patterns, but there’s also an alternative 
algorithm which uses the factor vectors.  Both give the same answers.  The difference is that the 
factor-vector algorithm is less intuitive, but has a clearer mathematical structure. 
 
We’ll start by noting that we can represent the pattern with a vector.  It has one component for 
every patch of the pattern, and the value of each component represents the amplitude of the 
light wave at that patch.  Every value is either a 0 or a 1.  Zero means that it’s a dark patch.  1 
means that it’s a bright patch. 
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4.2 Outer product of factor vectors, Step 1 / 4 

 

 
__________________________________________________________________ 

 
And the way we calculate this vector is to: 
 

1. Form the outer product of the factor vectors 
2. Flatten the outer product, which means to rearrange it into a 1-dimensional vector. 

 
Let’s look at how it works.  To form the outer product, we introduce the factor vectors 1 at a 
time.  Here’s the first one, and with just one factor there’s not much to say.  
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4.3 Outer product of factor vectors, Step 2 / 4 

 

 
__________________________________________________________________ 

 
But when we combine it with the second factor, we form a table or a 2-dimensional array.  The 
1st factor corresponds to the rows of the array, and the 2nd factor corresponds to the columns.  
Each element of the array is the product of one row component from the 1st factor, and one 
column component from the 2nd factor.  For example, this element (2,1) is in the 2nd row, which 
corresponds to a 1.  It’s also in the 1st column, which corresponds to a 0.  1 x 0 = 0, so this 
element is equal to 0. 
 
This element (5,2) is in the 5th row, and the 2nd column, so its factors are 1 and 1, so the element 
is equal to 1 x 1 which is 1. 
 
This is how the outer product works for two factor vectors, but we can keep going by adding a 
third factor. 
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4.4 Outer product of factor vectors, Step 3 / 4 

 

 
__________________________________________________________________ 

 
This gives us a 3-dimensional array; and, while it’s impractical to drawn them in 3-d, you can 
picture these as 4 levels stacked on top of one another. 
 
Any element of this array is the product of 3 numbers – the row label, the column label, and the 
level label.  For example, this element (4,1,3) is in the 4th row, the 1st column, and the 3rd level.  
Its factors are 1, 0, and 1.  The product of those three is zero.  Basically, if all the factors are 1, 
then the element is 1.  If any of the factors is 0, then the element is 0. 
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4.5 Outer product of factor vectors, Step 4 / 4 

 

 
__________________________________________________________________ 

 
Finally, we add the 4th factor, making a 4-d array.  The new factor is singular, and so all of the 
new entries are zeros.  Now we’ve used up all of our factor vectors, and so the outer product is 
complete. 
 
The next step is to flatten the array, which means to turn it from a 4-dimensional array into a 1-
dimensional array, which is a vector.  To do this, we need to put all the elements in order, 
following the rule that the lower-ranking indices get cycled first.  Here’s how this works: 
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4.6 Flattening the outer product 
 
We start with the first component of each factor.  This corresponds to the element in one corner 
of the array.  This is going to be the first element of our 1-d vector. 
 
We then increment the index of factor 1, going to components 2, 3, 4, and 5.   
 
But once we get to the end of factor 1, we cycle it back to the beginning and then increment 
factor 2.  It’s a little like counting in base-10 numbers.  There, you count in the 1’s column from 0 
to 9, but then you roll back to 0 and increment the 10’s column. The main difference is that in 
base-10 numbers it always cycles back after 9, but in this case each factor has a different size 
and cycles back at a different index. 
 
Also, don’t confuse the component indices with the component values.  For example, factor 1 
has 5 components and their indices go 1-2-3-4-5, but the values go 1-1-1-1-1.  It’s the indices 
that we’re incrementing, not the values. 
 
So back to flattening, we continue incrementing factor 1.  But when we get to the last 
component, we find that factor 2 is also at its last component, so we cycle both 1 and 2 back to 
the beginning, and then increment factor 3. 
 
We won’t follow every single step, but this continues for all of factor 3 and then likewise for 
factor 4, until we get to the last component of all factors, which is the last element of our 1-d 
vector.  Now we’re done, and we have one long vector which represents our pattern. 
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4.7 An idealized model 
 

 
__________________________________________________________________ 

 
One important note: because every value is either 0 or 1, every patch is either dark, or uniformly 
bright; there are no intermediate shades of grey.   
 
This brings us to an important caveat: symmetry optics is an idealized model.  It’s meant to be 
simple, rather than to get every detail right.  For example, imagine that we wanted to represent 
a pattern like the one at the top, which is made from Gaussian distributions.  This is fairly typical 
of what you’d actually measure in the lab.  Today, symmetry optics can’t model a pattern like 
this exactly.  Instead, we would idealize, and model it like the pattern on the bottom, with only 
the two amplitudes 0 and 1.  It gets the basic dimensions right, and it captures the essence of 
the pattern, but it does miss some subtleties. 
 
The hope is that in the future, symmetry optics will get more advanced and develop into a more-
general model that can handle all possible patterns.  But, that’s a long way off. 
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5 Simplest Application in Symmetry Optics 
 

5.1 Fourier transform in MSI 
 

 
__________________________________________________________________ 

 
Now we are going to learn the simplest application in symmetry optics.  Note that we are 
working in the lens-limited configuration, and that therefore we use the focal length as the wide 
limit. 
 
We’re given a pattern at the front flat, and our goal is to calculate the pattern at the rear flat.   
 
Now, recall from before that the rear flat is the Fourier transform of the front flat.  There’s a very 
standard equation for calculating the Fourier transform, but we won’t be using that.  Instead,  
we’ll begin by determining the factor chain which defines the pattern, which in this case we 
already know.  We’ll adopt the convention of referring to the four factors in this chain as A, B, C, 
and D, from lowest to highest rank. 
 
Next, we apply a simple rule.  To find the rear chain from the front chain: 

1. Reverse the rank order 
2. Invert each type; in other words, change each plenary into a singular, and change each 

singular into a plenary. 
 
Where does this rule come from?  Well, if you’re familiar with the Fast Fourier Transform 
algorithm, you can maybe hear echoes of it.  But this rule doesn’t rest on any derivation. 
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Rather, we’re going to simply posit the rule and use it because it works.  In later lectures, we’ll 
see that actually it’s one special case of a much more general rule, but that’s for later. 
 
For now, let’s see how the rear flat looks in this example.  Up at the top is our rear symmetry 
chain.  Firstly, it has reversed rank order.  So, the front chain goes A-B-C-D, but the rear chain 
goes D-C-B-A.  Next, each type is inverted.  So, A goes from plenary to singular, B goes from 
singular to plenary.  C goes from plenary to singular, and D goes from singular to plenary. 
Notice, though, that in one sense those two changes cancel each other out, and so in both cases 
the chain goes plenary-singular-plenary-singular. 
 
Once we have the factor chain at the rear, we calculate the rear pattern.  This is our answer.  
 
Let’s compare the front and rear patterns and see how our rule manifests in spatial terms:  First 
of all, note that the wavelength and the focal length are always the same in both planes. Now, at 
the front, there are 5 patches in the stripe.  In the rear, the wide limit is 5 times as wide as the 
array.  At the front, the period is 2 times as wide as the stripe.  In the rear, there are 2 periods.  
At the front, there are 4 periods.  At the rear, the period is 4 times as wide as the stripe.  Lastly, 
at the front, the focal length is 3 times as wide as the array.  At the rear, there are 3 patches in 
the stripe. 
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5.2 Features of the beam 

 

 
__________________________________________________________________ 

 
Besides many-slit interference, we’re only going to discuss one other phenomenon: the beam.  
This is actually even simpler than many-slit interference.  You can think of it as just one slit – or, 
alternatively, it’s just a wavefront that never even passes through a grating at all.  It’s actually so 
simple that it’s hard to learn the principles from it, which is why we’re doing it last rather than 
first. 
 
In any case – the beam has fewer features: just the patch, the stripe, and the wide limit.  The 
stripe is just the diameter of the beam. 
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5.3 Fourier transform in the beam 

 

 
__________________________________________________________________ 

 
In the lens-limited configuration, again we’re given the feature widths at the front flat.  Just as 
before, we express the pattern in terms of a factor chain.  We follow the same principles as we 
did for many-slit interference, but for the beam there are only two factors in the chain. 
 
In this example, the chain consists of a size-3 plenary factor, and then a size-6 singular factor, 
going lowest to highest rank.  In other words, we start with a single bright patch, and we expand 
it 3-fold with normal copies to make the stripe.  Then, we expand the stripe 6-fold using dark 
copies.  That gives us the wide limit, which is the focal length. 
 
As before, we reverse the rank order of the factor chain, and A-B in the front is changed to B-A in 
the rear.  Also, A goes from plenary to singular, and B goes from singular to plenary.  Also, those 
two effects cancel, and both chains go plenary-singular. 
 
We then convert the factor chain back into a pattern, and here’s what we get.  Instead of 3 
patches in the stripe, we have 3 stripes in the focal length.  And, instead of 6 stripes in the focal 
length, we have 6 patches in the stripe.  And that’s our answer. 
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6 Conclusions 
 

6.1 Reviewing key points 

 
That’s all for this lecture, so let’s review the key points: 
 

 A plenary factor is a vector of all 1s. 

 A singular factor is a vector with a single 1 in the middle, and 0s everywhere else. 

 Widths are cumulative products of factors.  Factors are ratios of width. 

 The pattern is the outer product of the factors, flattened 

 The rear flat (Fourier Transform) is made by reversing rank order, and inverting type 
(singular/plenary). 
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6.2 Outro 

 
There are more resources to help you learn symmetry optics, and I hope you’ll take advantage.  
You’ll find links wherever you found this video. 
 
The first resource is the lecture notes. This is essentially the same material as this lecture, but in 
written form. Sometimes, it’s better to read it than to hear it. 
 
Second, there is a problem set.  If you want to learn the material, I suggest doing it. 
 
Third is the companion code.  These are symmetry optics calculations, written for Matlab.  The 
code lets you explore, and experiment, and try examples, and learn.  For this lecture it’s not so 
important, but as you go further in the lectures, the companion code will eventually become 
more and more essential. 
 
And finally, there are more lectures in the series.  Please check them out and keep learning. 
 
I’m Paul Mirsky; thanks for listening. 


