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Abstract

In this note I have discussed Einstein’s theory of special relativity,
derived the coordinate transformations in a simple manner, and ob-
tained expressions for time dilation, the relativistic Doppler effect
and length contraction. In Einstein’s original paper, a factor ¢ ap-
pears, which he sets equal to unity. However, ¢ can be reinterpreted
as a scale factor when coordinate time is defined via a single coor-
dinate clock and the time delay receiving information via light rays
is included. Using Einstein’s definition of coordinate time, a moving
sphere is construed as an ellipsoid of revolution, whereas the prac-
tical definition of time intervals used here - implying simultaneity
of reception rather than simultaneity of occurrence - shows it is a
rotated sphere.



1 Introduction

One of the most influential papers ever written in the history of math-
ematical physics was Albert Einstein’s 1905 paper entitled "Zur Elek-
trodynamik bewegter Korper" [1|. He may have called it a paper on
electrodynamics, but in fact it changed our perception of space and
time, and became known as his special theory of relativity (SR). The
theory is accepted today by the scientific community, and forms an
important part of the current paradigm, but numerous mathemati-
cians and physicists have questioned its validity (e.g. [2], [3], [4], [5],
[6]). In view of this level of scepticism, I decided to re-examine SR
myself, using as simple an analysis as possible. These issues have
been discussed countless times in the scientific literature since SR
was first introduced more than a century ago, and I do not claim
here to have discovered anything new. My aim is merely to try to
pinpoint and clarify some of the aspects that might be a cause of
confusion - and perhaps look at the theory in a different light from
usual.

2 Transformation equations

Einstein’s original paper [1] contains the following transformation of
time and space coordinates between two inertial frames of reference,
O(x,y, z,t) and O'(«',y/, 2/, t'), moving at a relative speed v in the
x or ' direction (where I use my own notation):

= o) e —vt]; Y = o)y 2 = 6(v)z:
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t' = ¢(v)y(v) (1)

The function v = (1—v%/c?)~"/2? is conventionally called the Lorentz
factor. Einstein argued that the function ¢(v) that appears as a
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multiplication factor affecting all terms is necessarily equal to unity,
and so it subsequently disappeared from the equations.

The transforms can be obtained by imagining a frame of reference
O’ passing your own (stationary) frame O with speed v in the z
direction (see Figure 1).
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Figure 1: A mirror in space: When the origins of the two frames overlap, a
pulse of light is sent to a mirror a distance L away and reflected back to O" and
O, but O has moved a distance vt. In SR the coordinate time is larger than
the proper time because the light has travelled a larger distance, viz. along the
hypotenuse as opposed to the vertical side of the triangle. For a single observer
at O to receive the information, the light takes an extra time vt/c (Equation 4)
to travel back to the observer O on the left of the diagram.

At the instant the origins overlap, a pulse of light is sent out from O’
in all directions. At a distance L from the 2’/ axis a mirror reflects
the light signal back to O" in a time ¢’ = 2L /c. When O’ receives the
reflected pulse, an observer in the O frame simultaneously records
its arrival. However, this observer in the O frame must be a specific
distance, x = vt, from the origin, ¢ being the time elapsed between
emission and reception of the signal. From the diagram it is clear
that the signal has to travel further in the O frame, i.e. along the
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hypotenuses of the triangles as opposed to along vertical sides in the
O’ frame. Using Pythagoras’s theorem we then have:

At =7+ 0* 2 =0; 2 = vi] (2)

Embodied in this equation is Einstein’s postulate on the invariance
of the speed of light, since we have written it as ¢ in both frames.
The other important ingredient is that the observation of simulta-
neous events in the O frame has required the use of two previously
synchronized clocks.

To complete the derivation of Equations 1, we now view the events
from the O’ frame. This enables us to write equivalently:

At =P+ 0H”? [ =0; 2" = —vt] (3)

The sign of v is reversed. Now we only have to realize there are linear
relationships for ¢’ and 2’ as functions of x and ¢:

t'=Ax+ Bt ; 2’ =Cx+ Dt (4)

where A, B,C, D are functions of v, to be determined. Substitut-
ing Equations 2 and 3 into Equations 4 then gives the transform
equations in Equations 1 with ¢ = 1.

Equations with the same mathematical form had already been ob-
tained previously by Lorentz and Larmor, predating Einstein’s SR,
but the physical meaning of the equations was different. In SR, v is
the relative velocity of two inertial frames and c is the invariant speed
of light in either of the frames, neither of which is preferred, whereas
in Lorentz’s theory v represents the speed of a moving frame relative
to a stationary aether frame, and c is the speed of light relative to
the aether frame. Nevertheless, the transformation continues to be
called a Lorentz transformation, even within Einstein’s theory.

Einstein’s transformations result essentially from a purely abstract
thought experiment, in which the frames are equipped everywhere
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with identical clocks that are all synchronized with each other, so
that the time and location of an event can be recorded as it oc-
curs in either frame. In particular, if two events occur in one frame
at a single location (as in the above derivation), these events will
inevitably occur in different locations in the other frame. Mathe-
matically this is not necessarily a conceptual problem, but from a
physics point of view there is an issue with the time measurement,
since it takes a finite amount of time for information to travel from
one clock to another. This is indeed taken care of by Einstein in his
paper, and there is no contradiction in his theory. However, it does
cause potential misconceptions, which I shall outline below.

3 Time dilation and single-observer time

From the transforms, we can immediately quantify the effect called
time dilation. Rearranging Equation 2 gives:

v2 ot
t'=t\1——=— 5
-z =5 (5)

which is interpreted to mean that a clock in a frame O’ moving
relative to frame O runs at a slower rate (t' < ¢ for v > 0).

From the diagram we see that such a definition of a time interval ¢
requires more than one clock in the O frame. Essentially an infinite
number are imagined in the thought experiment, dotted about the
universe. However, from a practical point of view, consider that we
only have one laboratory clock at our disposal (at the origin of the
O frame) plus a telescope, and that events are referred back to this
clock from distant locations using light signals. For this purpose
[ shall define a new time quantity 7 by adding the delay time to
Einstein’s coordinate time ¢. We then have (see Figure 1):

vt v
T:t+:<1+>t (6)
C C
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and from Equation 5 one obtains:

T (1 * D (1— 1}21/02)1/2 R T—r:}ﬁ 2 (7)

This expression describes the well-known relativistic Doppler effect.
Time intervals 7 and ¢’ can be construed as the inverse of light fre-

quencies and, since wavelengths are inversely related to frequencies,
it describes the relativistic red-shift for a receding source of light.
Changing the sign of v inverts the expression, and then the square-
root term describes a blue-shift for an approaching source.

Using Einstein’s definition of coordinate time ¢, the quantity ¢ in
Equation 1 is indeed unity, since both directions are equivalent. How-
ever, with the redefined time quantity 7, the directions (£v) are not
equivalent, and if the coordinate transformations are rewritten in
terms of 7, then ¢ is given by

1
O =

(1+v/c) (8)

where v is positive for a receding O' frame and negative for an
approaching O frame. (The derivation of this is not immediately
straightforward.)

4 Twin age difference

The two ways of defining coordinate time can be compared here
by examining the classic twin paradox. As a numerical example,
consider twin A taking a journey to a distant planet 3 light years
away at a speed v/c = 3/5, and immediately returning, while twin
B stays at home. For these numbers we have v = 5/4. Thus, from
the usual time dilation equation, SR predicts twin A takes 4 years
to reach the planet plus 4 years to return, i.e. 8 years in total, while
twin B ages by 10 years.



Alternatively, according to twin B as the single observer, he/she ob-
serves twin A’s clock ticking at half rate for a total of 8 years (from
Equation 7), because it takes twin A 5 years to reach the destination
plus a further 3 years for the light signals to return to B, giving an
ageing of 8 X % = 4 years. This is followed by a sudden change
to double rate of ageing for just 2 years, i.e. a further four years.
The overall effect is thus the same, as it must be. There is no in-
consistency, i.e. the age difference is real, and not dependent on
how time quantities are defined. The age or clock difference occurs
on both receding and approaching legs of the journey, so it is the-
oretically not necessary for the traveller to return to prove he/she
has aged differently. Ultimately, the overall ageing effect is given by
the Lorentz factor alone, and the Doppler shift just gives us some

ongoing information during the course of the thought experiment.

5 Length contraction

Another prediction of SR is length contraction, which is also called
Lorentz contraction, since it had already been predicted earlier using
Lorentz’s aether theory.

Suppose we have a rod of length 2’ at rest in the primed frame aligned
along the z' axis. To find the length of the rod as measured in the
O frame, we must make sure to measure the distances to the end
points simultaneously in the O frame, which means the measurement
is characterized by ¢ = 0. Using Equation 1 we then have

x
r==—=2x1-v%/c (9)
8
If the rod were aligned instead in the y or z directions, with motion
again in the = direction, the same consideration shows that there is
no change in length (since the relative velocity in those directions is
7€10).



In his paper [1], Einstein states that a rigid body at rest, which has
the shape of a sphere, has in a state of motion, viewed from the
stationary system, the form of an ellipsoid of revolution. Indeed,
our perception of special relativity is shaped by this understanding
but, as I shall show next, the use of the word "viewed" is not strictly
correct. It is only correct in the sense of Einstein’s abstract definition
of coordinate time.

So, in essence, we come back to the same issue, where the coordinate
observer in Einstein’s theory is quasi an omnipresent figure with an
instantaneous overview of the whole of spacetime, without having to
worry about the time it takes for information to reach him or her.
This is very different from the lowly physicist in his lab equipped with
just one clock, and an optical spectrometer attached to a telescope!

To illustrate this, imagine a cube of side length L in motion along the
x axis, with its edges parallel to the coordinate axes x,y, z (Figure
2). According to Einstein’s definition of coordinate time ¢, the front
face of the cube (xy plane) is indeed contracted along the x direction

by the factor /1 — v2/c? (into a rectangle), the y direction remaining
unaltered; the other orthogonal faces yz and xz remain square.

Consider yourself now as a single observer viewing the cube by receiv-
ing parallel light in a direction perpendicular to the zy plane. The
light will take longer to reach you from the back of the cube, than
from its front, since it is further away, and the previously obscured yz
face will appear rotated towards the z direction by an angle 6, given
by sinf = vL/c. The contraction of the zy face of the cube in the
x direction by the Lorentz factor is also equivalent to a rotation by
the same angle, so that the complete picture for an observer viewing
the moving cube is that it has rotated about a vertical axis by an
angle 6. This effect is explained in more detail by David Appell in
his article |7]. The angle increases with velocity v, and for an object
approaching the speed of light, it approaches 90 degrees.

For the case of a sphere in motion, then, we would not expect to
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Figure 2: A cube moving with speed v to the right appears rotated (anticlockwise
in diagram; The diagram is a plan view of the cube, which is observed from the
side)

see a foreshortening of the sphere into an ellipsoid of revolution, as
Einstein stated, but we can infer that a simple rotation will occur,
with the sphere retaining its circular outline. (This has previously
been noted by Roger Penrose, see ref.[7].)

Einstein’s coordinate time definition is, therefore, potentially con-
fusing when trying to understand special relativity from a visual or
practical point of view, and it is more instructive to take observa-
tional time delay into consideration, as I have done throughout this
paper, both with regard to the Doppler effect and length contraction.
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The bottom line here is that light rays that simultaneously leave a
moving object do not necessarily reach the eye or detector at the
same time. This leads to most interesting effects that can be the
subject of further investigation.
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