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ABSTRACT 

A novel raytracing method through parabolic axial gradient index lenses is presented. The study is based 

on developing the exact solution of the differential ray equations with initial conditions set by refraction at 

the first surface. The analysis offers potential benefits in reducing the computation effort and increasing the 

raytracing accuracy. 
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1. INTRODUCTION 

Raytracing through gradient index lenses is usually carried out by using approximate 
numerical methods of solving the differential ray equations 1,2 To this end, Runge-Kutta 
algorithms are ranked among the most popular. They are computationally intensive and 
often require iterative adjustments of the step size to produce acceptable accuracy 
There is interest in using axial GRIN materials for a variety of design applications due to 

the recent progress in the fabrication process6. In general, the GRIN technology offers a 
number of known benefits in replacing aspheric surfaces and enhancing the performance 
of conventional microoptics systems 5,6 

This work reports on a closed form solution of the ray equations for axial GRIN elements 
displaying a parabolic distribution of the refractive index. The study is based on the 
theory of elliptic functions which has found extensive application in the dynamics of 
nonlinear oscillators7'8.The exact solution of ray trajectories may increase the speed and 
computation accuracy for applications involving the analysis of the optical path 
difference (OPD) or spot diagrams. Power expanding the analytic form taken by the OPD 
in the exit pupil provides the basis for a correct description of the aberration polynomial. 

2. RAYTRACING SETUP 

Fig. 1 shows, for simplicity in only two dimensions, the image formation using a single 
element GRIN lens and an arbitrary oblique pencil.A skew ray with direction cosines 
(L,M,N) is launched from an object point placed in air towards the front spherical surface 

of the lens. After refraction at P.1 , the ray follows a curved path and reaches the back 
spherical surface at P1. Refraction at P1 directs the emerging ray to the image plane 
located in air at the distance "s0" from the lens front surface. The z-axis coincides with 
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the optical axis and the front/back curvatures are c1 and c1 , respectively. The lens 
thickness is "z0"with the origin located at the vertex of the front surface. 
We assume that the setup excludes any total internal reflection and the ray does not reach 
the outside lens surface during propagation from P.. to P3. This amounts to the condition: 

x2+y2 <R2 (1) 

in which x, y are arbitrary transverse ray coordinates and R is the lens outer radius.The 
axial GRIN is specified by the following refractive index distribution: 

n(z)=n00+n01 z+n02z2 (2) 

Let (L', M', N') denote the direction cosines of the refracted ray at P1, I and I' the 
incidence and refraction angles at P1. The refraction equations are9: 

L' =(L-Kx1)/n.1 

M'=(M-Ky1)/n.1 (3) 

N'=(N-Kz1+n1cosl'-cosl)/n1 

where: 

K=c1(n1cosl' -cosl) 

cos I' = [n 2 - (1 - cos2 I )]I/2 / n (4) 

cosl LQ..IX+MQIY+NQ.IZ 

with Q1 (Q1 , Q, Q) representing the normal unit vector at P.1 and: 

n.1 = n ( z (5) 

The direction cosines (3) and the position vector at P.1 given by r1 = (x , y1, z ) define 
the raytracing initial conditions. 

3. INTEGRATION OF THE RAYTRACING MODEL 

Let r = (x, y ,z) represent the position vector of an arbitrary point inside the lens and "s" 
the arc length measured along the ray trajectory. The differential raytracing equations in a 
GRIN lens of a continuously varying refractive index are 4,10: 

r=n(r)V[n(r)] (6) 
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where denotes the second order derivative and "u" stands for the reduced coordinate 
defined via: 

du=ds/n (7) 

with the choice u = 0 at P1. 

Substituting (2 ) in (6 ) leads to: 

xuu = 0 

yuu=o (8) 

N0 + N1z + N,z2 + N3 z3 

in which: 

N0 = n00 n01 

N1 2 +2 n n02 

(9) 
N2 = 3 n01n02 

N3 = 2 n02 

Trivial integration of the first two equations in (8) yields: 

x = a, + bu 
(10) 

y = ay + bu 

The integration constants a , a , b ,b are determined from the initial conditions, that is: 

a=x.,1 , a=y1 , b=n.1L', b=n1M' (11) 

Processing the third equation in (8) requires use of the elliptic functions. Multiplying it 
by z and integrating gives: 

= a + 2 N0 z +N1 z2 + (213)N2 z3+ (l/2)N3 z4 (12) 

The constant "a" is constrained by the ray direction at P1 which requires: 

(13) 
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and thus: 

a = (n.1 N')2 - [2 N0z.1 + N, z.12 + (2/3)N, z,3 + (1/2) N3 z,4] (14) 

Let "a", "n", "y" and "ö" be the distinct roots of the quartic equation: 

2O (15) 

and let "w" represent a new axial variable determined by: 

w2 (z) = ( - ) (z - a)! [(a -6) (z - 3)] (16) 

We now introduce the following parameters: 

k2= (l3-y)(a-ö)/[(a-y)(-6)] 

G2=(13-6)(a-y)/4 (17) 

h2= z2/(z-a)(z-)(z-y)(z-6) 

The standard solution for (12) assumes the form": 

w(u)=sn(hGu,k)+ w, (18) 

in which the constant w -' depends on the initial conditions via: 

w,2 = (f3 - 6) (z, - a) / [(a -6) (z, - 1)J (19) 

Extracting the z-variable from (16) and combining it with (10) and (11) yields the ray 
trajectory in parametric format: 

x (u) = x, + n, L' u 

y(u)=y1 +n,M' u (20) 

z (u) = {[ (a - 6 ) w2(u)/ (J3 - 6)] - a}/ {[(a - 6 ) w2(u)/U3 - 6)] - a} 

4. RAY INTERSECTION WITH THE BACK SURFACE 

The intersection point of (20) with the back spherical surface can be recursively 
computed with one of the existing numerical routines for root finding. We follow here 
Newton's algorithm as detailed in ref. 4 for the case of a meridional raytrace: 

compute the distance A from P, to the surface along the tangent line (fig 2). 
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. define the starting recurrence variable as: 

find the intersection point P0 of the back surface with a parallel to the optical axis 
passing through the n-th iterate P (fig 2). 

evaluate the separation between the axial coordinate of the n-th iterate (z11) and the 
axial coordinate of P0: 

ö=z-z0=c1F(u)/[2(l-c1z)] (24) 

where: 

z=z(u) (25) 

The stopping criterion is met when ö falls below a threshold value which sets the 
endpoint of the recurrence variable (u1). The position vector locating P1 is then given by: 
r1 = (x (u1) , y(u1) , z(u1)). 

5. FINAL REFRACTION AND RAYTRACE 

Once the intersection point of the ray trajectory with the back surface has been found, one 
needs to compute the final refraction followed by the ray transfer to the image plane. 
The direction cosines of the ray incident at P1 are determined from the local slopes of 
(20), that is: 

(x)1 /n1=L' 

(y)1In1 =M' (26) 

(z)1/n1=N" 
in which: 

n1=n(z1) (27) 

u0A/n1 (21) 

define Newton's function as: 

F(u) =2 [z (u )/ cj - [x2 (u) + y2 (u) + z2 (u 
1 

(22) 

iterate the recurrence variable with: 

u,+1=u-F(u)/F(uj (23) 
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The direction cosines of the ray incident at P1 are obtained from (7) and (26) as follows: 

(x)1 = (x)1 /n1 = (n1/ n1) L' 

(y)1 = (y /n1 = (n11 n1 ) M' (28) 

(z,)1 = (z)1 / n1 = N" 

and comply with the constraint: 

(x)12 + (y)12 + (z)12 = 1 (29) 

Let Q1 ( Q , Q , Q ) designate the normal unit vector at P1 (fig.1). The refraction 
equations are: 

L1 = n1 (x)1 - K' x1 

M1 = n1 (y)1 - K' y1 

N1 = (n1 N" - K' z1 + cos I' - n1 cos I) 

in which: 

K' = c1 (cos I' - n1 cos I ) 

, , 11' cosl1 =[1 -n1(1 -cosl)] - 

cos I = (x,)1 Q1 + (y)1 Q1 + N" Q1 

The intercept coordinates of the ray at the image plane are given by: 

x1 = (s0 - z1) (L11 N1) + 

y = (s0 - z1) (M1/ N1) + y1 (32) 

zi = 5o 

6. SUMMARY 

We have described a new raytracing method in axial GRIN singlets with a parabolic 
distribution of the refractive index. Direct integration of the ray equations allows exact 
computation of light paths for a given set of initial conditions. This approach eliminates 
the need for numerical routines, except for the back surface refraction where ray 
intercepts are derived using an iterative Newton algorithm. 
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