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The geometrical optics corresponds to the limiting case
of a very small wavelength of light, λ→ 01,2, in compar-
ison with the characteristic dimension of the problem3

or in other words to each of the other scales present,
so that the electromagnetic waves can be regarded lo-
cally as plane waves propagating through space-time4.
In the other hand, the representation of the electromag-
netic field by means of potentials specified at every point
in space is essentially a description by means of a contin-
uous set of field variables5. In classical electrodynamics,
the change to the description by means of a discrete set
of field variables is brought about by considering the elec-
tromagnetic field in a large but finite volume, so that the
electromagnetic field in a finite volume can be expanded
in terms of travelling plane waves5. We consider that
by treating the electromagnetic field in a finite volume
but large, it has a consequence that the electromagnetic
wavelength (the wavelength of light, light is the electro-
magnetic waves) is finite, discrete and small respectively.

In case of a steady (constant or unchanging in time6,
stationary7) monochromatic wave, the frequency8 is con-
stant and the time dependence of the eikonal, ψ, a
function of space-time, is given by a term −fθt (or we
can write ∂ψ/∂t = −fθ) where fθ denotes (angular)
frequency3. ψ is a large quantity (so the wavelength is
very small) which is ”almost linear” in the space coor-
dinates and the time3. The relation between ψ and the
electromagnetic field is mediated, as we will see implic-
itly, by the gauge potential. We interpret that fθ is dis-
crete due to λ is discrete, in turn ψ is also discrete. The
discreteness of λ, fθ, ψ is the consequence of our con-
sideration that the electromagnetic field takes place in a
finite volume. The discreteness is useful for treating the
electromagnetic field as a quantum object.

Let us introduce ψ1 which is also called eikonal3. The
relation between ψ1 and ψ can be expressed as3

ψ1 =
c

fθ
ψ + ct (1)

where the eikonal, ψ1, is a function of space coordinates
only3, ”a length”, a real scalar function9 and c is the
speed of light in vacuum. We consider that we need to
replace ψ to ψ1 because here we concern with a steady
monochromatic wave only.

In a 1-dimensional space, the equation of ray10 propa-
gation in a transparent medium11 can be written as3,12–14

|~∇ψ1(x)| = |~n(x)| = n(x), x ∈ Ω ⊂ R1 (2)

subject to ψ1(x)|∂Ω = 0 (the solution, ψ1(x), at
the boundary, ∂Ω, is equal to zero), Ω is an open
set13, bounded15, with suitably smooth (well-behaved)
boundary13 in a 1-dimensional Euclidean (flat) space, R1,
|.| denotes the Euclidean norm, a distance function14, in

1-dimensional Euclidean space, ~∇ denotes the gradient,
n(x) is the refractive index, a real scalar function with
positive values, the slowness (speed−1) at x where x lies
inside Ω13. We consider, in a flat space, n(x) is a con-
stant function. The function n(x) is typically supplied as
known input, given, and we seek the solution, ψ1(x), the
shortest time needed to travel from x to the boundary,
∂Ω13. Because ψ1 is a function of coordinates only, then
the refractive index is also a function of coordinates only
(i.e. a smooth continuous function of the position17).
Eq.(2) is called the eikonal equation3,12, i.e. a type of the
first order non-linear partial differential equation13,18,19.

The eikonal equation is an approximated version of
the wave equation20, a typical example of steady-state
Hamilton-Jacobi equations21,22. The eikonal equation
can be derived from the Fermat’s principle23, the Euler-
Lagrange equation23 and Maxwell equations12,13,24. The
Hamilton-Jacobi equations are a type of non-linear hyper-
bolic partial differential equations25 and Maxwell equa-
tions can be formulated as a hyperbolic system of par-
tial differential equations26. So, we consider the eikonal
equation as the (first order non-linear) hyperbolic partial
differential equation. The analysis of a partial differen-
tial equation for a steady state is very important, e.g.
in the Atiyah-Singer index theorem (an effort for find-
ing the existence and uniqueness of solutions to linear
partial differential equations of elliptic type27 on closed
manifold28,29). Why is the eikonal equation (2) a non-
linear equation? We consider the eikonal equation (2)
as a non-linear30 equation because there exists the Eu-
clidean norm, |.|, in the eq.(2). The Euclidean norm has
a non-linear property, |~v + ~w| ≤ |~v|+ |~w|31, where ~v and
~w are vectors.

In a (1 + 1)-dimensional space-time, the gradient op-

erator, ~∇, in eq.(2) is replaced by the covariant four-



gradient, ∂µ. So, eq.(2) becomes

||∂µψ1(x)|| = n(x) (3)

where µ runs from 1 to 1+1 by considering that the
time derivative of ψ1 is equal to zero. We consider that
the eikonal equation (3) describes the propagation of
wavefronts (field discontinuities) in a (1+1)-dimensional
Minkowskian (pseudo-Euclidean1, flat) space-time32. We
see from eq.(3), the zeroth rank tensor (a scalar) of the
refractive index describes an isotropic linear optics33. It
means that a flat space-time descibes an isotropic linear
optics34. But, the refractive index can also be a second
rank tensor which describes that the electric field compo-
nent along one axis may be affected by the electric field
component along another axis35. The second rank ten-
sor of the refractive index describes an anisotropic linear
optics33.

In a (1 + 1)-dimensional Minkowskian space-time and
related to the gauge theory, a four-vector potential (a
combination of an electric scalar potential and a mag-
netic vector potential36,37) of the geometrical optics is
replaced by a four-vector field43 or the gauge poten-
tial4,39–43 (which makes the related field tensor invariant
under the gauge transformation) as written below

~Bµ = ~aµ e
iψ (4)

where ψ(x, t), as we mentioned, is the eikonal (a real
phase4) and ~aµ(x, t) is a complex amplitude4, a slowly
varying function of space coordinate and time3. We
see from eq.(4), eiψ is a scalar function (more pre-

cisely, a complex scalar function, dimensionless), ~Bµ is a

complex4,44 quantity (a complex four-vector field). ~Bµ as
~aµ, can be interpreted as the oscillating variable45, the
displacement from an equilibrium46, a position at infinity
where the gauge potential is assumed equal to zero.

The treatment of the geometrical optics as an Abelian
U(1) local gauge theory has a consequence that the gauge
potential of the geometrical optics and the Maxwell’s the-
ory are the same, i.e. both are the Abelian U(1) gauge po-

tential, ~B
U(1)
µ . In other words, the related field strength

of the geometrical optics and the Maxwell’s theory are, in
principle, the same. So, we can rewrite eq.(4) as

~B U(1)
µ = ~aµ e

iψ (5)

We can say that eq.(5) is the core of this article. The
treatment of the gauge potential of geometrical optics as
an Abelian U(1) gauge potential has implication that we
can formulate65 the geometrical optics related to a fibre
bundle (global geometry) theory where gauge potential
is identical to connection66. Eq.(5) expresses the Abelian
U(1) gauge potential of the geometrical optics in a (1 +
1)-dimensional Minkowskian space-time. Eq.(5) can be
written as4

~BU(1)
µ ~aµ = ~aµ ~a

µ eiψ = (a · a) eiψ = a2 eiψ = eiψ (6)

where ~aµ is a complex conjugate of ~aµ, and a is a scalar
amplitude4 which we can take its value as 1.

Using Euler’s formula, eq.(6) can be written as

cosψ + i sinψ = ~BU(1)
µ ~aµ (7)

Eq.(7) shows us that ~B
U(1)
µ ~aµ is a complex scalar func-

tion. To simplify the problem, we take the real part of
(7) only, we obtain

cosψ = Re ( ~BU(1)
µ ~aµ) (8)

where ψ in eq.(8), i.e. a real phase (”a gauge”) is an
angle. This angle has value

ψ = arccos
[
Re
(
~BU(1)
µ ~aµ

)]
(9)

By substituting eq.(9) into eq.(1), we obtain

ψ1 =
c

fθ
arccos

[
Re
(
~BU(1)
µ ~aµ

)]
+ ct (10)

and by substituting eq.(10) into the eikonal equation (3),
we obtain∣∣∣∣∣∣∣∣∂ν { c

fθ
arccos

[
Re
(
~BU(1)
µ ~aµ

)]
+ ct

}∣∣∣∣∣∣∣∣ = n (11)

where n is a dimensionless quantity, a real scalar function
of 1-coordinate which ”lives” in a (1 + 1)-dimensional
Minkowskian space-time.

As we mentioned, the analysis of a partial differential
equation for steady state is very important for finding
the existence and uniqueness of solutions to partial dif-
ferential equations (PDEs). Related to the existence and
uniqueness of solutions to PDEs, does eq.(11) have a so-
lution? In general, what are the characteristics of a par-
tial diferential equation which has a solution? What is a
consequence if we treat the eikonal in eq.(11), as a com-
plex scalar function? Roughly speaking, does a solution of
a (complex) eikonal equation generate a non-trivial topo-
logical configurations9,64?

If gauge potential is identical to connection, what is a
identical form of amplitude (gauge potential is related to
amplitude as written in eq.(5)) in fibre bundle theory? In
quantum theory, roughly speaking, the commutation re-
lation is formulated using canonical field variables which
are amplitudes5. So, what does the commutation relation
look like if we are using the identical form of amplitude
in fibre bundle? We hope that these questions can be
used as a guidance for next research.
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