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Abstract

The emphasis is not on precisely specifying the physical meaning of the scheme of the proposed
gravitational equations, but on the calculation process from which they derive and whether they can be
consistent and provide a calculation alternative that allows greater simplicity in obtaining acceptably
satisfactory results to those already verified by general relativity.

Keywords: gravitation, Faraday tensor, Binet.
2000 AMS Subjects Classification: 21A54 - 55P5T4

1 Introduction

From the field equations of General Relativity [1], [2], through a slight modification to the Schwarzschild
metric[3], [4], two metrics are proposed, from which was obtained the equation of the trajectory of the
planetary orbits of the solar system [5], exemplifying in particular for two bodies, the central massive body,
the Sun, and the orbiting body, the planet Mercury.
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Both equations of the trajectory derived from the exposed metrics admit the same solution of the equation

of the trajectory given by the following expression:
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Where u = 1 / r (r the radius of the orbit), φ is the angular coordinate, F = mc2

h2 , l = h2

mc2 , m = GM
c2 is the

Schwarzschild radius, e is the eccentricity, and h = vr = cte is the angular momentum per unit mass.

1.1 Relativistic Equations of Binet

Solution that also fits the following equation of the trajectory or Binet’s equation in special relativity:
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l
u

Expressing these equations in terms of r and time t:
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It is a solution to the equation of the trajectory, and verifies with the experimental data, such the case the
advance of the perihelion of the planet Mercury orbiting around a massive body like the Sun. This advance
for each orbit is given by:

∆φ = 2π

(
1−

√
1− 2πm

l

)
With m = GM

c2 = 1470 m and l = 5, 62 1010 m
We obtain ∆φ = 5, 16 10−7 [rad] per turn or orbit.
An extremely small value but taking into account that in 100 years it makes 414 laps around the Sun

and going to seconds of arc: 5, 16 10−7 414 2, 06265 105 = 44” de arco for every 100 years.
What the experimental data verifies.
We note that the differential equation presents the first three terms that allow the classical calculation

of planetary orbits to which the fourth relativistic term is added.
The solution r verifies the experimental data, such as the 44-arc perihelion advance of the planet Mercury

orbiting a massive body like the Sun, exposed in the first part of this exposition.

1.2 Gravitational Force

Taking up the equation of the trajectory we can establish, taking m as the mass of the orbiting planet, the
equation of motion:
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With what the gravitational force:
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We observe that this last expression presents a great analogy with the Lorentz force with which we can
establish two fields.

The classical gravitational field:

g =
GM

r2

And a relativistic field to define:

K =
2πKΩM

2

hr2

Finally we can express the force:

F = m (g + v ×K)

2 Potentials

In principle, it is not possible to establish with certainty how the field K affects or interacts with the
gravitational field g, so to establish the potentials we will adopt the expression of the electromagnetic force
as a reference.
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2.1 Gravitational Potentials

Following the usual steps we can say that this force derives from a potential. Expressing the force as a
function of the potentials:

F = m

(
−∇Φ− ∂A

∂t
+ v × (∇×A)

)
v × (∇×A) = ∇ (v ·A)− dA

dt
+
∂A

∂t

F = m

[
−∇Φ− dA

dt
+∇ (v ·A)

]
With what we can provisionally anticipate:

g = −∇Φ− ∂A

∂t

K = ∇×A

Where Φ is the classical gravitational potential

Φ =
GM

r

And A is the relativistic potential:

A = 2πKΩ
M2

hr

Later we will indicate other expressions for the vector potential A.

2.2 Potential Energy U

With which we can establish an expression for the potential energy U (in some texts it is called as potential
U, but this can be confused with the correctly called potential Φ).

The expressions of the force given above are derived from that of the expression of the potential energy
U given by:

U = m (Φ− v ·A)

U = m

(
GM

r
− v 2πKΩM

2
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)
With which, by deriving with respect to r, we can obtain the expression of the force previously exposed.
It is also possible to establish the following expression for the potential energy so that it does not depend on
the speed v:

U = m

(
GM

r
+
πKΩM

2

r2

)
With which we can establish the Lagrangian expression:

L = T − U

1

2
m
(
ṙ2 + r2φ̇2

)
−mGM

r
−mπKΩM

2

r2
= L

For a body of small mass m moving in the equatorial plane θ = π/2 .

3



3 Duality of Angular Moment per Unit of Mass

The expression of the angular momentum per unit mass h is:

con h = vr = cte

In other words, h is a constant made up of two variables and the derivative of a constant is zero, because
the differential of a constant is zero.

But if we calculate the derivative based on its variable components we obtain:
dh
dr = a

v r + v and dh
dv = r + v2

a
Where a is the acceleration. t If h is constant, it must be true that
a
v r + v = 0 and/or r + v2

a = 0
Through an exhaustive analysis of the phenomenon in question, it can be calculated that one of the terms

of the derivative is of the same numerical value and different sign and thus the derivative is zero.
But when the angular momentum per unit mass h is part of more complex terms, we can use the angular

momentum h as such, or replace it with its components, and after performing the calculation procedures, it
is not possible to say with certainty that the expressions resulting in both cases are equivalent.

However, the angular momentum per unit of mass h that does not present possible ambiguities as in the
previous case and that we will call h́:

h́ = mc

Where m is the Schwarzschild radius, since in this case its factors are constant.
Also it can be expressed as:

h́ =
GM

c

GM = h́c

In part III of this exposition, by analyzing the previous Lagrangian, it is possible to notice possible singu-
larities of the angular momentum per unit of mass h.

4 Faraday Tensor

To determine the components of the tensor, we start from the four-potential A:

Aα =

(
Φ

c
,A

)
Where Φ and A are the gravitational potential and the vector potential respectively defined above.

Assuming how we anticipate the definition of the gravitational field g and K:

g = −∇Φ− ∂A

∂t

K = ∇×A

The law applies:
Fαβ = ∂αAβ − ∂βAα
Fαβ = ∂αAβ − ∂βAα

Taking into account that the indices correspond to the coordinates: 0 corresponds to t, 1 to x, 2 to y and 3
to z.

And for the components of the four-vector: 0 for the scalar Φ, and 1, 2, 3, for the components in x, y, z,
of the potential vector A.
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Then as an example:

F 01 = ∂0A1 − ∂1A0 =
1

c

∂Ax
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−
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φ
c
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c

F 12 = ∂1A2 − ∂2A1 = −∂Ay
∂x

+
∂Ax
∂y

= −Kz

And so on, the 16 components of the resulting gravitational tensor are calculated:

Fαβ =


0 gx/c

gx/c 0
gy/c gz/c
Kz −Ky

gy/c −Kz

gz/c Ky

0 Kx

−Kx 0


4.1 Gravitational Equations I

From this tensor the gravitational equations can be established:

∇aF ab =

(
4π

c

)
Jb

∇aF bc +∇bF ca +∇cF ab = 0

More explicitly:

Fαβ,γ + F βγ,α + F γα,β =
∂Fαβ

∂xγ
+
∂F βγ

∂xα
+
∂F γα

∂xβ
= 0

Fαβ,β =
∂Fαβ

∂xβ
=
KΩ

G
Jα

Jα = (cρ 2π( Jx Jy Jz))

Where J is the surface density of mass flux M, and ρ is the volumetric density of mass M/V.
Example:
For α = 0, β = 1 and γ = 2

∂F 01

∂x2
+
∂F 12

∂x0
+
∂F 20

∂x1
=
∂gx/c

∂y
+
∂Kz

c∂t
+
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∂x
= 0

∂gx/c

∂y
+
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= −∂Kz

c∂t
⇒ ∇× g = −∂K

∂t

For α = 1, β = 2 and γ = 3

∂F 12

∂x3
+
∂F 23

∂x1
+
∂F 31

∂x2
=
∂KZ

∂z
+
∂Kx

∂x
+
∂Ky

∂y
= 0

⇒ ∇·K = 0

∂Fαβ

∂xβ
=
∂F 01

∂x1
+
∂F 02

∂x2
+
∂F 03

∂x3
=
∂gx/c

∂x
+
∂gy/c

∂y
+
∂gz/c

∂z
=
KΩ

G
Jα =

KΩ

G
J0 =

KΩ

G
cρ

⇒ ∇ · g = Gρ

∂Fαβ

∂xβ
=
∂F 10

∂x0
+
∂F 12

∂x2
+
∂F 13

∂x3
=
∂gx/c

c∂t
+
∂Kz

∂y
+
∂−Ky

∂z
=
KΩ

G
J
α

=
KΩ

G
2π J

1

=
KΩ

G
2πJx

∂Kz

∂y
− ∂Ky

∂z
=
KΩ

G
2πJx − ∂gx/c

c∂t

⇒ ∇×K =
2πKΩ

G
J +

KΩ

G2

∂g

∂t
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4.2 Gravitational Equations II

Considering all the above, and exemplifying in some cases with the analyzed two-body system (Sol Mercury),
and omitting some calculation procedures for brevity, so the following scheme of gravitational equations is
exposed in a heuristic way, which is not intended be a rigorous exposition, but present them for your
consideration.

Given the fields established in the Binet equation in special relativity:

−→g (r) =
GM

r2

[m
s2

] −→
K (r) = 2πKΩ

M2

hr2

[
1

s

]
KΩ =

G2

c2
h = vr = cte

It is possible to set: ∮
g · ds = GM ∇ · g = Gρ∮
K · ds = 0 ∇ ·K = 0∮

g · dl = −∂ΦK
∂t

∇× g = −∂K
∂t∮

K · dl =
2πKΩ

G
Ṁ +

KΩ

G2

dΦg
dt

∇×K =
2πKΩ

G
J +
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G2
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∂t

ṁ =
GMm

r2vmerc
Ṁ =
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r2vsol

[
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s

]
Ṁ = RMṁ RM =

mi

mj
=
M

m

field H =
Ṁ

r

[
kg

m s

]
ΦK = 2π

G

c2
Ṁ

∮
ds

r

dΦK
dt

= 2π
G

c2
M̈r = 2π

G

c2
Ṁv

Φg = GM

∮
ds

r2

dΦg
dt

= −GM
r
· v = GṀ

Potential Φ = −GM
r

Potential A = −2πKΩ
M2

h2
rφ̇ = −2πKΩ

M2

h2
v = −2πKΩ

M2

h r
= −v 2π

c2
GM

r
= −2πGṀ

c2

g(r) = ∇Φ

K(r) = ∇×A

Fr = −mGM

r2

(
1 + v

2πGM

c2h

)
= −m

(
GM

r2
+ v × 2πKΩ

M2

hr2

)

Fr = −m

(
GM

r2
+ v × 2πGṀ

c2r

)
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5 The GM Constant

For a circular orbit the magnitude of the velocity is given by v2 = GM
r = GM

a = cte.
And for an elliptical orbit v2 = GM( 2

r −
1
a )

Where a is the semi-major axis of the ellipse.
So the v2r product:
v2r = GM =v2a=hv = cte Circular orbit
and
v2r = GM

(
2− r

a

)
= GM

a (2a− r) = hv Elliptical orbit

5.1 Distance and Average Speed Options

If we apply the formula for the perimeter of the ellipse

Perim elipse = Cosh

(
a− b

1.7420328 a+ 1.3636247 b

)2

π

(
a+ b

2
+

√
a2 + b2

2

)

Or very approximate:

Perim elipse = 4
(a− b)2

+ πab

a+ b

Two options are presented to estimate the mean distance between two bodies:

1. To adopt the major radius or semi-major axis a of the ellipse as the mean radius or mean distance.

2. Mean distance: distanciamedia = 2a− b

Average velocity is given by: Average speed: vmed = Peŕım elipse

Peŕıodo órbita
In the case of only two bodies that orbit each other, as the case we have exemplified, the Sun and

the planet Mercury, both describe symmetrical elliptical orbits around a common focus, where the planet
Mercury describes a much larger orbit that encloses the small elliptical orbit of the Sun. Let us consider
that the distance from Mercury to the common focus in the aphelion is 69.9 million kilometers, and at that
same moment the aphelion of the Sun opposite that of Mercury reaches a distance from the common focus
of only 11.6 kilometers, that is, an insignificant value compared to that of Mercury.

In general, the length of the semi-major axis of the elliptical orbit of the orbiting planet is the one that
best adjusts to adopt it as the average distance between the two bodies, so the average speed is given by:

Average speed: vmed = 2πa

Peŕıodo órbita

5.2 The product Angular Moment By Speed I

The following table is compiled from data usually present in the literature.
Planeta Distancia

Kilómetros
Velocidad me-
dia orbital
Km/s

Producto
v2r=hv

1 Mercurio 57.910.000 47.87 1,32714E+20
2 Venus 108.200.000 35.02 1,32697E+20
3 La Tierra 149.597.870 29.78 1,32671E+20
4 Marte 227.940.000 24.07 1,3206E+20
5 Ceres 413.700.000 17.88 1,32258E+20
6 Júpiter 778.330.000 13.05 1,32552E+20
7 Saturno 1.429.400.000 9.64 1,32834E+20
8 Urano 2.870.990.000 6.81 1,33145E+20
9 Neptuno 4.504.300.000 5.43 1,32809E+20
10 Plutón 5.913.520.000 4.72 1,31744E+20
11 Makemake 6.850.000.000 4.41 1,33219E+20
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Note that despite the wide range of distances and speeds, the product v2
media rmedio = hvmedia presents

a value that significantly remains regularly constant around the value of the GM product.

GM = 6.67384 10−11 1, 989 1030 = 1, 3274 1020

5.3 The product Angular Moment By Speed II

However, if we adopt option 2 as the mean radius or mean distance, that is distanciamedia = 2a − b, the
product hv becomes more regularly constant close to GM.

And using: Average speed: vmed = Peŕım elipse

Peŕıodo órbita
Noting that:

GM ∼= hvmedia ∼= v2
med(2a− b)

Which approximates Kepler’s law GM = 4π2a3

T 2

6 The K Field

The calculation process carried out previously allows us to notice a great symmetry with the development
of the electromagnetic field, which would lead us to suppose that the K field is consistent from a theoretical
point of view.

A great similarity has been established between the electrostatic field and the classical gravitational field,
but the great difference between them is that the former has two poles, while the gravitational one does not,
and there are no masses that repel each other, so in principle the analogous conformation between magnetic
field and K field would not be the same either. In other words, the lines of force of the electric and magnetic
fields have been established both individually and when they interact with each other, and those of the
gravitational field also even when several masses interact.

The electric field has been determined independently by rubbing two bodies and observing how it attracts
a material with opposite charge or repels a material with equal charge. The magnetic field has been observed
independently from the magnetite stone, attracting or repelling different metals.

The gravitational field has been observed for a long time although its evidence was made formal through
classical mechanics. The K field has not been established in any observation, or some anomaly or disturbance
with which it is consistent to associate it even at current levels of observation and measurement.

But perhaps this virtual field can have some practical use in some situations, such as the one exposed in
the first part of this exposition, when calculating the advance of the perihelion of the planet Mercury in a
satisfactory way.
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