
1 | P a g e  

 

Geodesic Deviations and the MOND Paradigm 

Ervin Goldfain 

Ronin Institute, Montclair, New Jersey 07043, USA 

E-mail ervin.goldfain@ronininstitute.org 

Abstract 

We sketch an argument suggesting that the sensitivity of geodesics to initial conditions explains away the 

Modified Newtonian Dynamics (MOND) paradigm. Accounting for both transversality constraints and the 

Jacobi equation leads to a non-vanishing correction to Newtonian dynamics, which replicates the effect of 

the Milgrom parameter. Our work falls in line with the Planck data on the nearly vanishing curvature of the 

large-scale Universe.  
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A geodesic in Riemannian spacetime having curvilinear coordinates , ( 0,1,2,3)  =x  

is represented by the set of parametric equations 

 ( ) =x x s  (1) 

where s  denotes the proper time. The components of the four-velocity are defined as 

 
( )

( )


 = =
dx s

x s v
ds

 (2) 

and comply with  
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 1 
 =g v v  (3) 

The action functional  

 
2

1

( ) ( ),[ ] ( , )






 = S x L x s x s s ds  (4) 

stays stationary with respect to arbitrary infinitesimal variations of coordinates leaving 

the boundary points fixed 

 1 2( ) ( ) 0  = =x s x s  (5) 

The equations of motion derived from (4) and (5) read 

 ( ) 0
 

 
− =

 

L d L
dsx v

 (6) 

Constraining (4) to the fixed boundary conditions (5) is not a universal choice. A more 

general requirement is that the boundary points lie on two given curves, 1( )s =  and 

2( )s = , respectively [1-2]. A constraint of this type is suitable for the analysis of 

geodesic sensitivity to initial conditions, whereby two adjacent geodesics separate from 

each other according to the Jacobi equation (A1) introduced in the Appendix. If 1s  and 2s  

denote the boundary points of a non-relativistic geodesic, demanding stationarity of the 

action integral leads to the so-called transversality conditions [2] 

 1

1

[ ( ) 0
  



=

 
+ − =

  
s s

L L
L v

v x v
 (7) 
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[ ( ) 0
  



=

 
+ − =

  
s s

L L
L v

v x v
 (8) 

under the assumption that 1( )x s  and 2( )x s  do not depend on each other.   

Consider next a toy model describing the two-body planar problem in polar coordinates, 

where 

 1 =x r  (9) 

 2 =x  (10) 

Let us assume that the gravitational field is created by a centrally located mass M . In the 

weak field approximation, the expression of the line is given by ( 1=c ) [5] 

 2 2 2 2 2(1 2 ) (1 2 )( )  = + − − +ds dt dr r d  (11) 

where Newton’s potential is 

 ( ) = − NG M
r

r
 (12) 

If ( )s  is the geodesic deviation entering (A1), a reasonable approximation of its partial 

derivatives is   

 
1    

 =
   r

ds
r s dr s v

 (13) 

 
1



   

  
=

   
 =

   

ds r
s d s v s

 (14) 
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in which   stands for angular velocity. Current astrophysical data indicate that we live in 

a Universe which is flat or nearly flat [7]. The solution of (A1) for a nearly flat spacetime 

( ( ) 0)K s → can be presented as   

 0

( )
( ) ( )


= = +

d s
c s c s

ds
;   0 ( ) 1 s ;   1 2[ , ]s s s  (15) 

in which ( )s  quantifies the overall departure from the constant deviation rate 0c .  

Let a set of geodesic measurements be taken on a massive cosmic object whose evolution 

is modeled by (9) to (12). One pair of measurements is carried out in a near distance range 

( 0Z Z ), the other in a far distance range corresponding to probing deep galactic scales 

( 0Z Z ). Assuming again a nearly flat Universe with a slightly positive horizon curvature, 

we introduce the plausible hypothesis that the local curvature ( )ZK s  scales linearly with 

  as in  

 
0

0

)( ) ( )(Z Z

Z
K s K s

Z
 ;  0Z Z  (16) 

As shown in the Appendix, increasing the local positive curvature tends to reduce the 

geodesic separation ( )s . It follows that the overall correction ( )s  of (15) is expected to 

scale with Z  in a reciprocal manner to (16), that is,   

 
0

0( ) ( )( )Z Z

Z
s s

Z
   (17) 

To simplify notation, in what follows we use N  for “near” and F  for “far” as in   
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0Z Z N   

0Z Z F   

The explicit contribution of the second term in (7) and (8) is given by 

 


 
− − = −

 r
r

L L
L v v E

v v
 (18) 

where the total energy is [4-5] 

 2 2( ) ( )
2 


= + = + +rE T V v v r  (19) 

Here,    represents the mass of the cosmic object and 

 =rv r ,    =v r  (20) 

its radial and orbital velocities. Using polar coordinates and subtracting (7) from (8) gives, 

for each of the F  and N  ranges, 

 
,

,

0

1
[( ( )) ]


=  +

F N
F Nr

r
E

c s
v

v  (21) 

 
,

,
0

1
[( ( )) ] 

 
 =  +

F N
F N

E
v c s  (22) 

in which 

 2 1( ) ( ) −=r r rv v s v s ;  2 1( ) ( )   −=v v s v s    (23) 
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2 1

0 0 0] ]
1 1 1

[( ( )) ] [( ( )) [( ( ))  − + = + +
r r rs s

c s c s c s
v v v

 (24) 

 

2 1

0 0 0] [ ]
1 1 1

[( ( )) ] [( ( )) ( ( ))  
  

− + = + +
s s

c s c s c s  (25) 

Subtracting the corresponding F  and N  terms in (21) and (22) and demanding that they 

amount to a relative drop in radial and orbital velocities, leads to the following conditions 

 0 − r rF N
v v  (26) 

 0  − 
F N

v v  (27) 

Within the boundaries of our simplistic toy model, if (26) and (27) are satisfied, the 

apparent deficit in kinetic energy T between the “far” and “near” measurements offers 

an unforeseen explanation for flattening of galactic rotation curves. This deficit may be 

mapped to the change in gravitational force attributed to the Milgrom acceleration 

parameter [6], namely 

 0−  
F N

T T a  (28) 

APPENDIX: The Jacobi Equation 

Let 0  represent a fixed geodesic whose coordinates are function of the distance s  

measured along it.  Denote a nearby geodesic by  . Let the geodesic normal to 0  be 

called 1  and assume that 1  intersects   at point P . Let the distance between 0  and 
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measured along 1  at P  be denoted as ( )s . It can be shown that ( )s  satisfies the 

Jacobi equation [3] 

 
2

2

( )
( ) ( )

d s
K s s

ds


= −  (A1) 

in which ( )K s  is the Gaussian curvature at P . The neighboring geodesic   is pulled back 

towards 0  if 0K  , or pushed away from 0  if 0K  . It follows that the Gaussian 

curvature represents a local measure of geodesic instability. On a spherical surface, 

0K   means stability whereas 0K   on non-spherical surfaces describes instability. 
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