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Abstract 

We sketch an argument suggesting that the sensitivity of geodesics to initial conditions 

explains away the Modified Newtonian Dynamics (MOND) paradigm. Accounting for 

both transversality constraints and the Jacobi equation leads to a non-vanishing 

correction to Newtonian dynamics, which replicates the effect of the Milgrom parameter. 

Our work falls in line with the Planck data on the nearly vanishing curvature of the large-

scale Universe.  
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A geodesic in Riemannian spacetime having curvilinear coordinates 

, ( 0,1,2,3)  =x  is represented by the set of parametric equations 

 ( ) =x x s  (1) 

where s  denotes the proper time. The components of the four-velocity are 

defined as 

 
( )

( )


 = =
dx s

x s v
ds

 (2) 

and comply with  

 1 
 =g v v  (3) 

The action functional  

 
2

1

( ) ( ),[ ] ( , )






 = S x L x s x s s ds  (4) 

stays stationary with respect to arbitrary infinitesimal variations of 

coordinates leaving the boundary points fixed 

 1 2( ) ( ) 0  = =x s x s  (5) 
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The equations of motion derived from (4) and (5) read 

 ( ) 0
 

 
− =

 

L d L
dsx v

 (6) 

Constraining (4) to the fixed boundary conditions (5) is not a universal 

choice. A more general requirement is that the boundary points lie on two 

given curves, 1( )s =  and 2( )s = , respectively [1-2]. A constraint of this 

type is suitable for the analysis of geodesic sensitivity to initial conditions, 

whereby two adjacent geodesics separate from each other according to the 

Jacobi equation (A1) introduced in the Appendix. If 1s  and 2s  denote the 

boundary points of a non-relativistic geodesic, demanding stationarity of the 

action integral leads to the so-called transversality conditions [2] 

 1

1

[ ( ) 0
  



=

 
+ − =

  
s s

L L
L v

v x v
 (7) 
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2

[ ( ) 0
  



=

 
+ − =

  
s s

L L
L v

v x v
 (8) 

under the assumption that 1( )x s  and 2( )x s  do not depend on each other.   
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Consider next a toy model describing the planar problem in polar 

coordinates, where 

 1 =x r  (9) 

 2 =x  (10) 

Let us assume that the gravitational field is created by a centrally located 

mass M . In the weak field approximation, the expression of the line is given 

by ( 1=c ) [5] 

 2 2 2 2 2(1 2 ) (1 2 )( )  = + − − +ds dt dr r d  (11) 

where Newton’s potential is 

 ( ) = − NG M
r

r
 (12) 

If ( )s  is the geodesic deviation entering (A1), a reasonable approximation 

of its partial derivatives is   

 
1    

 =
   r

ds
r s dr s v

 (13) 
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=

   
 =

   

ds r
s d s v s

 (14) 

in which   stands for angular velocity. Current astrophysical data indicate 

that we live in a Universe which is flat or nearly flat [7]. The solution of (A1) 

for a nearly flat spacetime ( ( ) 0)K s → can be presented as   

 0

( )
( ) ( )


= = +

d s
c s c s

ds
;   0 ( ) 1 s ;   1 2[ , ]s s s  (15) 

in which ( )s  quantifies the overall departure from the constant deviation 

rate 0c .  

Let a set of geodesic measurements be taken on a massive cosmic object 

whose evolution is modeled by (9) to (12). One pair of measurements is made 

in a near distance range ( 0Z Z ), the other in a far distance range 

corresponding to galactic scales ( 0Z Z ). Assuming again a nearly flat 

Universe with a slightly positive horizon curvature, we introduce the 

plausible hypothesis that the local curvature ( )ZK s  scales linearly with   as 

in  
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0

0

)( ) ( )(Z Z

Z
K s K s

Z
 ;  0Z Z  (16) 

As shown in the Appendix, increasing the local positive curvature tends to 

reduce the geodesic separation ( )s . It follows that the overall correction ( )s  

of (15) is expected to scale with Z  in a reciprocal manner to (16), that is,   

 
0

0( ) ( )( )Z Z

Z
s s

Z
   (17) 

To simplify notation, in what follows we use N  for “near” and F  for “far” 

as in   

0Z Z N   

0Z Z F   

The explicit contribution of the second term in (7) and (8) is given by 

 


 
− − = −

 r
r

L L
L v v E

v v
 (18) 

where the total energy is [4-5] 

 2 2( ) ( )
2 


= + = + +rE T V v v r  (19) 
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Here,    represents the mass of the cosmic object and 

 =rv r ,    =v r  (20) 

its radial and orbital velocities. Using polar coordinates and subtracting (7) 

from (8) gives, for each of the F  and N  ranges, 

 
,

,

0

1
[( ( )) ]


=  +

F N
F Nr

r
E

c s
v

v  (21) 

 
,

,
0

1
[( ( )) ] 

 
 =  +

F N
F N

E
v c s  (22) 

in which 

 2 1( ) ( ) −=r r rv v s v s ;  2 1( ) ( )   −=v v s v s    (23) 

 
2 1

0 0 0] ]
1 1 1

[( ( )) ] [( ( )) [( ( ))  − + = + +
r r rs s

c s c s c s
v v v

 (24) 

 
2 1

0 0 0] [ ]
1 1 1

[( ( )) ] [( ( )) ( ( ))  
  

− + = + +
s s

c s c s c s  (25) 
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Subtracting the corresponding F  and N  terms in (21) and (22) and 

demanding that they amount to a relative drop in radial and orbital velocities, 

leads to the following conditions 

 0 − r rF N
v v  (26) 

 0  − 
F N

v v  (27) 

If (26) and (27) are satisfied, the apparent deficit in kinetic energy T

between the “far” and “near” measurements offers an unforeseen 

explanation for flattening of galactic rotation curves. In particular, this 

deficit may be mapped to the change in gravitational force attributed to the 

Milgrom acceleration parameter [6], namely 

 0−  
F N

T T a  (28) 

APPENDIX: The Jacobi Equation 

Let 0  represent a fixed geodesic whose coordinates are function of the 

distance s  measured along it.  Denote a nearby geodesic by  . Let the 

geodesic normal to 0  be called 1  and assume that 1  intersects   at point 
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P . Let the distance between 0  and measured along 1  at P  be denoted as 

( )s . It can be shown that ( )s  satisfies the Jacobi equation [3] 

 
2

2

( )
( ) ( )

d s
K s s

ds


= −  (A1) 

in which ( )K s  is the Gaussian curvature at P . The neighboring geodesic   

is pulled back towards 0  if 0K  , or pushed away from 0  if 0K  . It 

follows that the Gaussian curvature represents a local measure of geodesic 

instability. On a spherical surface, 0K   means stability whereas 0K   on 

non-spherical surfaces describes instability. 
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