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Abstract. In this paper we introduce and develop the notion of spanning

of integers along functions f : N −→ R. We apply this method to a class of
problems requiring to determine if the equations of the form tf(n) = n−k has

a solution n ∈ N for a fixed k ∈ N and some t ∈ N. In particular, we show that

#{n ≤ s | tϕ(n) + 1 = n, for some t ∈ N} ≥
s

2 log s

∏
p|bsc

(1−
1

p
)−1 −

3

2
eγ

for s ≥ so, where ϕ is the Euler totient function and γ = 0.5772 · · · is the
Euler-Macheroni constant.

1. Introduction and problem statement

The Euler totient function, denoted by ϕ : N −→ N, maps a natural number
s to the count of integers n ≤ s that are coprime with s. For prime arguments,
ϕ(s) represents a unit left shift of the primes; specifically, ϕ(p) = p − 1, evident
in the fact that ϕ(p) divides p − 1. This function is multiplicative, exhibiting a
property where for coprime natural numbers u and v, their product n = u · v
satisfies ϕ(n) = ϕ(u)ϕ(v).

Prompted by the Euler totient function’s behavior, mathematician D.H. Lehmer
posed the intriguing inquiry known as the Lehmer totient problem:

Question 1.1. Can the totient function of a composite number n divide n− 1?

This problem, akin in complexity to the elusive odd perfect number problem,
has garnered considerable attention from mathematicians. D.H. Lehmer’s initial
contributions laid foundational progress by establishing that any such composite
number n must be odd, square-free, and possess at least seven distinct prime
factors. Subsequent advancements by Hagis and Cohen in 1980 refined this under-
standing, setting a lower bound of n ≥ 1020 and requiring fourteen distinct prime
factors for a valid solution. Hagis further enhanced these bounds by proving that
if 3 divides n, then n ≥ 101937042 with a minimum of 298848 distinct prime factors.
Notably, Luca’s work [3] demonstrates that the count of Lehmer totient problem
solutions less than or equal to x obeys the upper bound:

≤
√
x

(log x)
1
2+o(1)

where o(1) is defined as a function that tends to zero as x tends to infinity.
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Here, o(1) characterizes a function diminishing to zero as x tends to infinity,
encapsulating the intricate behavior of solutions to this captivating mathematical
conundrum.

In this paper we study the Lehmer totient problem using the lower bound

Lemma 1.2. The lower bound holds

#{n ≤ s | tϕ(n) + 1 = n, for some t ∈ N} ≥ s

2 log s

∏
p|bsc

(1− 1

p
)−1 − 3

2
eγ

for all s ≥ so, where ϕ is the Euler totient function and γ = 0.5772 · · · is the
Euler-Macheroni constant.

In this paper, we denote a|b to mean a divides b. Also when we write f(n) = o(1)
for an arithmetic function f : N −→ N, we mean lim

n−→∞
f(n) = 0. Similarly when

we write f(n) = O(g(n)), we mean there exists some fixed constant c > 0 such that
for all sufficiently large values of n then f(n) ≤ c|g(n)|. The notation f(n)� g(n)
is also alternatively used to convey the same meaning, where there is the flexibility
to write the converse of the inequality as f(n) ≥ c|g(n)| for some fixed constant
c > 0 such that for all sufficiently large values of n. In this case, we will write
simply as f(n)� g(n). We also write f(n) ∼ g(n) if and only if

lim
n−→∞

f(n)

g(n)
= 1.

2. Preliminary results

In this paper, we find the following elementary inequalities useful. We will
employ them in the course of establishing the main result of this paper.

Lemma 2.1. Let S(x) denotes the sum of all prime number ≤ x. Then the in-
equality holds

S(x) >
x2

2 log x
+

x2

4 log2 x
+

x2

4 log3 x
+

1.2x2

8 log4 x
.

for all x ≥ 905238547.

Proof. For a proof see for instance [5]. �

Lemma 2.2 (The prime number theorem). Let π(x) denotes the number of primes
≤ x. Then

π(x) ∼ x

log x
.

Lemma 2.3 (Merten’s formula). The asymptotic holds∏
p≤s

(1− 1

p
) ∼ e−γ

log s

as s −→∞, where γ = 0.5772 · · · is the Euler-Macheroni constant.
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Lemma 2.4 (Stieltjes-Lebesgue integral). Let g : [a, b] −→ R and h : [a, b] −→ R
be right continuous and of bounded variation on [a, b] and both having left limits.
Then we have

f(b)g(b)− f(a)g(a) =

∫
(a,b]

f(t−)dg(t) +

∫
(a,b]

g(t−)df(t) +
∑
t∈(a,b]

∆ft∆gt

where ∆ft = f(t)− f(t−).

Lemma 2.5. Let π(x) denotes the number of primes ≤ x. For all real numbers
x ≥ 2, we have

π(x) <
3

2

x

log x
.

3. The method of spanning along a function

In this section we introduce and study the notion of spanning of integers along
a function. We study this notion together with associated statistics and explore
some applications.

Definition 3.1. Let f : N −→ R. Then we say n ∈ N is k ∈ N - step spanned
along the function with multiplicity t if

tf(n) + k = n.

We call the set of all n ∈ N such that n is k - step spanned the kth - step spanning
set along f and denote by Sk(f). We call the set of all truncated k-step spanning
set Sk(f) ∩ Ns := Sk(f, s) the sth scale spanned along f . We write the length of
this spanned set as

|Sk(f, s)| := #{n ≤ s | tf(n) + k = n, for some t ∈ N}.

It is easy to see that |Sk(f, s)| < s.

3.1. The s-level measure of spanned set. In this section we introduce the no-
tion of the measure of the span set. We launch and examine the following languages.

Definition 3.2. By the sth level measure of the span set Sk(f), denoted Mf (s, k),
we mean the partial sum

Mf (s, k) :=
∑

2≤n≤s
n∈Sk(f)

f(n).

Let us suppose that f is a right-continuous function and of bounded variation
on [j − 1, j) for all j ≥ 3 with j ∈ N and with a left limit, then by applying the
Stieltjes-Lebesgue integration by parts, we can write the sth level measure of the
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span set in the form

Mf (s, k) : =
∑

2≤j≤s

∑
j−1<n≤j
n∈Sk(f)

f(n)

=
∑

2≤j≤s

j∫
(j−1)

f(t)d|Sk(f, t)|

<
∑

2≤j≤s

(
f(j)|Sk(f, j)| − f(j − 1)|Sk(f, j − 1)|

)
= f(s)|Sk(f, s)| − f(1)|Sk(f, 1)|.

The following inequality is a simple consequence of the above analysis.

Proposition 3.1 (Spanning inequality). Let f be a right-continuous function and
of bounded variation on [x, x+ 1) for x ≥ 1 with x ∈ N and have left limits. Then
the inequality holds

|Sk(f, s)| ≥ 1

f(s)

∑
2≤n≤s
n∈Sk(f)

f(n) +
f(1)|Sk(f, 1)|

f(s)
.

It is important to note that this inequality does not hold in general. As it
is informed by the spanning method, it only holds for functions that are right
continuous and of bounded variation on intervals of the form [x, x + 1) for x ≥ 1
with x ∈ N and additionally have left limits, generally known as cadlag functions.
Indeed the challenge of approaching the Lehmer totient problem using the spanning
method is to construct an appropriate cadlag function for the Euler totient function.
The next section studies an extension of the Euler totient function.

4. The fractional Euler totient invariant function

In this section we introduce and study a new function defined on the real line.
We launch the following languages.

Definition 4.1. By the fractional Euler totient invariant function, we mean the
function ϕ̃ : [1,∞) −→ R such that

ϕ̃(a) = ϕ(bac) + {a}
where ϕ is the Euler totient function and b·c and {·} is the floor and the fractional
part of a real number, respectively.

The fractional Euler totient invariant function turns out to be an interesting
function that in some way extends the Euler totient function to the reals. Even
though the notion of co-primality in not well-defined on the entire real line, it
captures the intrinsic property of the Euler totient function defined on the positive
integers. In essence, the Euler totient function and the fractional totient invariant
function coincides on the set of positive integers. Next, we examine some elementary
properties of the fractional Euler totient invariant function in the following sequel.

Proposition 4.1. The following properties of the fractional totient invariant func-
tion holds
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(i) If a is a positive integer, then ϕ̃(a) = ϕ(a).
(ii) ϕ̃(a) < a for all a > 1.

Remark 4.2. We now state an analytic property of the fractional totient invariant
function. In fact, the fractional totient invariant function can be seen as a slightly
continuous analogue of the Euler totient function on subsets of the reals.

Proposition 4.2. The function ϕ̃ : [1,∞) −→ R with

ϕ̃(a) = ϕ(bac) + {a}

is right-continuous and of bounded variation on [x, x+ 1) for x ≥ 1 with x ∈ N and
have left limits.

5. Main result

Lemma 5.1. The lower bound holds

#{n ≤ s | tϕ(n) + 1 = n, for some t ∈ N} ≥ s

2 log s

∏
p|bsc

(1− 1

p
)−1 − 3

2
eγ

for all s ≥ so, where ϕ is the Euler totient function and γ = 0.5772 · · · is the
Euler-Macheroni constant.

Proof. By appealing to Proposition 3.1, we obtain the lower bound

#{2 ≤ n ≤ s | tϕ̃(n) + 1 = n, for some t ∈ N} ≥ 1

ϕ̃(s)

∑
2≤n≤s
n∈S1(ϕ̃)

ϕ̃(n) +
1

ϕ̃(s)

≥ 1

ϕ̃(s)

∑
2≤n≤s
n∈S1(ϕ̃)

ϕ̃(n).(5.1)

Next we estimate each term on the right-hand side of the inequality. Since ϕ(p) =
p− 1 for any prime number p ∈ P, we obtain the lower bound∑

2≤n≤s
n∈S1(ϕ̃)

ϕ̃(n) ≥
∑
p≤s

ϕ(p)

=
∑
p≤s

p− π(s).

By applying Lemma 2.1, we obtain the lower bound for sufficiently large values of
s ∑

p≤s

p− π(s) ≥ s2

2 log s
− π(s)

so that by appealing to the decomposition

ϕ(bsc) = bsc
∏
p|bsc

(1− 1

p
) ∼ s

∏
p|bsc

(1− 1

p
)

with ϕ̃(s) ∼ ϕ(bsc) and Lemma 2.3, we obtain the lower bound

1

ϕ̃(s)

∑
2≤n≤s
n∈S1(ϕ̃)

ϕ̃(n) ≥ s

2 log s

∏
p|bsc

(1− 1

p
)−1 − 1

ϕ̃(s)
π(s)(5.2)
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for all s ≥ so. By plugging the lower bound in (5.2) into (5.1) and applying Lemma
2.5, we obtain the lower bound

#{2 ≤ n ≤ s | tϕ̃(n) + 1 = n, for some t ∈ N} ≥ s

2 log s

∏
p|bsc

(1− 1

p
)−1 − π(s)

ϕ(bsc)

≥ s

2 log s

∏
p|bsc

(1− 1

p
)−1 − 3

2
eγ

for all s ≥ so. �

Theorem 5.2. There exists a composite n ∈ N such that ϕ(n)|n− 1.

Proof. Suppose on the contrary that there exists no composite n ∈ N such that
ϕ(n)|n−1. Then for all s ≥ so, we obtain the lower bound by appealing to Lemma
6.1

π(s) ≥ s

2 log s

∏
p|bsc

(1− 1

p
)−1 − 3

2
eγ

where π(s) is the prime counting function. Now, we construct an infinite set of
composites

C := {s ∈ N | s :=
∏
p≤po
p,po∈P

p}.

It can be checked that for all sufficiently large composites s in the infinite set C, we
have ∏

p|s

(1− 1

p
)−1 ≥ 3(5.3)

so that

π(s) ≥ 3

2

s

log s
− 3

2
eγ

which contradicts the prime number theorem. �

6. Conclusion and further remarks

The present study adeptly navigates a significant impediment that might have
otherwise hindered previous investigations in this domain. The inherent limitation
of the Euler totient function, restricted to positive integers and lacking one-sided
continuity over the real numbers, posed a formidable challenge, now elegantly sur-
mounted within this paper. Introducing a refined variant of the Euler totient func-
tion tailored to specific subsets of real numbers, characterized by right continuity
while upholding the essence of the original function, paves a seamless path beyond
this anticipated obstacle.

Moreover, this proof leverages two seminal achievements of the twentieth cen-
tury, rooted in the rich history of eighteenth and nineteenth-century mathematics:
the prime number theorem and the Mertens formula. Employing the innovative
spanning method, this work integrates these foundational results to establish the
ensuing lower bound.
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Lemma 6.1. The lower bound holds

#{n ≤ s | tϕ(n) + 1 = n, for some t ∈ N} ≥ s

2 log s

∏
p|bsc

(1− 1

p
)−1 − 3

2
eγ

for all s ≥ so, where ϕ is the Euler totient function.

This lower bound is used as the main toolbox to show existence of a certain com-
posite (large) that satisfies the divisibility relation n|ϕ(n). The spanning method
and it’s variant could in principle be used in careful manner to study related prob-
lems, which is not the main goal of this paper.
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