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Abstract 
Intensity of Electromagnetic Waves as a function of frequency is usually not treated 

by the scientific community. 

The energy transport in Electromagnetic Waves (EMW) calculated by means of the 

Poynting vector formula, might not yield to correct results, because it only gives an 

average energy on a surface. There is no reference about the volumetric energy 

distribution at a distance from the source, nor to the frequency of the EMW. 

• How can the intensity of EMW be written in terms of frequency and distance 

to the source? 

• How to calculate the volumetric energy of EMW? 

• How does the intensity change with the aperture angle (solid angle of a cone 

in space) from the source? 

• How to relate intensity with frequency, area, and aperture angle in one 

equation? 

• How to obtain the wave equation of the interference caused by slit diffraction 

to compute the Intensity? 

In this study, you’ll find the answers to the questions above and learn that the result 

obtained here agrees to the famous Planck equation (𝐸 = ℎ 𝑓). Moreover, a wave 

equation for the interference pattern produced by slit diffraction is obtained, but 

calculation of pattern intensities is left for you with the given formulas. 

Introduction 
We know that EMW transport energy in the form of alternating electric and magnetic 

fields, and even momentum, which is the cause of radiation pressure. Since 

pressure is force per unit area, the lesser the area, the greater the pressure. 

The radiation per unit area of EMW is of extreme importance in physics, whether in 

generation or measurements of waves. You don’t need a laser to prove that. Just put 

a glass lens under the sun and a piece of paper at the lens focal plane and see what 

happens. 

Most of the scientific publications and books treat energy measurement of EMW with 

the Poynting vector formula, that only contains the amplitude of the radiation. If you 

calculate two radiations of the same amplitude but different frequencies, the result 

obtained with the Poynting formula is the same. But this is not true, because the 

energy of the wave is directly proportional to the frequency. 
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Moreover, the energy is inversely proportional to the solid angle of a cone in 

space measured from the source, and this is valid for generated as well measured 

EMW. 

Energy Transport in Electromagnetic Waves 
The energy density (energy per unit volume) of the electric field is given by the following 

equation: 

𝑢𝐸 = 
1

2
𝜀0𝐸(𝑟,𝑡)

2   

On the other hand, the energy density of the magnetic field is given by: 

 𝑢𝐵 = 
𝐵(𝑟,𝑡)

2

2𝜇0
 

These equations show that in a region of empty space where �⃗�  and�⃗�   fields are present, the 

total energy density is given by 

𝐮 =  
𝟏

𝟐
𝛆𝟎E(r,t)

2 + 
B(r,t)

2

𝟐𝛍𝟎
    (1) 

Since E and 𝑩 are related by 𝐸(𝑟,𝑡) = 𝑐𝐵(𝑟,𝑡), then by replacing this in (1) we can write the 

energy density in function of the magnetic field: 

 𝑢 =  
1

2
𝜀0𝑐

2𝐵(𝑟,𝑡)
2 + 

𝐵(𝑟,𝑡)
2

2𝜇0
  =   

1

2
𝜀0

1

𝜇0𝜀0
𝐵(𝑟,𝑡)

2 + 
𝐵(𝑟,𝑡)

2

2𝜇0
 

𝑢 =
𝐵(𝑟, 𝑡)

2

𝜇0
       (2) (energy density in [

J

m3]) 

If we want the energy density given by the electric field, then we replace B(r, t) =
E(r, t)

c
 in (1): 

 𝑢 =  
1

2
𝜀0𝐸(𝑟,𝑡)

2 + 
𝐸(𝑟,𝑡)

2

2𝑐2𝜇0
  =    

1

2
𝜀0𝐸(𝑟,𝑡)

2 + 
𝐸(𝑟,𝑡)

2 𝜇0𝜀0

2𝜇0
 

𝑢 = 𝜀0𝐸(𝑟,𝑡)
2      (3) (energy density in [

𝐽

𝑚3]) 

This shows that in vacuum, the total energy density of the wave can be associated whether 

with the �⃗�  field or the �⃗�  field. 

 

Intensity - The Poynting Vector 
The rate of energy transport per unit area or power per unit area or Intensity in such a wave 

is described by a vector 𝑆 , called the Poynting vector. 

 
Consider a static plane, perpendicular to the x-axis that coincides with the wave front at a 

certain time. In a time dt after this, the wave front moves a distance 𝑑𝑥 = 𝑐 𝑑𝑡 ahead of the 

plane.  

 

If we take an area A on this static plane, we see that the energy in the space ahead of this area 

pass through the area to the new location. The volume 𝑑𝑉 of this region is the area A 

multiplied by the length 𝑐 𝑑𝑡, and the energy 𝑑𝑈 in this space is the energy density 𝑢 

multiplied by this volume: 
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𝑑𝑈 = 𝑢 𝑑𝑉 = (𝜀0𝐸(𝑟,𝑡)
2 )(𝐴𝑐 𝑑𝑡)  

As this energy passes through the area A in time 𝑑𝑡, the energy flow per unit time per unit 

area, which we will call intensity or S is: 
𝑆 =

1

𝐴

𝑑𝑈

𝑑𝑡
= 𝜀0𝑐𝐸(𝑟,𝑡)

2   [
𝑊

𝑚2] 

By replacing 𝑐, we obtain:  

𝑆 =
𝜀0

√𝜀0𝜇0
𝐸(𝑟,𝑡)

2
= √

𝜀0

𝜇0
𝐸(𝑟,𝑡)

2
=

𝐸(𝑟,𝑡)𝐵(𝑟,𝑡)

𝜇0
    => 𝑆 =

𝐸(𝑟,𝑡)𝐵(𝑟,𝑡)

𝜇0
    (4)  (magnitude of the power per unit 

area or Intensity in vacuum) 

The vector quantity that describes the magnitude and direction of the energy flow rate, is the 

Poynting vector: 
𝑆 =

1

𝜇0
�⃗� × �⃗�     (5)      (Poynting vector in vacuum) 

Where the magnitude of the Poynting vector is given by (4). 

The total energy flow per unit time (power, P) out of any closed surface is the integral of 

over the surface: 

𝑃 = ∮ �⃗⃗�  𝑑�⃗⃗⃗�  

 

Let’s suppose that we have an Electromagnetic wave with the following characteristic: 

𝐸𝑦(𝑟, 𝑡) = 𝐸𝑚𝑎𝑥 cos(𝑘𝑟 − 𝜔𝑡) 

𝐵𝑧(𝑟, 𝑡) = 𝐵𝑚𝑎𝑥 cos(𝑘𝑟 − 𝜔𝑡) 

 

Now let’s calculate the intensity of this sinusoidal wave by using the Poynting vector 

formula. 

𝑆 (𝑟, 𝑡) =
1

𝜇0
�⃗� (𝑟, 𝑡) × �⃗� (𝑟, 𝑡) = 𝒋̂𝐸𝑚𝑎𝑥 cos(𝑘𝑟− 𝜔𝑡) × �̂�𝐵𝑚𝑎𝑥 cos(𝑘𝑟 − 𝜔𝑡) 

 

The vector product of the unit vectors is �̂� × �̂� = �̂� andcos2(𝑘𝑥 − 𝜔𝑡)  is never negative, so 

𝑆 (𝑟, 𝑡) in this case always points in the positive x-direction (the direction of wave 

propagation). The x-component of the Poynting vector is: 

 

𝑆 (𝑥, 𝑡) =
𝐸𝑚𝑎𝑥𝐵𝑚𝑎𝑥

𝜇0
cos2(𝑘𝑥 − 𝜔𝑡) 

The time average value of cos2(𝑘𝑥 − 𝜔𝑡) is
1

2
. So, the average value of the Poynting vector or 

Intensity over a full cycle is S⃗ av = �̂� Sav, where: 

 

 𝑆𝑎𝑣 =
𝐸𝑚𝑎𝑥𝐵𝑚𝑎𝑥

2𝜇0
= 𝐼  (6) 

 

By using the relationships 𝐸𝑚𝑎𝑥 = 𝑐 𝐵𝑚𝑎𝑥 and 𝜀0𝜇0 =
1

𝑐2
 we can express the intensity in 

several equivalent forms: 
 

𝐼 =
𝐸𝑚𝑎𝑥

2

2𝜇0𝑐
  (7) or 𝐼 =

1

2
𝜀0𝑐𝐸𝑚𝑎𝑥

2  (8) 
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In addition, we can write the Intensity in terms of 𝐸𝑟𝑚𝑠, the root-mean-square value of the 

electric field. 

𝐸𝑟𝑚𝑠 =
𝐸𝑚𝑎𝑥

√2
 

By replacing this in Eq. (7), we get the Intensity in function of the 𝐸𝑟𝑚𝑠. 

 

𝐼 =
1

𝜇0𝑐
𝐸𝑟𝑚𝑠

2    (9) 

 

Equations (7), (8) and (9) give different expressions to calculate the Intensity of EMW in 

vacuum. 

 

Volumetric Power and Intensity of Electromagnetic Waves 

The energy density ([
𝐽

𝑚3]) of a wave in vacuum is given by Eq. (2) or Eq. (3). By definition, 

the energy transfer rate is given by the Power. Since we are considering a volume in space, it 

would be perfectly normal to find the Volumetric Power. With this, the Intensity of EMW is 

redefined to account for the energy in that volume. 

The Power Density or Volumetric Power 𝑃𝑣 is the rate at which the energy is transferred: 

P =
∂u

∂t
where 𝑢 = 𝜀0𝐸(𝑟,𝑡)

2 e is the energy density in [
𝐽

𝑚3
]. Then, the Intensity can be 

redefined as the volumetric energy flow per unit time per unit area: 

𝐼 =
𝑃𝑣

𝐴
   =   

1

𝐴

𝜕𝑢

𝜕𝑡
     [

𝑊

𝑚3

𝑚2
]   (10) 

 

How Intensity Changes with Distance and Area 
Unfortunately, almost all scientific publications and books do not give any mathematical 

approach about the behavior of EMW when frequency and distance are considered. The 

Poynting vector basically ignores these factors, and the intensities obtained by this method 

are incorrect, because they do not match with Mather Nature.  

 

The Poynting vector in Eq. (4) to (9) only give the average energy on a surface, with no 

reference to distance from the source nor to the frequency of the wave. 

 

I have obtained more useful formulas that show how the energy of EMW depend on the 

wave’s frequency, the attenuation with the distance from the source, as well as how the 

intensity depends on the aperture angle (solid angle of a cone in space) between the source 

and the region in space where calculations or measurements are performed. 

  



5 
 

Energy Spread in EMW 
I assume a small source that emits 

EMW isotropically. The spherical 

wave fronts spreading from such an 

isotropic point source S at a 

particular instant are shown in cross-

section in the figure. 

 

Let’s also assume that the energy of 

the waves is conserved as they 

spread from the source, and all the 

energy emitted must pass through 

the sphere.  

 

Thus, the rate at which energy 

passes through the sphere as radiation must be equal to the rate at which the energy is 

emitted, that is, the source power Ps. The intensity I (power per unit area) measured at the 

sphere must then be, from Eq.(10): 

𝐼 =
𝑃𝑠

4𝜋𝑅2  (11) 

 

Equation (11) tells us that the intensity of the electromagnetic radiation from an isotropic 

small source decreases with the square of the distance R from the source. Note that this is 

the intensity spread out all over the area of the sphere. It is only useful to demonstrate how 

the distance affect the intensity, and that’s all. Some unanswered questions are: 

 

1. What happens in a small area of the sphere? 

2. How does Intensity change with the aperture angle between the source 

and the observation region? 

3. Does Intensity vary as frequency changes? 

Calculation of a Cap Area of the Sphere 
 

The cap area of a sphere is given by 

the following formula: 

𝐴 = 𝜋(ℎ2 + 𝑟2)  (12) 

 

If R ≫ r, we can make Δx very small, 

so that h\ll 𝑟. Then, the cap area will 

be: 

𝐴 ≈ 𝜋 𝑟2  (13) 

 

That is, the area of the cap is 

practically the area of the circle of 

radius 𝑟. The arc length is practically 

the same as the diameter, i.e. 

𝑆 ≅ 2𝑟. 

 

By definition, angle is the ratio of the arc to the radius: 𝜃 =
𝑆

𝑅
 

𝒙 

𝑹 

𝒉 
∆𝒙 

𝒓 

𝜽 

𝑺 
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If we make 𝑅 ≫ 𝑟, then the angle 𝜃 will be very small. For 𝜃 < 0.2[𝑟𝑎𝑑], which corresponds 

to 𝜃 ≅< 10°, and with an error < 1 %, we have: 

 

tan (
𝜃

2
) ≅

𝜃

2
= 

𝑟

𝑅
  therefore  𝑟 =

𝜃

2
𝑅  (14) 

 

Replacing (14) in (13), we get the following equation for the small cap area in function of the 

aperture angle and the distance from the origin: 

𝐀 =
𝛑

𝟒
𝛉𝟐𝐑𝟐     (15) 

 

 

Intensity Ratio Between Two Spherical Areas 

Let’s imagine a small sphere tight surrounding the wave source, with an area 𝐴𝑠 and radius 

𝑟𝑠. Now consider another sphere at a distant point 𝑥 from the source, with area 𝐴𝑥 and radius 

𝑟𝑥. 

The intensity at the source sphere will be: 

𝐼𝑠 =
𝑃𝑠

𝐴𝑠
 

And the intensity at the distance 𝑥 is: 

𝐼𝑥 =
𝑃𝑠

𝐴𝑥
  

The ratio of the intensity at the distance 𝑥 with respect to the source is: 

Ix

Is
=

Ps
Ax
Ps
As

=
As

Ax
   then  𝐼𝑥 = 𝐼𝑠

𝐴𝑠

𝐴𝑥
=

4𝜋𝑟𝑠
2

4𝜋𝑟𝑥2 

 

It follows that: 

𝐼𝑥 = 𝐼𝑠 (
𝑟𝑠

𝑟𝑥
)
2

   (16) 

 

Since 𝑟𝑥 > 𝑟𝑠, then 𝐼𝑥 < 𝐼𝑠, i.e., the intensity at the distance 𝑥 weakens by a factor 
𝟏

𝒓𝟐. 

 

Intensity Ratio Between a Small and Big Area Located at the Same 

Radius 

Let’s imagine that we take a sphere of radius R and area 𝐴𝑟 at a big distance from the wave 

source. The intensity will be 𝐼𝑟. Now, let’s take a very small area in the same sphere (a small 

sphere cap), so that its area is given by Equation (15). 

 

The intensity for the whole area of the sphere is 𝐼𝑟 =
𝑃𝑠

𝐴𝑟
, and the intensity for the cap area is 

 𝐼𝑐𝑎𝑝 =
𝑃𝑠

𝐴𝑐𝑎𝑝
. 

By taking the ratio of the intensities, it follows that: 

𝐼𝑐𝑎𝑝 = 𝐼𝑟
𝐴𝑟

𝐴𝑐𝑎𝑝
 

After replacing the area values, we obtain: 

𝐼𝑐𝑎𝑝 = 𝐼𝑟 

4𝜋𝑅2

𝜋
4 𝜃2𝑅2
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Then, the intensity at the small cap area is given by: 

𝐼𝑐𝑎𝑝 = 𝐼𝑟
16

𝜃2     (17) 

Since the value of the angle is 𝜃 < 0.2[𝑟𝑎𝑑], then the intensity at the cap is, at least, 

𝐈𝐜𝐚𝐩 = 𝟒𝟎𝟎 𝐈𝐫! 

 

This remarkable result tells us that the smaller the angle, the bigger the intensity we can 

generate, measure, or detect. If we manage to concentrate and collimate the flux of measured 

or generated energy in a beam with a small aperture angle, then we may expect a huge gain in 

intensity. 

 

The Magnifying Glass Effect and the Laser Power 

The magnification factor in Equation (17) 𝑭𝜽 =
𝟏𝟔

𝜽𝟐 can be applied on emission and detection 

of EMW. Among other things, it explains the effect of a magnifying glass when burning a 

piece of paper on the sun by concentrating the sun energy in a small spot on the paper. 

 

Another example is Laser. Laser light is collimated in a very small diameter beam of light, 

thus helping to obtain very high intensities. 

 

In general, any type of emission and reception of EMW where the energy is confined in a 

small area, will take advantage of this fact. Some examples are systems using directional 

emission or detection with parabolic antennas, like radar, broadcasting, telephony, etc. 

 

In astronomy, to detect extremely weak EMW coming from very distant stars or galaxies, we 

should need to capture as much energy as possible and focus the beam at a spot as small as 

possible, in order to get a minimum level of intensity capable of being observed and 

measured. 

 

How Intensity Changes with Frequency, Distance, and Area 
Recall that the volumetric power per unit area (Intensity) is the flow of energy per unit time. 

𝐼 =
𝑃𝑣

𝐴
   =   

1

𝐴

𝜕𝑢

𝜕𝑡
     [

𝑊

𝑚3

𝑚2 ]          (18) 

 

The total energy density of the wave is given by any of the two forms of the following 

Equations: 

𝑢 =
𝐵(𝑟,𝑡)

2

𝜇0
     (19)  𝑢 = 𝜀0𝐸(𝑟,𝑡)

2     (20) 

Assuming the wave propagates in the 𝑥 direction: 

 

𝐸(𝑥, 𝑡) = 𝐸𝑚𝑎𝑥 cos(𝑘𝑥 − 𝜔𝑡)  (20a) 

𝑢(𝑥, 𝑡) = 𝜀0𝐸(𝑥,𝑡)
2  (20b)  

𝐸2(𝑥, 𝑡) = 𝐸𝑚𝑎𝑥
2 𝑐𝑜𝑠2(𝑘𝑥 − 𝜔𝑡)    (21) 

 

By replacing (21) in (20), we get the energy density of the wave. 

𝑢 = 𝜀0𝐸𝑚𝑎𝑥
2 𝑐𝑜𝑠2(𝑘𝑥 − 𝜔𝑡)    (21a)  
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Let’s take the derivative of Eq. (21a). Since 𝐸 depends on 𝑥 and 𝑡, we must take the partial 

derivative of 𝑢 with respect to time. 

∂u(x,t)

∂t
= ε0 ω Emax

2 sin[2(kx − ωt)]    (21b) 

 

Then, by replacing (21b) in (18), we arrive to the following expression for the Intensity: 

I =   
1

A

∂u(x,t)

∂t
=

1

A
 ε0 ω Emax

2 sin[2(kx − ωt)]      [
𝑊

𝑚3

𝑚2 ]   (22) 

 

 

Equation (22) defines the Intensity as the 

volumetric power per unit area. 

 

The Energy is plotted in red and the Intensity in 

blue. As energy is always positive, the Intensity 

it is not. It changes in time between the two 

maxima ±Imax. As it is a wave function, of 

course, is zero at some specific times. 

 

We also note that the maximum Intensity 

(blue line) has a phase shift with respect to 

the maximum Energy of the electric field 𝐸 

(red plot).    

Intensity on a Sphere Area vs. Frequency and Distance  

Replacing the values for 𝐴 (sphere of radius R) and 𝜔 in Eq. (22), we get 

I =
1

4πR2  2πε0fEmax
2 sin[2(kx − ωt)]   

 

After simplifying, we get the expression of the Intensity on a sphere of radius R. 

 

𝐼𝑠𝑝ℎ𝑒𝑟𝑒 =
𝐸𝑚𝑎𝑥

2

2𝑅2
𝜀0𝑓 sin[2(𝑘𝑥 − 𝜔𝑡)]   [

𝑊

𝑚3

𝑚2
]   (23) 

 

Recalling that 𝐸𝑟𝑚𝑠 =
𝐸𝑚𝑎𝑥

√2
, then we can write the equivalent equation as: 

𝐼𝑠𝑝ℎ𝑒𝑟𝑒 =
𝐸𝑟𝑚𝑠

2

𝑅2
𝜀0𝑓 sin[2(𝑘𝑥 − 𝜔𝑡)]  [

𝑊

𝑚3

𝑚2 ]    (24) 

 

This is the volumetric energy density distributed or spread in the whole sphere area. 

 

Equation (24) tells us two important things: a) the energy of the wave is directly 

proportional to the frequency, i.e., the higher the frequency, the higher the energy; b) the 

energy decays with a factor 
1

𝑅2. 
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Intensity on a Small Circular Area vs. Frequency and Distance 
Let’s now take a small cap on the same sphere of radius R from the previous paragraph. By 

replacing the cap area (Eq. 15) and 𝜔 in Eq. (22), and taking 𝐸𝑟𝑚𝑠 =
𝐸𝑚𝑎𝑥

√2
, we obtain the 

Intensity at the cap area of the sphere. 

 

𝐼𝑐𝑎𝑝 = 
1

𝜋

4
𝜃2𝑅2

 2𝜋𝜀02𝐸𝑟𝑚𝑠
2 𝑓 sin[2(𝑘𝑥 − 𝜔𝑡)]   

 

𝐼𝑐𝑎𝑝 = 
16

𝜃2𝑅2
𝜀0𝐸𝑟𝑚𝑠

2 𝑓 sin[2(𝑘𝑥 − 𝜔𝑡)]    [
𝑊

𝑚3

𝑚2 ]   (25) 

 

As we have seen in Eq. (17), the magnification factor is 𝐅𝛉 =
𝟏𝟔

𝛉𝟐 > 𝟒𝟎𝟎. Then, the intensity 

in this small area is much bigger than that of the full sphere area. That is: 

 

 𝐼𝑐𝑎𝑝 >  400 𝐼𝑠𝑝ℎ𝑒𝑟𝑒 

 

In Eq. (25) we see 3 variables affecting the intensity:  

1. Frequency: the higher the frequency, the higher the energy 

2. Distance: the energy decays with a factor 
1

𝑅2 

3. Aperture Angle: the smaller the cone angle between the source and the surface, the 

greater the intensity. 

 

Intensity in Diffraction - The Phenomenon as Interference of Waves at 

Object Edges Explained 
Waves generally tend to surround an obstacle by "wrapping" it in some way. The waves 

"bend" at the edges of an object and continue their path behind (to some degree), within the 

shadow area, making detection possible in that region. The obstacle could be solid/opaque or 

just a hole or slit. 

 

 

 

 

 

 

 

 

 

 

  

Incoming wave 

Solid obstacle 

Shadow 

region 

Wave can be detected 

within the shadow area 

Shadow 

region 
Incoming wave 

Slit or hole 

Shadow 

region 

Wave can be detected 

within the shadow areas 



10 
 

Interference patterns behind the obstacle are classified as Near Field (Fresnel zone) and Far 

Field (Fraunhofer zone) and can be derived by using diffraction integrals. 

My approach here is more general and based on my ideas of this phenomenon. I’ll 

demonstrate it easily by simply developing the interference of two waves. 

If the obstacle does not totally absorb the wave energy, then the edges will produce 

retransmissions (reflections) of the incident wave on the obstacle edges in the form of 

spherical waves that will travel in many directions. Some front reflections in the opposite 

way will produce standing waves in front of the opaque parts of the obstacle. I’m interested 

in retransmissions that continue the direction of the incoming wave. Let’s analyze the slit 

interference. 

I assume that the opaque edges of the obstacle do not absorb energy, so that the amplitude of 

the retransmitted wave remains almost the same as that of the incident wave. 

I’ll analyze the slit interference by disregarding the fact that part of the incident wave might 

pass directly through the slit, by having a wave vector in the 𝑥 direction.  

For simplicity, let’s consider just two retransmitted waves from both slit edges. I leave it to 

you to make the calculation of interference for the three waves, and in that case, see what 

happen. 

Interference between two retransmitted waves from both slit edges 
 

 

 

 

 

 

 

 

 

 

  

Incident wave Retransmissions (blue) 

𝜃 

𝑘1 

x 

y 

𝑘2 

𝑘1𝑥 = 𝑘2𝑥 = 𝑘1 cos 𝜃 = 𝑘2 cos(−𝜃) 

𝜃 

𝜃 

𝑘1 

x 

y 

𝑘2 

𝜃 

𝑑 
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In this situation, the wave vectors are: 

�⃗� 1 = 𝑘1𝑥 𝑖̂ + 𝑘1𝑦 𝑗̂ => 𝑘1𝑥 = 𝑘1 cos 𝜃;    𝑘1𝑦 = 𝑘1 sin 𝜃 

�⃗� 2 = 𝑘2𝑥 𝑖̂ + 𝑘2𝑦 𝑗̂ => 𝑘2𝑥 = 𝑘2 cos(−𝜃) = 𝑘2 cos 𝜃; 𝑘2𝑦 = 𝑘2 sin(−𝜃) =

−𝑘2 sin 𝜃 
 

The position vectors in this case are: 

𝑟 1 = 𝑥 𝑖̂ + 𝑦 𝑗̂ 

𝑟 2 = 𝑥 𝑖̂ + (𝑦 − 𝑑) 𝑗 ̂

Wave Equation of Slit Interference 
Let’s take the following superposition of the two waves, assuming the same amplitude and 

frequency: 

𝜑𝑅(𝑟 ,𝑡) = 𝐴 cos(�⃗� 1𝑟 1 − 𝜔𝑡) + 𝐴 cos(�⃗� 2𝑟 2 − 𝜔𝑡) 

 

To make it easy, let’s rename the arguments as: 

∝= (�⃗� 1𝑟 1 − 𝜔𝑡)    (25a) 

𝛽 = (�⃗� 2𝑟 2 − 𝜔𝑡)   (25b) 
 

The resulting wave can then be written in an easier way. 

𝜑𝑅(𝑟 ,𝑡) = 𝐴(cos ∝ + cos𝛽) = 2𝐴 cos (
𝛼+𝛽

2
) cos (

𝛼−𝛽

2
)   (26) 

Now, let’s replace ∝ and 𝛽 as given in Eq. (25a) and (25b). 

(
𝛼 + 𝛽

2
) =

1

2
(�⃗� 1𝑟 1 − 𝜔𝑡 + �⃗� 2𝑟 2 − 𝜔𝑡) =

�⃗� 1𝑟 1 + �⃗� 2𝑟 2
2

− 𝜔𝑡 

(
𝛼 − 𝛽

2
) =

1

2
(�⃗� 1𝑟 1 − 𝜔𝑡 − �⃗� 2𝑟 2 + 𝜔𝑡) =

�⃗� 1𝑟 1 − �⃗� 2𝑟 2
2

 

If we plug in the above results in Eq. (26), we get the Wave Equation of Slit 

Interference: 

𝜑𝑅(𝑟 ,𝑡) = 2𝐴 cos (
�⃗� 1𝑟 1−�⃗� 2𝑟 2

2
) cos (

�⃗� 1𝑟 1+�⃗� 2𝑟 2

2
− 𝜔𝑡)   (27) 

Now let’s solve the dot products. 

�⃗� 1𝑟 1 = (𝑘1 cos 𝜃 𝑖̂ + 𝑘1 sin 𝜃 𝑗̂) ∗ (𝑥 𝑖̂ + 𝑦 𝑗̂) = 𝑘1 cos 𝜃 𝑥 + 𝑘1 sin 𝜃 𝑦 

�⃗� 2𝑟 2 = (𝑘2 cos 𝜃 𝑖̂ − 𝑘2 sin 𝜃 𝑗̂) ∗ [𝑥 𝑖̂ + (𝑦 − 𝑑)𝑗̂] = 𝑘2 cos 𝜃 𝑥 − 𝑘2 sin 𝜃 (𝑦 − 𝑑) 

Since both waves have the same frequency, the wave vectors are also equal, 𝑘1 = 𝑘2 = 𝑘.  

�⃗� 1𝑟 1 = 𝑘(cos 𝜃 𝑥 + sin 𝜃 𝑦) 

�⃗� 2𝑟 2 = 𝑘[cos 𝜃 𝑥 − sin 𝜃 (𝑦 − 𝑑)] 
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Now we can proceed with the algebraic sum of the cosine arguments. 

𝐤 𝟏𝐫 𝟏 + 𝐤 𝟐𝐫 𝟐
𝟐

=
k

2
(cos θ x + sin θ y + cos θ x − sin θ y + sin θ d) = 𝐤 𝐜𝐨𝐬 𝛉 𝐱 +

𝐤𝐝 𝐬𝐢𝐧 𝛉

𝟐
 

𝐤 𝟏𝐫 𝟏 − 𝐤 𝟐𝐫 𝟐
𝟐

=
k

2
(cos θ x + sin θ y − cos θ x + sin θ y − sin θ d) = 𝐤 𝐬𝐢𝐧 𝛉 𝐲 −

𝐤𝐝 𝐬𝐢𝐧𝛉

𝟐
 

By replacing these results in Eq. (27), the wave equation of the slit interference becomes: 

𝜑𝑅(𝑟 ,𝑡) = 2𝐴 cos (𝑘 sin 𝜃 𝑦 −
𝑘𝑑 sin𝜃

2
) cos (𝑘 cos 𝜃 𝑥 +

𝑘𝑑 sin𝜃

2
− 𝜔𝑡)    (28)  

Where the arguments of the cosine functions represent the following: 

Φ1 = 𝑘 sin 𝜃 𝑦 −
𝑘𝑑 sin𝜃

2
       the spatial modulation in y-direction 

Φ2 = 𝑘cos𝜃𝑥 +
𝑘𝑑sin𝜃

2
− 𝜔𝑡        the wave propagating in x-direction 

Let’s freeze the time and take a snapshot of the resulting wave at any time, say t = 0. 

Constructive interference happens when cosines are maximum, i.e., at 𝐧𝛑 (𝑛 =
0, ±1,±2…). In this case, the arguments can be written as:  

Φ1 = 𝑘sin𝜃𝑦 −
𝑘𝑑sin 𝜃

2
= 𝑛𝜋   (29) 

Φ2 = 𝑘cos𝜃𝑥 +
𝑘𝑑sin𝜃

2
= 𝑛𝜋   (30) 

Since we are interested in the interference fringes in the y-z plane, let’s analyze Φ1. 

sin 𝜃 𝑦 −
𝑑 sin𝜃

2
=

𝑛𝜋

𝑘
   =>  sin 𝜃 𝑦 =

𝑛𝜋

𝑘
+

𝑑 sin𝜃

2
 

𝑦 =
𝑛𝜋

𝑘 sin𝜃
+

𝑑

2
=

𝑛𝜋𝜆

2𝜋 sin𝜃
+

𝑑

2
  =>  (𝒚 −

𝒅

𝟐
) =

±𝒏𝝀

𝟐 𝐬𝐢𝐧 𝜽
 

The last equation tells us that the interference pattern is centered at 𝑦 =
𝑑

2
. 

If we make y = 0, we get the famous equation of slit interference based on the experiment 

made by Young, where we can calculate the location of the bright bands on a screen in the y-

z plane, placed at a distance 𝑥 ≫ 𝑑 from the slit. That is, 

𝒅𝐬𝐢𝐧𝜽 = ∓𝒏𝝀 (𝑛 = 0,∓1,∓2…) constructive interference bands of a slit 

Here, 𝛉 is half the angle between any two chosen wave vectors which originate at the slit. It 

is not arbitrary, but perfectly defined. 

In the physics books and literature out there, 𝜃 is the angle of an arbitrary line traced from the 

slit to the screen to explain that the path difference between the two waves is the cause of the 

interference. Even when this is true, you will never know what is happening and why. 

  



13 
 

I have assumed symmetrical angles for the wave vectors. What happens if the angle between 

the wave vectors is different?  

The result will be the same. What matters is the relative angle between the wave vectors, not 

the individual angles. In our case, the relative angle is 2𝜃, but 𝜃 can be the sum of two 

different angles. 

Now let’s find the equation of the wave fronts from the resulting interference. We can equal 

Eq. (29) and Eq. (30) to obtain a function y=f(x) that we can plot in order to see the shape of 

the wave fronts. 

𝑘 sin 𝜃 𝑦 −
𝑘𝑑 sin 𝜃

2
= 𝑘 cos 𝜃 𝑥 +

𝑘𝑑 sin 𝜃

2
 

sin 𝜃 𝑦 = cos 𝜃 𝑥 +
𝑑𝑠𝑖𝑛(𝜃)

2
  => 𝑦 =

𝑥

tan𝜃
+

𝑑

2
 

By replacing tan 𝜃 =
𝑦

𝑥
 and rearranging, we get the following equation that 

describes the pattern formed by the wave fronts: 

𝑦2 −
𝑑

2
𝑦 − 𝑥2 = 0 

 

The figure shows some lines of the wave fronts for 

a slit width = 2.42 units of length. If we put a 

screen perpendicular to this page, say at x=4, we 

will see that the wave reaches areas that are well 

beyond the shadow regions of the slit. 

 

 

 

 

 

Conclusions 
This study clearly demonstrates the dependence of the wave energy propagation not only as a 

function of an area, but more generally, as a function of three variables, such as frequency, 

distance, and aperture angle from the source. The wave equation obtained in the analysis 

agrees with the Planck's formula. 

Volumetric Power and Intensity are defined in order to account for a correct energy 

distribution of EMW in space. The Intensity wave equation is derived, showing the 

relationship with the source's frequency, distance, and aperture angle. The Intensity in 

Diffraction is demonstrated as an interference phenomenon. The wave equation of the slit 

interference is deduced, from which the interference pattern is obtained in complete 

agreement with the Young experiment. 
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