A Method to Prove a Prime Number between $3N$ and $4N$

Wing K. Yu

Abstract

In this paper, we will prove that when an integer $n > 1$, there exists a prime number between $3n$ and $4n$. This is another step in the expansion of the Bertrand’s postulate - Chebyshev’s theorem after the proof of a prime number between $2n$ and $3n$.

Introduction

The Bertrand’s postulate - Chebyshev’s theorem states that for any positive integer n, there is always a prime number p such that $n < p < 2n$. It was proved by Pafnuty Chebyshev in 1850 [1]. In 2006, M. El Bachraoui [2] expanded the theorem by proving that for any positive integer n, there is a prime number p such that $2n < p < 3n$. In 2011, Andy Loo [3] expanded the theorem to that when $n \geq 2$, there exists a prime number in the interval $(3n, 4n)$. Recently, the author used a different method [4] to prove that a prime number exists between $2n$ and $3n$ by analyzing the binomial coefficient $\binom{3n}{n}$. In this paper, we will use the similar way to prove that a prime number exists between $3n$ and $4n$ by analyzing the binomial coefficient $\binom{4n}{n}$.

Definition: \(\Gamma_{a \geq p > b}\left(\frac{4n}{n}\right) \) denotes the prime factorization operator of $\binom{4n}{n}$. It is the product of the prime numbers in the decomposition of $\binom{4n}{n}$ in the range of $a \geq p > b$. In this operator, p is a prime number, a and b are real numbers, and $4n \geq a \geq p > b \geq 1$.

It has some properties:

It is always true that $\Gamma_{a \geq p > b}\left(\frac{4n}{n}\right) \geq 1$ — (1)

If there is no prime number in $\Gamma_{a \geq p > b}\left(\frac{4n}{n}\right)$, then $\Gamma_{a \geq p > b}\left(\frac{4n}{n}\right) = 1$, or vice versa, if $\Gamma_{a \geq p > b}\left(\frac{4n}{n}\right) = 1$, then there is no prime number in $\Gamma_{a \geq p > b}\left(\frac{4n}{n}\right)$ — (2)

For example, $\Gamma_{12 \geq p > 8}\left(\frac{16}{4}\right) = 11^0 = 1$. No prime number is in $\binom{16}{4}$ in the range of $12 \geq p > 8$.

If there is at least one prime number in $\Gamma_{a \geq p > b}\left(\frac{4n}{n}\right)$, then $\Gamma_{a \geq p > b}\left(\frac{4n}{n}\right) > 1$, or vice versa, if $\Gamma_{a \geq p > b}\left(\frac{4n}{n}\right) > 1$, then there is at least one prime number in $\Gamma_{a \geq p > b}\left(\frac{4n}{n}\right)$ — (3)

For example, $\Gamma_{8 \geq p > 4}\left(\frac{16}{4}\right) = 5 > 1$. Prime number 5 is in $\binom{16}{4}$ in the range of $8 \geq p > 4$.

Let $v_p(n)$ be the p-adic valuation of n, the exponent of the highest power of p that divides n. We define $R(p)$ by the inequalities $p^{R(p)} \leq 4n < p^{R(p)+1}$, and determine the p-adic valuation of $\binom{4n}{n}$.
For every integer \(n > 1 \), there exists at least a prime number \(p \) such that \(3n < p \leq 4n \).

Proof:

By induction on \(n \), for \(n = 2 \), \(\binom{4n}{n} = \binom{8}{2} = 28 > \frac{4^{n-3}}{n \cdot 3^{n-3}} = \frac{512}{27} \approx 18.96 \)

If \(\binom{4n}{n} > \frac{4^{n-3}}{n \cdot 3^{n-3}} \) for \(n \) stands, then for \(n + 1 \),

\[
\binom{4(n+1)}{n+1} = \frac{4(n+4)(4n+3)(4n+2)(4n+1)}{(n+1)(3n+3)(3n+2)(3n+1)} \cdot \binom{4n}{n}
\]

\[
> \frac{4(n+4)(4n+3)(4n+2)(4n+1)}{(n+1)(3n+3)(3n+2)(3n+1)} \cdot \frac{4^{n-3}}{n \cdot 3^{n-3}} = \frac{4^{n+3}}{3n+3} \cdot \frac{4^{n+3}}{3n+3} \cdot \frac{4}{3n+3} \cdot \frac{4}{3n+3} \cdot \frac{4}{3n+3} \cdot \frac{4}{3n+3} = \frac{4^{n+3}}{(n+1) \cdot 3^{n+1}}
\]

Thus for \(n \geq 2 \), \(\binom{4n}{n} > \frac{4^{n-3}}{n \cdot 3^{n-3}} \)

Applying (7) into (6):

For \(n \geq 3 \),

\[
\frac{4^{n-3}}{n \cdot 3^{n-3}} < \binom{4n}{n} < \Gamma_{\geq 2 \sqrt{n}} \frac{(4n)!}{n! \cdot (3n)!} \cdot 2^{2n-3} \cdot \Gamma_{\geq 2 \sqrt{n}} \frac{(4n)!}{n! \cdot (3n)!}
\]

Proposition

Thus, if \(p \) divides \(\binom{4n}{n} \), then \(\binom{4n}{n} \leq R(p) \leq \log_p(4n) \), or \(p^{\nu_p(\binom{4n}{n})} \leq p^{R(p)} \leq 4n \)

Referring to (5), \(\Gamma_{\geq 2 \sqrt{n}} \frac{(4n)!}{n! \cdot (3n)!} \leq \prod_{n \geq p} p \).

It has been proved [5] that \(\prod_{n \geq p} p < 2^{2n-3} \) when \(n \geq 3 \).

Thus for \(n \geq 3 \),

\[
\binom{4n}{n} < \Gamma_{\geq 2 \sqrt{n}} \frac{(4n)!}{n! \cdot (3n)!} \cdot 2^{2n-3} \cdot \Gamma_{\geq 2 \sqrt{n}} \frac{(4n)!}{n! \cdot (3n)!}
\]

Page 2
Let \(\pi(n) \) be the number of distinct prime numbers less than or equal to \(n \). Among the first six consecutive natural numbers are three prime numbers 2, 3 and 5. Then, for each additional six consecutive natural numbers, at most one can add two prime numbers, \(p \equiv 1 \pmod{6} \) and \(p \equiv 5 \pmod{6} \). Thus, \(\pi(n) \leq \left\lfloor \frac{n}{3} \right\rfloor + 2 \leq \frac{n}{3} + 2 \). — (9)

Referring to (4) and (9),

\[
\Gamma_{[2\sqrt{n}]} \geq p \left\{ \left(\frac{4n!}{n!(3n)!} \right) \right\} = \Gamma_{[2\sqrt{n}]} \geq p \left\{ \left(\frac{4n}{n} \right) \right\} \leq (4n)^{\pi(2\sqrt{n})} \leq (4n)^{\frac{2\sqrt{n}+2}{3}}
\]

Applying (10) into (8): \[
\frac{4^{4n^3}}{n(3n-3)^{2n^3}} < \Gamma_{[2\sqrt{n}]} \geq p \left\{ \left(\frac{4n!}{n!(3n)!} \right) \right\} \cdot 2^{2n^3} \cdot (4n)^{\frac{2\sqrt{n}+2}{3}}
\]

Since for \(n \geq 3 \), both \(2^{2n^3} > 0 \) and \((4n)^{\frac{2\sqrt{n}+2}{3}} > 0 \)

\[
\Gamma_{[2\sqrt{n}]} \geq p \left\{ \left(\frac{4n!}{n!(3n)!} \right) \right\} > \frac{4^{4n^3}}{n(3n-3)^{2n^3}} \frac{2^{2n^3}}{(4n)^{\frac{2\sqrt{n}+2}{3}}} = \frac{27}{2} \left(\frac{4}{3} \right)^{3n} \frac{4}{3} \frac{3^n}{(4n)^{\frac{2\sqrt{n}+2}{3}}}
\]

Let \(f(x) = \frac{w}{u} \) where \(x, u, w \) are real numbers and \(x \geq 42 \), \(u = \frac{27}{2} \left(\frac{4}{3} \right)^{3x} \), \(w = (4x)^{\frac{2\sqrt{x}+9}{3}} \)

\[
\frac{du}{dx} = \left(\frac{27}{2} \cdot \left(\frac{4}{3} \right)^{3x} \right) = \frac{27}{2} \left(\frac{4}{3} \right)^{3x} \cdot 3 \cdot \ln \left(\frac{4}{3} \right) = u \cdot 3 \cdot \ln \left(\frac{4}{3} \right)
\]

\[
\frac{dw}{dx} = \left((4x)^{\frac{2\sqrt{x}+9}{3}} \right) = \left((4x)^{\frac{2\sqrt{x}+9}{3}} \right) \left(\frac{\ln(4x)}{3\sqrt{x}} + \frac{2\sqrt{x}+9}{3x} \right) = w \left(\frac{\ln(x)+\ln(4)+2}{3\sqrt{x}} + \frac{3}{x} \right)
\]

\[
f'(x) = \left(\frac{w}{u} \right)' = \frac{w(u)' - u(w)'}{u^2} = \frac{w}{u} \left(3 \cdot \ln \left(\frac{4}{3} \right) - \frac{\ln(x)+\ln(4)+2}{3\sqrt{x}} - \frac{3}{x} \right)
\]

Let \(f_1(x) = 3 \cdot \ln \left(\frac{4}{3} \right) - \frac{\ln(x)+\ln(4)+2}{3\sqrt{x}} - \frac{3}{x} \)

Since \(f_1'(x) = \frac{\ln(x)+\ln(4)+2}{6x\sqrt{x}} + \frac{3}{x^2} > 0 \), when \(x > 1 \), \(f_1(x) \) is a strictly increasing function.

When \(x = 42 \), \(f_1(x) = 3 \cdot \ln \left(\frac{4}{3} \right) - \frac{\ln(x)+\ln(4)+2}{3\sqrt{x}} = 0.863 - 0.367 - 0.071 = 0.425 > 0 \).

Thus, when \(x \geq 42 \), \(f_1(x) > 0 \).

Since when \(x \geq 42 \), \(u, w, f_1(x) \) are greater than zero, \(f'(x) = \frac{w}{u} \cdot f_1(x) > 0 \).

Thus \(f(x) \) is a strictly increasing function for \(x \geq 42 \). Then when \(x \geq 42 \), \(f(x+1) > f(x) \).

Let \(x = n \geq 42 \), then \(f(n+1) > f(n) = \frac{27}{2} \cdot \left(\frac{4}{3} \right)^{3n} \frac{3^n}{(4n)^{\frac{2\sqrt{n}+2}{3}}} \)

Since for \(n = 42 \), \(f(n) = \frac{27}{2} \cdot \left(\frac{4}{3} \right)^{126} \frac{3^{126}}{168} \approx 7.457E+16 \cdot 1.952E+16 > 1 \), and since

\[
f(n+1) > f(n), \text{ by induction on } n, \text{ when } n \geq 42, f(n) = \frac{27}{2} \cdot \left(\frac{4}{3} \right)^{3n} \frac{3^n}{(4n)^{\frac{2\sqrt{n}+2}{3}}} > 1. \quad (12)
\]
Applying (12) to (11): When \(n \geq 42 \), \(\Gamma_{4n \geq p > n} \left\{ \frac{(4n)!}{(3n)!} \right\} > \frac{27}{2} \cdot \frac{\left(\frac{4}{3} \right)^{3n}}{2^{\sqrt{4n+9}} \cdot (4n)} > 1. \)

Thus when \(n \geq 42 \),
\[
\Gamma_{4n \geq p > n} \left\{ \frac{(4n)!}{(3n)!} \right\} \\
= \Gamma_{4n \geq p > 3n} \left\{ \frac{(4n)!}{(3n)!} \right\} \cdot \Gamma_{3n \geq p > 2n} \left\{ \frac{(4n)!}{(3n)!} \right\} \cdot \Gamma_{2n \geq p > 3n} \left\{ \frac{(4n)!}{(3n)!} \right\} \cdot \Gamma_{n \geq p > 4n} \left\{ \frac{(4n)!}{(3n)!} \right\} \cdot \Gamma_{4n \geq p > n} \left\{ \frac{(4n)!}{(3n)!} \right\} > 1.
\]

If there is any prime number \(p \) such that \(3n \geq p > 2n \), then \((4n)! \) has a factor of \(p \) in this range, and \((3n)! \) also has the same factor of \(p \). Thus, they cancel to each other in \(\frac{(4n)!}{(3n)!} \) with no prime number in this range. Referring to (2), \(\Gamma_{3n \geq p > 2n} \left\{ \frac{(4n)!}{(3n)!} \right\} = 1. \)

If there is any prime number \(p \) such that \(\frac{3n}{2} \geq p > \frac{4n}{3} \), then \((4n)! \) has the product of \(p \cdot 2p \), and \((3n)! \) also has the same product of \(p \cdot 2p \). Thus, they cancel to each other in \(\frac{(4n)!}{(3n)!} \) with no prime number in this range. Referring to (2), \(\Gamma_{\frac{3n}{2} \geq p > \frac{4n}{3}} \left\{ \frac{(4n)!}{(3n)!} \right\} = 1. \)

Thus, when \(n \geq 42 \),
\[
\Gamma_{4n \geq p > n} \left\{ \frac{(4n)!}{(3n)!} \right\} = \Gamma_{4n \geq p > 3n} \left\{ \frac{(4n)!}{(3n)!} \right\} \cdot \Gamma_{2n \geq p > 3n} \left\{ \frac{(4n)!}{(3n)!} \right\} \cdot \Gamma_{n \geq p > 4n} \left\{ \frac{(4n)!}{(3n)!} \right\} > 1. \quad (13)
\]

Referring to (1), \(\Gamma_{4n \geq p > 3n} \left\{ \frac{(4n)!}{(3n)!} \right\} \geq 1, \Gamma_{2n \geq p > 3n} \left\{ \frac{(4n)!}{(3n)!} \right\} \geq 1, \) and \(\Gamma_{n \geq p > 4n} \left\{ \frac{(4n)!}{(3n)!} \right\} \geq 1. \)

If \(\Gamma_{\frac{2n}{2} \geq p > \frac{3n}{2}} \left\{ \frac{(4n)!}{(3n)!} \right\} = 1 \) or \(\Gamma_{\frac{4n}{3} \geq p > n} \left\{ \frac{(4n)!}{(3n)!} \right\} = 1, \) it will drop out from (13).

If \(n \geq 42 \) and \(\Gamma_{4n \geq p > 3n} \left\{ \frac{(4n)!}{(3n)!} \right\} > 1, \) then referring to (3), there exists at least a prime number \(p \) such that \(3n < p \leq 4n. \)
\[
\Gamma_{\frac{2n}{2} \geq p > \frac{3n}{2}} \left\{ \frac{(4n)!}{(3n)!} \right\} = \Gamma_{4 \cdot \frac{n}{2} \geq p > 3 \cdot \frac{n}{2}} \left\{ \frac{(4n)!}{(3n)!} \right\}.
\]

If \(\frac{n}{2} \geq 21 \) and, \(\Gamma_{4 \cdot \frac{n}{2} \geq p > 3 \cdot \frac{n}{2}} \left\{ \frac{(4n)!}{(3n)!} \right\} > 1, \) let \(m_1 = \frac{n}{2} \), then when \(m_1 \geq 21, \) there exists at least a prime number \(p \) such that \(3m_1 < p \leq 4m_1. \) Since \(n \geq 42 > m_1 \geq 21, \) the statement is also valid for \(n. \) Thus, when \(n \geq 42, \) if \(\Gamma_{4n \geq p > 3n} \left\{ \frac{(4n)!}{(3n)!} \right\} > 1, \) then \(\Gamma_{4n \geq p > 3n} \left\{ \frac{(4n)!}{(3n)!} \right\} > 1, \) there exists at least a prime number \(p \) such that \(3n < p \leq 4n. \)
\[
\Gamma_{\frac{4n}{3} \geq p > n} \left\{ \frac{(4n)!}{(3n)!} \right\} = \Gamma_{4 \cdot \frac{n}{3} \geq p > 3 \cdot \frac{n}{3}} \left\{ \frac{(4n)!}{(3n)!} \right\}.
\]
If \(\frac{n}{3} \geq 14 \) and, \(\Gamma_{4n \geq p > 3n} \{ \frac{(4n)!}{(3n)!} \} > 1 \), let \(m_2 = \frac{n}{3} \), then when \(m_2 \geq 14 \), there exists at least a prime number \(p \) such that \(3m_2 < p \leq 4m_2 \). Since \(n \geq 42 > m_2 \geq 14 \), the statement is also valid for \(n \). Thus, when \(n \geq 42 \), if \(\Gamma_{4n \geq p > 3n} \{ \frac{(4n)!}{(3n)!} \} > 1 \), then \(\Gamma_{4n \geq p > 3n} \{ \frac{(4n)!}{(3n)!} \} > 1 \), there exists at least a prime number \(p \) such that \(3n < p \leq 4n \). — (16)

From the right side of (13), at least one of these 3 factors is greater than one when \(n \geq 42 \). From (14), (15), and (16), when \(n \geq 42 \) and any one of these 3 factors is greater than one, there exists at least a prime number \(p \) such that \(3n < p \leq 4n \). — (17)

Table 1 shows that when \(2 \leq n \leq 42 \), there is a prime number \(p \) such that \(3n < p \leq 4n \). — (18)

Thus, the proposition is proven by combining (17) and (18): For every integer \(n > 1 \), there exists at least a prime number \(p \) such that \(3n < p \leq 4n \). — (19)

Table 1: For \(2 \leq n \leq 42 \), there is a prime number \(p \) such that \(3n < p \leq 4n \).

<table>
<thead>
<tr>
<th>(3n)</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>15</th>
<th>18</th>
<th>21</th>
<th>24</th>
<th>27</th>
<th>30</th>
<th>33</th>
<th>36</th>
<th>39</th>
<th>42</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>7</td>
<td>11</td>
<td>13</td>
<td>17</td>
<td>19</td>
<td>23</td>
<td>29</td>
<td>31</td>
<td>37</td>
<td>41</td>
<td>43</td>
<td>47</td>
<td>53</td>
<td>59</td>
</tr>
<tr>
<td>(4n)</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>20</td>
<td>24</td>
<td>28</td>
<td>32</td>
<td>36</td>
<td>40</td>
<td>44</td>
<td>48</td>
<td>52</td>
<td>56</td>
<td>60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(3n)</th>
<th>48</th>
<th>51</th>
<th>54</th>
<th>57</th>
<th>60</th>
<th>63</th>
<th>66</th>
<th>69</th>
<th>72</th>
<th>75</th>
<th>78</th>
<th>81</th>
<th>84</th>
<th>87</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>61</td>
<td>67</td>
<td>71</td>
<td>73</td>
<td>79</td>
<td>83</td>
<td>83</td>
<td>89</td>
<td>89</td>
<td>97</td>
<td>97</td>
<td>101</td>
<td>101</td>
<td>103</td>
</tr>
<tr>
<td>(4n)</td>
<td>64</td>
<td>68</td>
<td>72</td>
<td>76</td>
<td>80</td>
<td>84</td>
<td>88</td>
<td>92</td>
<td>96</td>
<td>100</td>
<td>104</td>
<td>108</td>
<td>112</td>
<td>116</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(3n)</th>
<th>90</th>
<th>93</th>
<th>96</th>
<th>99</th>
<th>102</th>
<th>105</th>
<th>108</th>
<th>111</th>
<th>114</th>
<th>117</th>
<th>120</th>
<th>123</th>
<th>126</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>103</td>
<td>107</td>
<td>107</td>
<td>109</td>
<td>109</td>
<td>113</td>
<td>113</td>
<td>127</td>
<td>127</td>
<td>131</td>
<td>131</td>
<td>137</td>
<td>139</td>
</tr>
<tr>
<td>(4n)</td>
<td>120</td>
<td>124</td>
<td>128</td>
<td>132</td>
<td>136</td>
<td>140</td>
<td>144</td>
<td>148</td>
<td>152</td>
<td>156</td>
<td>160</td>
<td>164</td>
<td>168</td>
</tr>
</tbody>
</table>

References