Properties of a possible unification algebra

Robert G. Wallace

Abstract. An algebra providing a possible basis for the standard model is presented. The algebra is generated by combining the trigintaduonion Cayley-Dickson algebra with the complexified space-time Clifford algebra. Subalgebras are assigned to represent multivectors for transverse coordinates. When a requirement for isotropy with respect to spatial coordinates is applied to those subalgebras, the structure generated forms a pattern matching that of the fermions and bosons of the standard model.

Contents

1. Introduction	2
2. Notation	2
3. Electroweak sector	5
4. Fermions	6
5. Strong nuclear sector	9
6. Charge	9
7. Supersymmetry	9
8. Dark matter	10
9. Measurement/collapse	10
10. Conclusion	10
11. Acknowledgements	10
References	10
Appendix A. Cayley tables for M_L and T_L	12
The policies of the second sec	

1. Introduction

For the Clifford algebra for the dimensionality used in string theories, $Cl_{1,9}(R)$, patterns matching the symmetries of the standard model can found, but it is harder to find a pattern matching the asymmetries of the standard model. This leads to the conjecture that the observed universe is the result of a random choice by nature of one of many possible compactification topologies. A model which generates the features of the observed universe as an inevitable outcome from a relatively simple mathematical structure would be more useful. An algebra with the potential to provide a basis for such a model can be assembled by extending the Clifford algebra of space-time using a Cayley-Dickson algebra.

Cawagas et al[1] analysed the trigintaduonion loop T_L , finding four isomorphy classes of sedenion-type subloops having asymmetric octonion-type subloop composition. Combining a graded Clifford algebra of the same size, such as $Cl_{1,4}(R) \cong Cl_4(C) \cong M_4(C)$ with the trigintaduonion algebra \mathbb{T} generates an algebra with a pattern of subalgebras having a complex combination of symmetry and asymmetry, suggesting that it could be provide a basis for a useful unification model.

In previous papers [2][3] the structure generated by subloops of the loop generated as the product of T_L with unit elements of $M_4(C)$ was analysed. In [2] $M_4(C) \otimes \mathbb{T}$ was labelled U. The Cayley tables of unit elements of $M_4(C)$ and of T_L can be aligned so that, if the signs of products are ignored, they match each other. A subalgebra of U, labelled W, having unit elements, each being the product of a unit element of $M_4(C)$ with the element of T_L aligned with it, was investigated. In [3] the sedenion-type subloops of T_L , when required to be "spatially equivalent" were found display a possible correspondence with fundamental particles of the standard model.

In this paper a combination of these approaches is considered. The loop of unit elements of $M_4(C)$ is labelled M_L . The loop of unit elements of $\mathbb{U} \cong M_4(C) \otimes \mathbb{T}$ is designated $U_L \cong M_L \otimes T_L$. Elements of M_L are assigned to represent unit elements for the complexification of the space-time Clifford algebra for positive spatial signature, $Cl_{3,1}(R) \otimes \mathbb{C} \cong Cl_4(C)$ (using negative spatial signature would generate similar results). For that assignment, subloops of U_L of the same order as M_L having elements which are products of "spatially equivalent" alignments of T_L with M_L are considered. It is postulated that these subloops correspond to the equivalent of a multivector for transverse complexified space-time coordinates. These subloops can be arranged in sets having the same scalar, transverse spatial bivectors and tranverse pseudovector.

The Loops package[4] for GAP4[5] has been used to investigate isomorphisms and isotopisms for T_L and its subloops.

2. Notation

2.1. Notation used for T_L

The notation for T_L for the Cayley table shown in Appendix A is setout in table 1. Cawagas et al[1] labelled the isomorphism types of sedenionic-type subloops of T_L as S_{γ} , S_{α} , S_{β} , S_L . In this paper these have been labelled using uppercase greek letters with numbered subscripts: Γ_1 , $A_{1..7}$, $B_{1..7}$, $\Sigma_{1..15}$, as shown in table 2.

e_0	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9	e_{10}	e_{11}	e_{12}	e_{13}	e_{14}	e_{15}
σ_o	σ_{ι}	σ_j	σ_{κ}	λ_o	λ_{ι}	λ_j	λ_{κ}	μ_o	μ_{ι}	μ_{j}	μ_{κ}	ν_o	$ u_{\iota} $	$ u_j$	ν_{κ}
e_{16}	e_{17}	e_{18}	e_{19}	e_{20}	e_{21}	e_{22}	e_{23}	e_{24}	e_{25}	e_{26}	e_{27}	e_{28}	e_{29}	e_{30}	e_{31}
		1			1										

TABLE 1. Notation used to label elements for $T_L,$ the loop of unit elements of $\mathbb T$

TABLE 2. Unit elements for seden ion-type subloops of ${\cal T}_L$

	σ_o	σ_{ι}	σ_j	σ_{κ}	λ_o	λ_{ι}	λ_j	λ_{κ}	μ_o	μ_{ι}	μ_{j}	μ_{κ}	ν_o	ν_{ι}	ν_j	ν_{κ}	α_o	α_{ι}	α_j	α_{κ}	β_o	β_{ι}	β_j	β_{κ}	γ_o	γ_{ι}	γ_j	γ_{κ}	δ_o	δ_{ι}	δ_{j}	δ_{κ}
Γ_0																																
A_0																																
B_0																													1			
A_1																																
A_2																																
A_3																																
B_1																															\square	
B_2																																
B_3																																
A_4																															\square	
A_5																																
A_6																																
B_4																																
B_5																																
B_6																																
Σ_0																																
Σ_1																															\square	
Σ_2																																
Σ_3																																
Σ_4																																
Σ_5																																
Σ_6																																
Σ_7																																
Σ_8																																
Σ_9																																
Σ_{10}																																
Σ_{11}																																
Σ_{12}																																
Σ_{13}																																
Σ_{14}																																
Σ_{15}																																

Robert G. Wallace

2.2. Notation used for M_L , the group of unit elements of $M_4(C) \cong Cl_{3,1}(C) \cong Cl_{1,3}(C)$ The notation for unit elements of M_L is setout in table 3, for the unit matrix assignments and Cayley table shown in Appendix A.

TABLE 3. Notatio	n used to labe	l elements for M	I_L the group	of unit elemer	nts of $M_4(C$	C)
------------------	----------------	--------------------	-----------------	----------------	----------------	----

e_0	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9	e_{10}	e_{11}	e_{12}	e_{13}	e_{14}	e_{15}
S	L	Μ	Ν	U	Х	Y	Z	V	D	Е	F	Т	Р	Q	R
e ₁₆	<i>e</i> ₁₇	e_{18}	e_{19}	e ₂₀	e_{21}	e_{22}	e_{23}	e ₂₄	e_{25}	e_{26}	e_{27}	e_{28}	e ₂₉	e_{30}	e_{31}
iS	iL	iM	iN	iU	iX	iY	iZ	iV	iD	iE	iF	iT	iP	iQ	iR

2.3. Notation for elements of $U_L \cong T_L \otimes M_L$, unit elements of \mathbb{U}

All unit elements of U are the product of an element of T_L with an element of M_L , as listed in table 4.

TABLE 4. Notation used to label elements of U_L , the loop of unit elements of \mathbb{U}

 $\sigma_o S \sigma_o L \sigma_o M \sigma_o N \sigma_o T \sigma_o P \sigma_o Q \sigma_o R \sigma_o U \sigma_o X \sigma_o Y \sigma_o Z \sigma_o V \sigma_o D \sigma_o E \sigma_o F \sigma_o i S \sigma_o i L \sigma_o i M \sigma_o i T \sigma_o i P \sigma_o i Q \sigma_o i R \sigma_o i U \sigma_o i X \sigma_o i Y \sigma_o i Z \sigma_o i V \sigma_o i D \sigma_o i E \sigma_o i F \sigma_o i S \sigma_o i L \sigma_o i M \sigma_o i T \sigma_o i Q \sigma_o i R \sigma_o i U \sigma_o i X \sigma_o i V \sigma_o i D \sigma_o i E \sigma_o i F \sigma_o i S \sigma_o i L \sigma_o i M \sigma_o i T \sigma_o i Q \sigma_o i R \sigma_o i U \sigma_o i X \sigma_o i V \sigma_o i D \sigma_o i E \sigma_o i F \sigma_o i S \sigma_o i L \sigma_o i M \sigma_o i T \sigma_o i Q \sigma_o i R \sigma_o i U \sigma_o i X \sigma_o i V \sigma_o i D \sigma_o i E \sigma_o i F \sigma_o i S \sigma_o i U \sigma_o i X \sigma_o i V \sigma_o i D \sigma_o i E \sigma_o i F \sigma_o i S \sigma_o i V \sigma_o i D \sigma_o i Z \sigma_o i V \sigma_o i D \sigma_o i E \sigma_o i F \sigma_o i S \sigma_o i V \sigma_o i D \sigma_o$ $\sigma_i S \sigma_i L \sigma_i M \sigma_i N \sigma_i T \sigma_i P \sigma_i Q \sigma_i R \sigma_i U \sigma_i X \sigma_i Y \sigma_i Z \sigma_i V \sigma_i D \sigma_i E \sigma_i F \sigma_i i S \sigma_i i L \sigma_i i M \sigma_i i T \sigma_i P \sigma_i Q \sigma_i R \sigma_i i U \sigma_i i X \sigma_i Y \sigma_i Z \sigma_i V \sigma_i D \sigma_i E \sigma_i F \sigma_i S \sigma_i I \sigma_i i M \sigma_i N \sigma_i T \sigma_i P \sigma_i Q \sigma_i R \sigma_i I \sigma_$ $\sigma_{3}S\sigma_{j}L\sigma_{j}M\sigma_{j}N\sigma_{j}T\sigma_{j}P\sigma_{j}Q\sigma_{j}R\sigma_{j}U\sigma_{j}X\sigma_{j}Y\sigma_{j}Z\sigma_{j}V\sigma_{j}D\sigma_{j}E\sigma_{j}F\sigma_{j}iS\sigma_{j}iL\sigma_{j}iM\sigma_{j}iN\sigma_{j}iT\sigma_{j}iP\sigma_{j}iQ\sigma_{j}iR\sigma_{j}iX\sigma_{j}iX\sigma_{j}iX\sigma_{j}iV\sigma_{j}iD\sigma_{j}iE\sigma_{j}iF\sigma_{j}iF\sigma_{j}iD\sigma_{j}iE\sigma_{j}iF\sigma_{j}iD\sigma_{j}iE\sigma_{j}iF\sigma_{j}iD\sigma_{j}iE\sigma_{j}iF\sigma_{j}iD\sigma_{j}iE\sigma_{j}iF\sigma_{j}iD\sigma_{j}iE\sigma_{j}iF\sigma_{j}iD\sigma_{j}iE\sigma_{j}iF\sigma_{j}iD\sigma_{j}iE\sigma_{j}iF\sigma_{j}iD\sigma_{j}iE\sigma_{j}iF\sigma_{j}iD\sigma_{j}iD\sigma_{j}iE\sigma_{j}iF\sigma_{j}iD\sigma_$
$\sigma_{\kappa}S\sigma_{\kappa}L\sigma_{\kappa}M\sigma_{\kappa}N\sigma_{\kappa}T\sigma_{\kappa}P\sigma_{\kappa}Q\sigma_{\kappa}R\sigma_{\kappa}U\sigma_{\kappa}X\sigma_{\kappa}Y\sigma_{\kappa}Z\sigma_{\kappa}V\sigma_{\kappa}D\sigma_{\kappa}E\sigma_{\kappa}F\sigma_{\kappa}iS\sigma_{\kappa}iL\sigma_{\kappa}iM\sigma_{\kappa}iN\sigma_{\kappa}iT\sigma_{\kappa}iP\sigma_{\kappa}iQ\sigma_{\kappa}iR\sigma_{\kappa}iU\sigma_{\kappa}iX\sigma_{\kappa}iY\sigma_{\kappa}iZ\sigma_{\kappa}iV\sigma_{\kappa}iE\sigma_{\kappa}iF\sigma_{\kappa}iF\sigma_{\kappa}iF\sigma_{\kappa}iV\sigma_{\kappa}iT\sigma_{\kappa}iF\sigma_$ $\lambda_o S \ \lambda_o L \ \lambda_o M \ \lambda_o N \ \lambda_o T \ \lambda_o P \ \lambda_o Q \ \lambda_o X \ \lambda_o U \ \lambda_o X \ \lambda_o V \ \lambda_o Z \ \lambda_o V \ \lambda_o D \ \lambda_o E \ \lambda_o i S \ \lambda_o i L \ \lambda_o i M \ \lambda_o i N \ \lambda_o i T \ \lambda_o i Q \ \lambda_o i X \ \lambda_o i Y \ \lambda_o i Z \ \lambda_o i V \ \lambda_o i D \ \lambda_o i E \ \lambda_o i E \ \lambda_o i S \ \lambda_o i L \ \lambda_o i M \ \lambda_o i N \ \lambda_o i T \ \lambda_o i Q \ \lambda_o I \ \lambda_o i X \ \lambda_o i Y \ \lambda_o i Z \ \lambda_o i V \ \lambda_o i D \ \lambda_o i E \ \lambda_o i E \ \lambda_o i S \ \lambda_o I \ \lambda_o I$ $\lambda_{i}S \ \lambda_{i}L \ \lambda_{i}M \ \lambda_{i}T \ \lambda_{i}P \ \lambda_{i}Q \ \lambda_{i}K \ \lambda_{i}U \ \lambda_{i}X \ \lambda_{i}V \ \lambda_{i}Z \ \lambda_{i}V \ \lambda_{i}D \ \lambda_{i}E \ \lambda_{i}IE \ \lambda_{i}IL \ \lambda_{i}IM \ \lambda_{i}IM \ \lambda_{i}IM \ \lambda_{i}IR \ \lambda_{i}IQ \ \lambda_{i}IR \ \lambda_{i}IX \ \lambda_{i}IY \ \lambda_{i}IZ \ \lambda_{i}IV \ \lambda_{i}ID \ \lambda_{i}IE \ \lambda_{i}IE$ $\lambda_{j}S \ \lambda_{j}L \ \lambda_{j}M \ \lambda_{j}N \ \lambda_{j}T \ \lambda_{j}P \ \lambda_{j}Q \ \lambda_{j}R \ \lambda_{j}U \ \lambda_{j}X \ \lambda_{j}Y \ \lambda_{j}Z \ \lambda_{j}V \ \lambda_{j}D \ \lambda_{j}E \ \lambda_{j}F \ \lambda_{j}iS \ \lambda_{j}iL \ \lambda_{j}iM \ \lambda_{j}iR \ \lambda_{j}iR \ \lambda_{j}iR \ \lambda_{j}iX \ \lambda_{j}iX \ \lambda_{j}iZ \ \lambda_{j}iV \ \lambda_{j}iD \ \lambda_{j}iE \ \lambda_{j}iF \ \lambda_{j}iR \$
$\lambda_{\kappa}S\,\lambda_{\kappa}L\,\lambda_{\kappa}M\,\lambda_{\kappa}N\,\lambda_{\kappa}T\,\lambda_{\kappa}P\,\lambda_{\kappa}Q\,\lambda_{\kappa}R\,\lambda_{\kappa}U\,\lambda_{\kappa}X\,\lambda_{\kappa}Y\,\lambda_{\kappa}Z\,\lambda_{\kappa}V\,\lambda_{\kappa}D\,\lambda_{\kappa}E\,\lambda_{\kappa}iF\,\lambda_{\kappa}iS\,\lambda_{\kappa}iL\,\lambda_{\kappa}iM\,\lambda_{\kappa}iN\,\lambda_{\kappa}iT\,\lambda_{\kappa}iP\,\lambda_{\kappa}iQ\,\lambda_{\kappa}iX\,\lambda_{\kappa}iY\,\lambda_{\kappa}iZ\,\lambda_{\kappa}iV\,\lambda_{\kappa}iD\,\lambda_{\kappa}iE\,\lambda_{\kappa}iF\,\lambda_{\kappa}iV\,\lambda_{\kappa}iX\,\lambda_{\kappa}iY\,\lambda_{\kappa}iX\,\lambda_{\kappa}iY\,\lambda_{\kappa}iX\,\lambda_{\kappa}iX\,\lambda_{\kappa}iY\,\lambda_{\kappa}iX\,\lambda_{$ $\mu_o S \ \mu_o L \ \mu_o M \ \mu_o T \ \mu_o P \ \mu_o Q \ \mu_o R \ \mu_o U \ \mu_o X \ \mu_o V \ \mu_o Z \ \mu_o V \ \mu_o D \ \mu_o E \ \mu_o F \ \mu_o i S \ \mu_o i L \ \mu_o i M \ \mu_o i T \ \mu_o i Q \ \mu_o i R \ \mu_o i U \ \mu_o i X \ \mu_o i Y \ \mu_o i Z \ \mu_o i V \ \mu_o i E \ \mu_o i E \ \mu_o i F \ \mu_o i Q \ \mu_o R \ \mu_o i V \ \mu_o i Z \ \mu_o i V \ \mu_o i E \ \mu_o i E \ \mu_o i E \ \mu_o i R \ \mu_o i V \ \mu_o i Z \ \mu_o i V \ \mu_o i E \ \mu_o i$ $\mu_i S \ \mu_i L \ \mu_i M \ \mu_i N \ \mu_i T \ \mu_i P \ \mu_i Q \ \mu_i R \ \mu_i U \ \mu_i X \ \mu_i Y \ \mu_i Z \ \mu_i V \ \mu_i D \ \mu_i E \ \mu_i F \ \mu_i S \ \mu_i I \ \mu_i i M \ \mu_i I M \ \mu_i I T \ \mu_i P \ \mu_i Q \ \mu_i I \ \mu_i I X \ \mu_i I Z \ \mu_i I Z \ \mu_i I D \ \mu_i I E \ \mu_i F \ \mu_i S \ \mu_i I \ \mu_i I M \ \mu_$ $\mu_{1}S \ \mu_{1}L \ \mu_{1}M \ \mu_{1}N \ \mu_{1}T \ \mu_{1}P \ \mu_{2}Q \ \mu_{1}R \ \mu_{1}U \ \mu_{1}X \ \mu_{1}Y \ \mu_{2}Z \ \mu_{1}V \ \mu_{1}D \ \mu_{1}E \ \mu_{1}iS \ \mu_{1}iL \ \mu_{1}iM \ \mu_{1}iN \ \mu_{1}iT \ \mu_{1}iQ \ \mu_{1}iR \ \mu_{1}iU \ \mu_{1}iX \ \mu_{1}iY \ \mu_{1}iZ \ \mu_{1}iV \ \mu_{1}iE \$
$\mu_{\kappa}S\mu_{\kappa}L\mu_{\kappa}M\mu_{\kappa}N\mu_{\kappa}T\mu_{\kappa}P\mu_{\kappa}Q\mu_{\kappa}R\mu_{\kappa}U\mu_{\kappa}X\mu_{\kappa}Y\mu_{\kappa}Z\mu_{\kappa}V\mu_{\kappa}D\mu_{\kappa}E\mu_{\kappa}F\mu_{\kappa}iS\mu_{\kappa}iL\mu_{\kappa}iM\mu_{\kappa}iN\mu_{\kappa}iT\mu_{\kappa}iP\mu_{\kappa}iQ\mu_{\kappa}iR\mu_{\kappa}iU\mu_{\kappa}iX\mu_{\kappa}iY\mu_{\kappa}iZ\mu_{\kappa}iV\mu_{\kappa}iD\mu_{\kappa}iE\mu_{\kappa}iF\mu_{\kappa}iF\mu_{\kappa}iM\mu_{\kappa}i\mu_{\kappa$ voS voL voM voN voT voP voQ voR voU voX voY voZ voV voD voE voF voiS voiL voiN voiN voiN voiP voiQ voiR voiU voiX voiY voiZ voiV voiD voiE voiF $\nu_{i}S \ \nu_{i}L \ \nu_{i}M \ \nu_{i}N \ \nu_{i}T \ \nu_{i}P \ \nu_{i}Q \ \nu_{i}R \ \nu_{i}U \ \nu_{i}X \ \nu_{i}Y \ \nu_{i}Z \ \nu_{i}V \ \nu_{i}D \ \nu_{i}E \ \nu_{i}F \ \nu_{i}iS \ \nu_{i}iL \ \nu_{i}iM \ \nu_{i}iN \ \nu_{i}iT \ \nu_{i}iQ \ \nu_{i}iR \ \nu_{i}iU \ \nu_{i}iX \ \nu_{i}iY \ \nu_{i}iZ \ \nu_{i}iV \ \nu_{i}iD \ \nu_{i}E \ \nu_{i}F \ \nu_{i}iS \ \nu_{i}iL \ \nu_{i}M \ \nu_{i}N \ \nu_{i}T \ \nu_{i}Q \ \nu_{i}K \ \nu_{i}V \ \nu_{i}Z \ \nu_{i}V \ \nu_{i}D \ \nu_{i}E \ \nu_{i}F \ \nu_{i}S \ \nu_{i}K \ \nu_{i}N \ \nu_{i}T \ \nu_{i}Q \ \nu_{i}K \ \nu_{i}V \ \nu_{i}N \ \nu_{i$ $\nu_{j}S \ \nu_{j}L \ \nu_{j}M \ \nu_{j}N \ \nu_{j}T \ \nu_{j}P \ \nu_{j}Q \ \nu_{j}K \ \nu_{j}U \ \nu_{j}X \ \nu_{j}V \ \nu_{j}D \ \nu_{j}E \ \nu_{j}F \ \nu_{j}iS \ \nu_{j}iL \ \nu_{j}iM \ \nu_{j}iT \ \nu_{j}iP \ \nu_{j}iQ \ \nu_{j}iK \ \nu_{j}iY \ \nu_{j}iZ \ \nu_{j}iV \ \nu_{j}iD \ \nu_{j}iE \ \nu_{j}iF \ \nu_{j}iK \ \nu_{j}K \ \nu_{j}$ $\nu_{\kappa}S\,\nu_{\kappa}L\,\nu_{\kappa}M\,\nu_{\kappa}N\,\nu_{\kappa}T\,\nu_{\kappa}P\,\nu_{\kappa}Q\,\nu_{\kappa}R\,\nu_{\kappa}U\,\nu_{\kappa}X\,\nu_{\kappa}Y\,\nu_{\kappa}Z\,\nu_{\kappa}V\,\nu_{\kappa}D\,\nu_{\kappa}E\,\nu_{\kappa}F\,\nu_{\kappa}iS\,\nu_{\kappa}iL\,\nu_{\kappa}iN\,\nu_{\kappa}iN\,\nu_{\kappa}iP\,\nu_{\kappa}iQ\,\nu_{\kappa}iR\,\nu_{\kappa}iV\,\nu_{\kappa}iZ\,\nu_{\kappa}iV\,\nu_{\kappa}iD\,\nu_{\kappa}iE\,\nu_{\kappa}iF\,\nu_{\kappa}iN\,\nu_{\kappa}iN\,\nu_{\kappa}iP\,\nu_{\kappa}iP\,\nu_{\kappa}iQ\,\nu_{\kappa}iN\,\nu_{\kappa}iN\,\nu_{\kappa}iP\,\nu_{\kappa}iQ\,\nu_{\kappa}iN\,\nu_{\kappa}iN\,\nu_{\kappa}iN\,\nu_{\kappa}iP\,\nu_{\kappa}iQ\,\nu_{\kappa}iN\,\nu_{\kappa$ $\alpha_o S \alpha_o L \alpha_o M \alpha_o N \alpha_o T \alpha_o P \alpha_o Q \alpha_o R \alpha_o U \alpha_o X \alpha_o Y \alpha_o Z \alpha_o V \alpha_o D \alpha_o E \alpha_o F \alpha_o i S \alpha_o i L \alpha_o i M \alpha_o i N \alpha_o i T \alpha_o i P \alpha_o i Q \alpha_o i R \alpha_o i U \alpha_o i X \alpha_o i Y \alpha_o i Z \alpha_o i V \alpha_o i D \alpha_o i E \alpha_o i F
\alpha_o i A \alpha_o$ $\alpha_{\iota}S \alpha_{\iota}L \alpha_{\iota}M \alpha_{\iota}N \alpha_{\iota}T \alpha_{\iota}P \alpha_{\iota}Q \alpha_{\iota}R \alpha_{\iota}U \alpha_{\iota}X \alpha_{\iota}Y \alpha_{\iota}Z \alpha_{\iota}V \alpha_{\iota}D \alpha_{\iota}E \alpha_{\iota}F \alpha_{\iota}iS \alpha_{\iota}iL \alpha_{\iota}iM \alpha_{\iota}iN \alpha_{\iota}iT \alpha_{\iota}iP \alpha_{\iota}iQ \alpha_{\iota}iR \alpha_{\iota}iX \alpha_{\iota}iY \alpha_{\iota}iZ \alpha_{\iota}iV \alpha_{\iota}iD \alpha_{\iota}iE \alpha_{\iota}iF \alpha_{\iota}iF \alpha_{\iota}iN \alpha_{\iota$ $\alpha_{j}S\alpha_{j}L\alpha_{j}M\alpha_{j}N\alpha_{j}T\alpha_{j}P\alpha_{j}Q\alpha_{j}R\alpha_{j}U\alpha_{j}X\alpha_{j}Y\alpha_{j}Z\alpha_{j}V\alpha_{j}D\alpha_{j}E\alpha_{j}F\alpha_{j}iS\alpha_{j}iL\alpha_{j}iM\alpha_{j}iN\alpha_{j}iT\alpha_{j}iP\alpha_{j}iQ\alpha_{j}iR\alpha_{j}iU\alpha_{j}iX\alpha_{j}iY\alpha_{j}iZ\alpha_{j}iV\alpha_{j}iD\alpha_{j}iE\alpha_{j}iF\alpha_{j}iQ\alpha_{j}iR\alpha_{j}iN\alpha_$ $\alpha_{\kappa}S\alpha_{\kappa}L\alpha_{\kappa}M\alpha_{\kappa}N\alpha_{\kappa}T\alpha_{\kappa}P\alpha_{\kappa}Q\alpha_{\kappa}R\alpha_{\kappa}U\alpha_{\kappa}X\alpha_{\kappa}Y\alpha_{\kappa}Z\alpha_{\kappa}V\alpha_{\kappa}D\alpha_{\kappa}E\alpha_{\kappa}F\alpha_{\kappa}iS\alpha_{\kappa}iL\alpha_{\kappa}iM\alpha_{\kappa}iN\alpha_{\kappa}iT\alpha_{\kappa}iP\alpha_{\kappa}iQ\alpha_{\kappa}iR\alpha_{\kappa}iU\alpha_{\kappa}iX\alpha_{\kappa}iY\alpha_{\kappa}iZ\alpha_{\kappa}iV\alpha_{\kappa}iD\alpha_{\kappa}iE\alpha_{\kappa}iF\alpha_{\kappa}iN\alpha_{\kappa}iM\alpha_{\kappa}iN\alpha_$ $\beta_oS\ \beta_oL\ \beta_oM\ \beta_oT\ \beta_oP\ \beta_oQ\ \beta_oR\ \beta_oU\ \beta_oX\ \beta_oU\ \beta_oX\ \beta_oU\ \beta_oX\ \beta_oD\ \beta_oE\ \beta_oF\ \beta_oiS\ \beta_oiL\ \beta_oiM\ \beta_oiM\ \beta_oiT\ \beta_oiQ\ \beta_oiQ\ \beta_oiU\ \beta_oiY\ \beta_oiZ\ \beta_oiV\ \beta_oiD\ \beta_oiE\ \beta_oiF\ \beta_oiD\ \beta_$ $\beta_i S \ \beta_i L \ \beta_i M \ \beta_i N \ \beta_i T \ \beta_i P \ \beta_i Q \ \beta_i R \ \beta_i U \ \beta_i X \ \beta_i Y \ \beta_i Z \ \beta_i V \ \beta_i D \ \beta_i E \ \beta_i F \ \beta_i S \ \beta_i L \ \beta_i M \ \beta_i N \ \beta_i T \ \beta_i Q \ \beta_i R \ \beta_i U \ \beta_i Z \ \beta_i V \ \beta_i D \ \beta_i E \ \beta_i F \ \beta_i S \ \beta_i L \ \beta_i M \ \beta_i N \ \beta_i S \ \beta_i L \ \beta_i R \ \beta_i S \ \beta_i L \ \beta_i S \ \beta_i L \ \beta_i S \ \beta_i$ $\beta_{3}S \ \beta_{1}L \ \beta_{3}M \ \beta_{i}N \
\beta_{i}T \ \beta_{i}P \ \beta_{i}Q \ \beta_{i}X \ \beta_{i}U \ \beta_{i}X \ \beta_{i}V \ \beta_{i}D \ \beta_{i}E \ \beta_{i}F \ \beta_{i}iS \ \beta_{i}L \ \beta_{i}M \ \beta_{i}iN \ \beta_{i}T \ \beta_{i}P \ \beta_{i}Q \ \beta_{i}R \ \beta_{i}iU \ \beta_{i}iX \ \beta_{i}iY \ \beta_{i}Z \ \beta_{i}O \ \beta_{i}D \ \beta_{i}E \ \beta_{i}$ $\beta_{\kappa}S\,\beta_{\kappa}L\,\beta_{\kappa}M\,\beta_{\kappa}N\,\beta_{\kappa}T\,\beta_{\kappa}P\,\beta_{\kappa}Q\,\beta_{\kappa}R\,\beta_{\kappa}U\,\beta_{\kappa}X\,\beta_{\kappa}Y\,\beta_{\kappa}Z\,\beta_{\kappa}V\,\beta_{\kappa}E\,\beta_{\kappa}F\,\beta_{\kappa}iS\,\beta_{\kappa}iL\,\beta_{\kappa}iM\,\beta_{\kappa}iN\,\beta_{\kappa}iT\,\beta_{\kappa}iP\,\beta_{\kappa}iQ\,\beta_{\kappa}iK\,\beta_{\kappa}iX\,\beta_{\kappa}iY\,\beta_{\kappa}iZ\,\beta_{\kappa}iV\,\beta_{\kappa}iE\,\beta_{\kappa}iF\,\beta_{\kappa}iE\,\beta_{$ $\gamma_{\iota}S \gamma_{\iota}L \gamma_{\iota}M \gamma_{\iota}N \gamma_{\iota}T \gamma_{\iota}P \gamma_{\iota}Q \gamma_{\iota}R \gamma_{\iota}U \gamma_{\iota}X \gamma_{\iota}Y \gamma_{\iota}Z \gamma_{\iota}V \gamma_{\iota}D \gamma_{\iota}E \gamma_{\iota}F \gamma_{\iota}iS \gamma_{\iota}iL \gamma_{\iota}iM \gamma_{\iota}iN \gamma_{\iota}iT \gamma_{\iota}iP \gamma_{\iota}iQ \gamma_{\iota}iR \gamma_{\iota}iV \gamma_{\iota}iX \gamma_{\iota}iY \gamma_{\iota}iZ \gamma_{\iota}iV \gamma_{\iota}iD \gamma_{\iota}iE \gamma_{\iota}iF \gamma_{\iota$ $\gamma_{j}S \gamma_{j}L \gamma_{j}M \gamma_{j}N \gamma_{j}T \gamma_{j}P \gamma_{j}Q \gamma_{j}R \gamma_{j}U \gamma_{j}X \gamma_{j}Y \gamma_{j}Z \gamma_{j}V \gamma_{j}D \gamma_{j}E \gamma_{j}F \gamma_{j}iS \gamma_{j}iL \gamma_{j}iM \gamma_{j}iN \gamma_{j}iT \gamma_{j}iP \gamma_{j}iQ \gamma_{j}iU \gamma_{j}iX \gamma_{j}iY \gamma_{j}iZ \gamma_{j}iV \gamma_{j}iD \gamma_{j}iE \gamma_{j}iF \gamma_{j}iS \gamma_{j}iL \gamma_{j}iM \gamma_{j}iN \gamma_{j}iT \gamma_{j}iQ \gamma_{j}iQ \gamma_{j}iV \gamma_{j}iZ \gamma_{j}iV \gamma_{j}iD \gamma_{j}iE \gamma_{j}iF \gamma_{j}iS \gamma_{j}iV \gamma_{j}iD \gamma_{j}iV \gamma_{j}iD \gamma_{j}iV \gamma_{j}iD \gamma_{j}iV \gamma_{j$
$\gamma_{\kappa}S\gamma_{\kappa}L\gamma_{\kappa}M\gamma_{\kappa}N\gamma_{\kappa}T\gamma_{\kappa}P\gamma_{\kappa}Q\gamma_{\kappa}R\gamma_{\kappa}U\gamma_{\kappa}X\gamma_{\kappa}Y\gamma_{\kappa}Z\gamma_{\kappa}V\gamma_{\kappa}D\gamma_{\kappa}E\gamma_{\kappa}F\gamma_{\kappa}iS\gamma_{\kappa}iL\gamma_{\kappa}iM\gamma_{\kappa}iN\gamma_{\kappa}iT\gamma_{\kappa}iP\gamma_{\kappa}iQ\gamma_{\kappa}iU\gamma_{\kappa}iX\gamma_{\kappa}iY\gamma_{\kappa}iZ\gamma_{\kappa}iV\gamma_{\kappa}iD\gamma_{\kappa}iE\gamma_{\kappa}iF\gamma_{\kappa}iS\gamma_{\kappa}iM\gamma_{\kappa}iN\gamma_{\kappa}iT\gamma_{\kappa}iP\gamma_{\kappa}iQ\gamma_{\kappa}iV\gamma_{\kappa}iV\gamma_{\kappa}iD\gamma_{\kappa}iP\gamma_{\kappa}iP\gamma_{\kappa}iN\gamma_$ $\delta_o S \ \delta_o L \ \delta_o M \ \delta_o N \ \delta_o T \ \delta_o P \ \delta_o Q \ \delta_o R \ \delta_o V \ \delta_o Z \ \delta_o V \ \delta_o Z \ \delta_o V \ \delta_o Z \ \delta_o F \ \delta_o iS \ \delta_o iL \ \delta_o iM \ \delta_o iT \ \delta_o iT \ \delta_o iQ \ \delta_o iR \ \delta_o iX \ \delta_o iX \ \delta_o iV \ \delta_o iZ \ \delta_o iV \ \delta_o iD \ \delta_o iE \ \delta_o iF \ \delta_o iV \ \delta_o iV$ $\delta_{i}S \ \delta_{i}L \ \delta_{i}M \ \delta_{i}N \ \delta_{i}T \ \delta_{i}P \ \delta_{i}Q \ \delta_{i}R \ \delta_{i}U \ \delta_{i}X \ \delta_{i}Y \ \delta_{i}Z \ \delta_{i}V \ \delta_{i}D \ \delta_{i}E \ \delta_{i}iF \ \delta_{i}iS \ \delta_{i}L \ \delta_{i}iM \ \delta_{i}N \ \delta_{i}iT \ \delta_{i}iQ \ \delta_{i}R \ \delta_{i}iU \ \delta_{i}iX \ \delta_{i}iY \ \delta_{i}Z \ \delta_{i}V \ \delta_{i}D \ \delta_{i}E \ \delta_{i}F \ \delta_{i}S \ \delta_{i}L \ \delta_{i}M \ \delta_{i}N \ \delta_{i}S \ \delta_$ $\delta_{3}S \ \delta_{2}L \ \delta_{j}M \ \delta_{j}N \ \delta_{j}T \ \delta_{j}P \ \delta_{j}Q \ \delta_{j}R \ \delta_{j}U \ \delta_{j}X \ \delta_{j}Y \ \delta_{j}Z \ \delta_{j}V \ \delta_{j}D \ \delta_{j}E \ \delta_{j}iF \ \delta_{j}iS \ \delta_{j}iL \ \delta_{j}iN \ \delta_{j}iT \ \delta_{j}iP \ \delta_{j}Q \ \delta_{j}iR \ \delta_{j}iX \ \delta_{j}iY \ \delta_{j}iZ \ \delta_{j}iV \ \delta_{j}iD \ \delta_{j}iE \ \delta_{j}iF \ \delta_{j}iR \$ $\delta_{\kappa}S\ \delta_{\kappa}L\ \delta_{\kappa}M\ \delta_{\kappa}T\ \delta_{\kappa}P\ \delta_{\kappa}Q\ \delta_{\kappa}R\ \delta_{\kappa}U\ \delta_{\kappa}X\ \delta_{\kappa}Y\ \delta_{\kappa}Z\ \delta_{\kappa}V\ \delta_{\kappa}D\ \delta_{\kappa}E\ \delta_{\kappa}iS\ \delta_{\kappa}iL\ \delta_{\kappa}iM\ \delta_{\kappa}iT\ \delta_{\kappa}iP\ \delta_{\kappa}iQ\ \delta_{\kappa}iR\ \delta_{\kappa}iX\ \delta_{\kappa}iY\ \delta_{\kappa}iZ\ \delta_{\kappa}iV\ \delta_{\kappa}iD\ \delta_{\kappa}iE\ \delta_{\kappa}i$

2.4. Grading of elements of M_L when used to represent unit multivector elements of $Cl_{3,1}(R)$

Elements of M_L can be assigned to represent unit multivector elements for $Cl_{3,1}(R)$ as follows:

Unit Scalar:SUnit spatial vectors:X, Y, ZUnit temporal vector:TSpatial bivectors:L,M,NSpace/time bivectors:D,E,FSpatial trivector:USpace/time trivectors:P,Q,RPseudoscalar:V

3. Electroweak sector

 T_L subloops with have identical participation for elements subscripted ι , j and κ are shown in table 5.

TABLE 5. Unit elements for spatially equivalent sedenion-type subloops

	σ_o	σ_{ι}	σ_j	σ_{κ}	λ_o	λ_{ι}	λ_j	λ_{κ}	μ_o	μ_{ι}	μ_{j}	μ_{κ}	ν_o	ν_{ι}	ν_j	ν_{κ}	α_o	α_{ι}	α_j	α_{κ}	β_o	β_{ι}	β_j	β_{κ}	γ_o	γ_{ι}	γ_{j}	γ_{κ}	δ_o	δ_{ι}	δ_j	δ_{κ}
Γ_0																																
A_0																																
B_0																																
Σ_0																																
Σ_1																																
Σ_2																																
Σ_3																																

If elements subscripted ι , \jmath and κ are excluded, the automorphism group for the unit imaginary octonions that remain, $[\lambda_o, \mu_o, \nu_o, \alpha_o, \beta_o, \gamma_o, \delta_o]$, is G2. Including the ι , \jmath and κ elements breaks that symmetry, but some symmetry remains. Σ_1, Σ_2 and Σ_3 are related by a quaterionic symmetry, so the automorphism group for their complexification can be $SU(2) \otimes U(1)$.

Most unification models using the octonions[6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] include quarks and gluons. However, G2 has been used in modelling the electroweak/lepton sector alone by Carone and Rastogi[27] [28], extending the SU(3) model for electroweak unification proposed by Dimopoulos and Kaplan[29].

As noted in [3], the α_o element of T_L and the unit imaginary of M_L have unique status. This suggests identifying them with unit imaginary elements of a complex doublet for the Brout-Englert-Higgs mechanism[30][31][32]. Σ_1, Σ_2 and Σ_3 include $\alpha_o, \alpha_\iota, \alpha_\jmath, \alpha\kappa$, whereas Σ_0 does not. This suggests assignment of Σ_1, Σ_2 and Σ_3 to electroweak vector bosons that gain mass by the Brout-Englert-Higgs mechanism, and Σ_0 to a vector boson that remains massless.

Having $\Sigma_0, \Sigma_1, \Sigma_2$ and Σ_3 assigned to electroweak vector bosons leaves A_0, B_0 and Γ_0 available to be assigned to electroweak fermions. This suggests assignation of one of these subloops to generate three generations of one chirality of the neutrino family, and the other two subloops to generate three generations of two chiralities of electron/muon/tau family.

4. Fermions

4.1. Basis for the Dirac equation

In [3] spatially equivalent assignment of elements of T_L were identified as ones for which the subloop $[\sigma_o \sigma_\iota \sigma_j \sigma_\kappa]$ of T_L is aligned with the subloop [SLMN] of M_L . In this paper this concept is extended by postulating that spatially equivalent application of elements of T_L to unit multivector elements of the space-time Clifford algebra generates an algebra, \mathbb{U} with sublagebras which can be used to represent graded multivector-type subalgebras for "unphysical" transverse coordinates for excitations of quantum fields.

For the complexified sedenionic-type subloop labelled Γ_0 , a possible spatially equivalent alignment generates the loop of unit transverse multivector elements shown in table 6.

TABLE 6. Transverse multivector elements for a spatially equivalent Γ_0 alignment

e_0	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9	e_{10}	e_{11}	e_{12}	e_{13}	e_{14}	e_{15}	e_{16} to e_{31}
$\sigma_o S$	$\sigma_{\iota}L$	$\sigma_{j}M$	$\sigma_{\kappa}N$	$\lambda_o U$	$\lambda_{\iota} X$	$\lambda_j Y$	$\lambda_{\kappa} Z$	$\gamma_o V$	$\gamma_{\iota}D$	$\gamma_{j}E$	$\gamma_{\kappa}F$	$\delta_o T$	$\delta_{\iota}P$	$\delta_j Q$	$\delta_{\kappa}R$	$i \times [e_1 \text{ to } e_{15}]$

If elements $[e_1..e_{15}]$ are graded according to the grading of their M_L components when $M_4(C)$ is assigned to represent the complexified space-time Clifford algebra, the result shown in Table 7.

TABLE 7. Grading for transverse multivector unit elements for a Γ_0 alignment

scalar		vec	tor	_			bive	ctor				triv	ector		pseudo
	s	patia	ıl	t		spatia	al	s	patio	-t	sp	oatio	-t	xyz	scalar
$\sigma_o S$	$\lambda_{\iota}X$	$\lambda_{\iota} X \left \lambda_{\jmath} Y \right \lambda_{\kappa} Z \left \delta_o T \right $			$\sigma_{\iota}L$	$\sigma_{j}M$	$\sigma_{\kappa}N$	$\gamma_{\iota}D$	$\gamma_{j}E$	$\gamma_{\kappa}F$	$\delta_{\iota}P$	$\delta_j Q$	$\delta_{\kappa}R$	$\lambda_o U$	$\gamma_o V$

The even multivector components in table 7 could also be generated by imaginary counterparts of the vector elements as shown in Table 8.

TABLE 8. Grading for alternative spatially equivalent transverse multivector unit elements

scalar		vec	tor				bive	ctor				triv	ector		pseudo
	5	spatia	1	t		spatia	al	sj	patio	-t	s	patio-	-t	xyz	scalar
$\sigma_o S$	$\frac{1}{\lambda_{\iota} i X} \frac{1}{\lambda_{\jmath} i Y} \frac{1}{\lambda_{\kappa} i Z} \frac{1}{\delta_{o} i T}$			$\delta_o iT$	$\sigma_{\iota}L$	$\sigma_{j}M$	$\sigma_{\kappa}N$	$\gamma_{\iota}D$	$\gamma_{j}E$	$\gamma_{\kappa}F$	$\delta_{\iota}iP$	$\delta_j iQ$	$\delta_{\kappa} i R$	$\lambda_o i U$	$\gamma_o V$

This suggests assembly of a version of the Dirac equation for this alignment using $\lambda_{\iota}, \lambda_{\jmath}, \lambda_{\kappa}, \delta_o$ instead of the gamma matrices. This assembly can be labelled $\Gamma_{0\gamma}^{\lambda\delta}$, with the subscript indicating the T_L element applied to the pseudoscalar, the first superscript indicating the T_L elements applied to the spatial vectors and the second superscript indicating the T_L element applied to the time-like vector.

For the space-time Clifford algebra multivector, Hestenes [?] uses the unit pseudoscalar as a substitute for the unit imaginary, generating a version of the Dirac equation for one handing of a fermion. Comparing this with $[\sigma_o S, \sigma_\iota L, \sigma_j M, \sigma_\kappa N, \gamma_\iota D, \gamma_j E, \gamma_\kappa F, \gamma_o V]$, for all elements except the scalar there is a reversal of signature and commutation/anticommutation properties, and Lie brackets are interchanged with Jordan brackets. This means that the equivalent of the pseudoscalar, $[\gamma_{\alpha}V]$, anticommutes with the bivector elements and squares to the positive scalar. an alternative way to assemble spinors could be to use odd multivector components, as $[\lambda_{\iota} X, \lambda_{\jmath} Y, \lambda_{\kappa} Z, \delta_{o} T] \times \gamma_{o} V = [\delta_{\iota} P, \delta_{\jmath} Q, \delta_{\kappa} R, \lambda_{o} U].$ This suggests that similar equations to those obtained by Hestenes can be generated from each of $\Gamma_{0\gamma}$, $\Gamma_{0\delta}$, $\Gamma_{0\lambda}$, corresponding different flavors for one chirality for type of fermion.

 $\mathbf{6}$

4.2. Three generations for families of fermions

For combined $T_L \otimes M_L$ subloops, rotations and reflections with respect to unit vectors of $Cl_{3,1}(R)$ correspond to permutations of $\iota \to \jmath \to \kappa$ subscripts. Permuting $\lambda_{o\iota\jmath\kappa} \to \gamma_{o\iota\jmath\kappa} \to \delta_{o\iota\jmath\kappa}$ reorientates subloops with respect to grading, but not with respect to spatial orientation.

For the spatially equivalent transverse multivector subloops based on each of the Γ_0 , A_0 and B_0 subloops of T_L , ignoring rotations and reflections, there are 6 possible spatially equivalent orientations. They can be grouped in sets which share the same even multivector components, as shown in tables 9 and 10.

The families of fermions are:

1 chirality for the neutrino family

2 chiralities for the electron/muon/tau family

2 chiralities x 3 colors for the up/charm/top quark family

2 chiralities x 3 colors for the down/strange/bottom quark family

As noted in [3], this, together with the observation that sets of three subloops can, as a combination,

display spatial equivalence, suggests assignment of subloops to families of fermions as follows:

 Γ_0 to 1 chirality for the neutrino family

 A_0 to one chirality and B_0 to a second chirality for the electron/muon/tau family

 A_{1-6} to one chirality with 3 colors two families of quarks

 B_{1-6} to a second chirality with 3 colors for two families of quarks

Distinct representations for different generations within these families can be found when these T_L subloops are combined with M_L subloops in different spatially equivalent alignments and are to represent a type of multivector for transverse coordinates for an unphysical space. The notation for elements of U_L , unit elements of \mathbb{U} is set out in table 5.

Ref	scalar		vec	tor				bive	ctor				trive	ector		pseudo	
		s	spatia	1	t	:	spatia	ıl	sj	patio	-t	S	patio-	t	xyz	scalar	$[e_{16} \text{ to } e_{31}]$
$\Gamma_{0\gamma}^{\lambda\delta}$	$\sigma_o S$	$\lambda_{\iota}X$	$\lambda_j Y$	$\lambda_{\kappa}Z$	$\delta_o T$	$\sigma_{\iota}L$	$\sigma_{j}M$	$\sigma_{\kappa}N$	$\gamma_{\iota}D$	$\gamma_j E$	$\gamma_{\kappa}F$	$\delta_{\iota}P$	$\delta_j Q$	$\delta_{\kappa}R$	$\lambda_o U$	$\gamma_o V$	$i \times [e_1 \text{ to } e_{15}]$
	$\sigma_o S$	$\lambda_{\iota} i X$	$\lambda_j i Y$	$\lambda_{\kappa} i Z$	$\delta_o iT$	$\sigma_{\iota}L$	$\sigma_{j}M$	$\sigma_{\kappa}N$	$\gamma_{\iota}D$	$\gamma_{j}E$	$\gamma_{\kappa}F$	$\delta_{\iota}iP$	$\delta_j iQ$	$\delta_{\kappa} i R$	$\lambda_o i U$	$\gamma_o V$	$i \times [e_1 \text{ to } e_{15}]$
$\Gamma_{0\gamma}^{\delta\lambda}$	$\sigma_o S$	$\delta_{\iota}X$	$\delta_j Y$	$\delta_{\kappa}Z$	$\lambda_o T$	$\sigma_{\iota}L$	$\sigma_{j}M$	$\sigma_{\kappa}N$	$\gamma_{\iota}D$	$\gamma_{j}E$	$\gamma_{\kappa}F$	$\lambda_{\iota}P$	$\lambda_j Q$	$\lambda_{\kappa}R$	$\delta_o U$	$\gamma_o V$	$i \times [e_1 \text{ to } e_{15}]$
	$\sigma_o S$	$\delta_{\iota}iX$	$\delta_{\jmath}iY$	$\delta_{\kappa} i Z$	$\lambda_o iT$	$\sigma_{\iota}L$	$\sigma_{j}M$	$\sigma_{\kappa}N$	$\gamma_{\iota}D$	$\gamma_{j}E$	$\gamma_{\kappa}F$	$\lambda_{\iota} i P$	$\lambda_j i Q$	$\lambda_{\kappa} i R$	$\delta_o i U$	$\gamma_o V$	$i \times [e_1 \text{ to } e_{15}]$
$\Gamma^{\lambda\gamma}_{0\delta}$	$\sigma_o S$	$\lambda_{\iota}X$	$\lambda_j Y$	$\lambda_{\kappa}Z$	$\gamma_o T$	$\sigma_{\iota}L$	$\sigma_{j}M$	$\sigma_{\kappa}N$	$\delta_{\iota}D$	$\delta_{j}E$	$\delta_{\kappa}F$	$\gamma_{\iota}P$	$\gamma_{\jmath}Q$	$\gamma_{\kappa}R$	$\lambda_o U$	$\delta_o V$	$i \times [e_1 \text{ to } e_{15}]$
	$\sigma_o S$	$\lambda_{\iota} i X$	$\lambda_j i Y$	$\lambda_{\kappa} i Z$	$\gamma_o iT$	$\sigma_{\iota}L$	$\sigma_{j}M$	$\sigma_{\kappa}N$	$\delta_{\iota}D$	$\delta_{j}E$	$\delta_{\kappa}F$	$\gamma_{\iota} i P$	$\gamma_{\jmath}iQ$	$\gamma_{\kappa} i R$	$\lambda_o i U$	$\delta_o V$	$i \times [e_1 \text{ to } e_{15}]$
$\Gamma^{\gamma\lambda}_{0\delta}$	$\sigma_o S$	$\gamma_{\iota}X$	$\gamma_{\jmath}Y$	$\gamma_{\kappa} Z$	$\lambda_o T$	$\sigma_{\iota}L$	$\sigma_{j}M$	$\sigma_{\kappa}N$	$\delta_{\iota}D$	$\delta_{j}E$	$\delta_{\kappa}F$	$\lambda_{\iota}P$	$\lambda_j Q$	$\lambda_{\kappa}R$	$\gamma_o U$	$\delta_o V$	$i \times [e_1 \text{ to } e_{15}]$
	$\sigma_o S$	$\gamma_{\iota}iX$	$\gamma_{\jmath} i Y$	$\gamma_{\kappa} i Z$	$\lambda_o iT$	$\sigma_{\iota}L$	$\sigma_{j}M$	$\sigma_{\kappa}N$	$\delta_{\iota}D$	$\delta_{j}E$	$\delta_{\kappa}F$	$\lambda_{\iota} i P$	$\lambda_j i Q$	$\lambda_{\kappa} i R$	$\gamma_o i U$	$\delta_o V$	$i \times [e_1 \text{ to } e_{15}]$
$\Gamma_{0\lambda}^{\gamma\delta}$	$\sigma_o S$	$\gamma_{\iota}X$	$\gamma_{\jmath}Y$	$\gamma_{\kappa} Z$	$\delta_o T$	$\sigma_{\iota}L$	$\sigma_{j}M$	$\sigma_{\kappa}N$	$\lambda_{\iota}D$	$\lambda_j E$	$\lambda_{\kappa}F$	$\delta_{\iota}P$	$\delta_{j}Q$	$\delta_{\kappa}R$	$\gamma_o U$	$\lambda_o V$	$i \times [e_1 \text{ to } e_{15}]$
	$\sigma_o S$	$\gamma_{\iota}iX$	$\gamma_{\jmath}iY$	$\gamma_{\kappa} i Z$	$\delta_o iT$	$\sigma_{\iota}L$	$\sigma_{j}M$	$\sigma_{\kappa}N$	$\lambda_{\iota}D$	$\lambda_j E$	$\lambda_{\kappa}F$	$\delta_{\iota}iP$	$\delta_j iQ$	$\delta_{\kappa} i R$	$\gamma_o i U$	$\lambda_o V$	$i \times [e_1 \text{ to } e_{15}]$
$\Gamma_{0\lambda}^{\delta\gamma}$	$\sigma_o S$	$\delta_{\iota}X$	$\delta_j Y$	$\delta_{\kappa}Z$	$\gamma_o T$	$\sigma_{\iota}L$	$\sigma_{j}M$	$\sigma_{\kappa}N$	$\lambda_{\iota}D$	$\lambda_j E$	$\lambda_{\kappa}F$	$\gamma_{\iota}P$	$\gamma_{\jmath}Q$	$\gamma_{\kappa}R$	$\delta_o U$	$\lambda_o V$	$i \times [e_1 \text{ to } e_{15}]$
	$\sigma_o S$	$\delta_{\iota} i X$	$\delta_{\gamma} i Y$	$\delta_{\kappa} iZ$	$\gamma_o iT$	$\sigma_{\iota}L$	$\sigma_1 M$	$\sigma_{\kappa}N$	$\lambda_{\iota}D$	$\lambda_{1}E$	$\lambda_{\kappa}F$	$\gamma_{\iota}iP$	$\gamma_{J}iQ$	$\gamma_{\kappa} iR$	$\delta_o i U$	$\lambda_o V$	$i \times [e_1 \text{ to } e_{15}]$

Table 9. Grade	ed spatially	equivalent	Γ_0	orientati	ons
----------------	--------------	------------	------------	-----------	-----

Ref	scalar		vec	tor				bive	ctor				trive	ector		pseudo	
		5	spatia	1	t		spatia	ıl	s	patio	-t	s	patio-	t	xyz	scalar	$[e_{16} \text{ to } e_{31}]$
$A^{\mu\delta}_{0\beta}$	$\sigma_o S$	$\mu_{\iota}X$	$\mu_{\jmath}Y$	$\mu_{\kappa}Z$	$\delta_o T$	$\sigma_{\iota}L$	$\sigma_{j}M$	$\sigma_{\kappa}N$	$\beta_{\iota}D$	$\beta_{j}E$	$\beta_{\kappa}F$	$\delta_{\iota}P$	$\delta_j Q$	$\delta_{\kappa}R$	$\mu_o U$	$\beta_o V$	$i \times [e_1 \text{ to } e_{15}]$
	$\sigma_o S$	$i\mu_{\iota}X$	$i\mu_{j}Y$	$i\mu_{\kappa}Z$	$\mathrm{i}\delta_o T$	$\sigma_{\iota}L$	$\sigma_{j}M$	$\sigma_{\kappa}N$	$\beta_{\iota}D$	$\beta_{j}E$	$\beta_{\kappa}F$	$\mathrm{i}\delta_{\iota}P$	$\mathrm{i}\delta_{\jmath}Q$	$\mathrm{i}\delta_\kappa R$	$i\mu_o U$	$\beta_o V$	$i \times [e_1 \text{ to } e_{15}]$
$A_{0\beta}^{\delta\mu}$	$\sigma_o S$	$\delta_{\iota}X$	$\delta_{\jmath}Y$	$\delta_{\kappa}Z$	$\mu_o T$	$\sigma_{\iota}L$	$\sigma_{j}M$	$\sigma_{\kappa}N$	$\beta_{\iota}D$	$\beta_{j}E$	$\beta_{\kappa}F$	$\mu_{\iota}P$	$\mu_{\jmath}Q$	$\mu_{\kappa}R$	$\delta_o U$	$\beta_o V$	$i \times [e_1 \text{ to } e_{15}]$
	$\sigma_o S$	$\mathrm{i} \delta_\iota X$	$\mathrm{i} \delta_{\jmath} Y$	$\mathrm{i}\delta_\kappa Z$	$i\mu_o T$	$\sigma_{\iota}L$	$\sigma_{j}M$	$\sigma_{\kappa}N$	$\beta_{\iota}D$	$\beta_{j}E$	$\beta_{\kappa}F$	$\mathrm{i}\mu_{\iota}P$	$\mathrm{i}\mu_{\jmath}Q$	$\mathrm{i}\mu_{\kappa}R$	$\mathrm{i} \delta_o U$	$\beta_o V$	$i \times [e_1 \text{ to } e_{15}]$
$A_{0\delta}^{\beta\mu}$	$\sigma_o S$	$\beta_{\iota}X$	$\beta_{j}Y$	$\beta_{\kappa}Z$	$\mu_o T$	$\sigma_{\iota}L$	$\sigma_{j}M$	$\sigma_{\kappa}N$	$\delta_{\iota}D$	$\delta_{j}E$	$\delta_{\kappa}F$	$\mu_{\iota}P$	$\mu_j Q$	$\mu_{\kappa}R$	$\beta_o U$	$\delta_o V$	$i \times [e_1 \text{ to } e_{15}]$
	$\sigma_o S$	$\mathrm{i}\beta_{\iota}X$	$\mathrm{i}\beta_{\jmath}Y$	$i\beta_{\kappa}Z$	$i\mu_o T$	$\sigma_{\iota}L$	$\sigma_{j}M$	$\sigma_{\kappa}N$	$\delta_{\iota}D$	$\delta_{j}E$	$\delta_{\kappa}F$	$ i\mu_{\iota}P $	$\mathrm{i}\mu_{\jmath}Q$	$i\mu_{\kappa}R$	$\mathrm{i}\beta_o U$	$\delta_o V$	$i \times [e_1 \text{ to } e_{15}]$
$A^{\mu\beta}_{0\delta}$	$\sigma_o S$	$\mu_{\iota}X$	$\mu_{\jmath}Y$	$\mu_{\kappa}Z$	$\beta_o T$	$\sigma_{\iota}L$	$\sigma_{j}M$	$\sigma_{\kappa}N$	$\delta_{\iota}D$	$\delta_{j}E$	$\delta_{\kappa}F$	$\beta_{\iota}P$	$\beta_{\jmath}Q$	$\beta_{\kappa}R$	$\mu_o U$	$\delta_o V$	$i \times [e_1 \text{ to } e_{15}]$
	$\sigma_o S$	$\mathrm{i}\mu_{\iota}X$	$\mathrm{i}\mu_{\jmath}Y$	$i\mu_{\kappa}Z$	$\mathrm{i}\beta_o T$	$\sigma_{\iota}L$	$\sigma_{j}M$	$\sigma_{\kappa}N$	$\delta_{\iota}D$	$\delta_{j}E$	$\delta_{\kappa}F$	$\mathrm{i}\beta_{\iota}P$	$\mathrm{i}\beta_{\jmath}Q$	$\mathrm{i}\beta_{\kappa}R$	$\mathrm{i}\mu_o U$	$\delta_o V$	$i \times [e_1 \text{ to } e_{15}]$
$A_{0\mu}^{\delta\beta}$	$\sigma_o S$	$\delta_{\iota}X$	$\delta_{j}Y$	$\delta_{\kappa}Z$	$\beta_o T$	$\sigma_{\iota}L$	$\sigma_{j}M$	$\sigma_{\kappa}N$	$\mu_{\iota}D$	$\mu_{j}E$	$\mu_{\kappa}F$	$\beta_{\iota}P$	$\beta_j Q$	$\beta_{\kappa}R$	$\delta_o U$	$\mu_o V$	$i \times [e_1 \text{ to } e_{15}]$
	$\sigma_o S$	$\mathrm{i} \delta_\iota X$	$\mathrm{i} \delta_{\jmath} Y$	$\mathrm{i}\delta_\kappa Z$	$\mathrm{i}\beta_o T$	$\sigma_{\iota}L$	$\sigma_{j}M$	$\sigma_{\kappa}N$	$\mu_{\iota}D$	$\mu_{j}E$	$\mu_{\kappa}F$	$\mathrm{i}\beta_{\iota}P$	$\mathrm{i}\beta_{\jmath}Q$	$\mathrm{i}\beta_\kappa R$	$\mathrm{i} \delta_o U$	$\mu_o V$	$i \times [e_1 \text{ to } e_{15}]$
$A_{0\mu}^{\beta\delta}$	$\sigma_o S$	$\beta_{\iota} X$	$\beta_{\jmath}Y$	$\beta_{\kappa} Z$	$\delta_o T$	$\sigma_{\iota}L$	$\sigma_{j}M$	$\sigma_{\kappa}N$	$\mu_{\iota}D$	$\mu_{j}E$	$\mu_{\kappa}F$	$\delta_{\iota}P$	$\delta_j Q$	$\delta_{\kappa}R$	$\beta_o U$	$\mu_o V$	$i \times [e_1 \text{ to } e_{15}]$
	$\sigma_o S$	$\mathrm{i}\beta_\iota X$	$\mathrm{i}\beta_{\jmath}Y$	$i\beta_{\kappa}Z$	$\mathrm{i}\delta_o T$	$\sigma_{\iota}L$	$\sigma_{j}M$	$\sigma_{\kappa}N$	$\mu_{\iota}D$	$\mu_{j}E$	$\mu_{\kappa}F$	$\mathrm{i}\delta_{\iota}P$	$\mathrm{i}\delta_{\jmath}Q$	$\mathrm{i} \delta_\kappa R$	$\mathrm{i}\beta_o U$	$\mu_o V$	$i \times [e_1 \text{ to } e_{15}]$
$B_{0\beta}^{\nu\gamma}$	$\sigma_o S$	$\nu_{\iota}X$	$\nu_{j}Y$	$\nu_{\kappa}Z$	$\gamma_o T$	$\sigma_{\iota}L$	$\sigma_{j}M$	$\sigma_{\kappa}N$	$\beta_{\iota}D$	$\beta_{j}E$	$\beta_{\kappa}F$	$\gamma_{\iota}P$	$\gamma_{\jmath}Q$	$\gamma_{\kappa}R$	$\nu_o U$	$\beta_o V$	$i \times [e_1 \text{ to } e_{15}]$
	$\sigma_o S$	$\mathrm{i}\nu_{\iota}X$	$\mathrm{i} \nu_{j} Y$	$i\nu_{\kappa}Z$	$i\gamma_o T$	$\sigma_{\iota}L$	$\sigma_{j}M$	$\sigma_{\kappa}N$	$\beta_{\iota}D$	$\beta_{j}E$	$\beta_{\kappa}F$	$i\gamma_{\iota}P$	$i\gamma_{\jmath}Q$	$i\gamma_{\kappa}R$	$\mathrm{i}\nu_o U$	$\beta_o V$	$i \times [e_1 \text{ to } e_{15}]$
$B_{0\beta}^{\gamma\nu}$	$\sigma_o S$	$\gamma_{\iota}X$	$\gamma_{\jmath}Y$	$\gamma_{\kappa} Z$	$\nu_o T$	$\sigma_{\iota}L$	$\sigma_{j}M$	$\sigma_{\kappa}N$	$\beta_{\iota}D$	$\beta_{j}E$	$\beta_{\kappa}F$	$\nu_{\iota}P$	$\nu_{j}Q$	$\nu_{\kappa}R$	$\gamma_o U$	$\beta_o V$	$i \times [e_1 \text{ to } e_{15}]$
	$\sigma_o S$	$i\gamma_{\iota}X$	$i\gamma_{j}Y$	$i\gamma_{\kappa}Z$	$i\nu_o T$	$\sigma_{\iota}L$	$\sigma_{j}M$	$\sigma_{\kappa}N$	$\beta_{\iota}D$	$\beta_{j}E$	$\beta_{\kappa}F$	$i\nu_{\iota}P$	$\mathrm{i}\nu_{\jmath}Q$	$i\nu_{\kappa}R$	$i\gamma_o U$	$\beta_o V$	$i \times [e_1 \text{ to } e_{15}]$
$B_{0\gamma}^{\beta\nu}$	$\sigma_o S$	$\beta_{\iota}X$	$\beta_{j}Y$	$\beta_{\kappa} Z$	$\nu_o T$	$\sigma_{\iota}L$	$\sigma_{j}M$	$\sigma_{\kappa}N$	$\gamma_{\iota}D$	$\gamma_{j}E$	$\gamma_{\kappa}F$	$\nu_{\iota}P$	$\nu_{j}Q$	$\nu_{\kappa}R$	$\beta_o U$	$\gamma_o V$	$i \times [e_1 \text{ to } e_{15}]$
	$\sigma_o S$	$\mathrm{i}\beta_{\iota}X$	$\mathrm{i}\beta_{\jmath}Y$	$i\beta_{\kappa}Z$	$i\nu_o T$	$\sigma_{\iota}L$	$\sigma_{j}M$	$\sigma_{\kappa}N$	$\gamma_{\iota}D$	$\gamma_j E$	$\gamma_{\kappa}F$	$i\nu_{\iota}P$	$\mathrm{i}\nu_{\jmath}Q$	$\mathrm{i}\nu_\kappa R$	$\mathrm{i}\beta_o U$	$\gamma_o V$	$i \times [e_1 \text{ to } e_{15}]$
$B_{0\gamma}^{\nu\beta}$	$\sigma_o S$	$\nu_{\iota}X$	$\nu_{j}Y$	$\nu_{\kappa}Z$	$\beta_o T$	$\sigma_{\iota}L$	$\sigma_{j}M$	$\sigma_{\kappa}N$	$\gamma_{\iota}D$	$\gamma_{j}E$	$\gamma_{\kappa}F$	$\beta_{\iota}P$	$\beta_{j}Q$	$\beta_{\kappa}R$	$\nu_o U$	$\gamma_o V$	$i \times [e_1 \text{ to } e_{15}]$
	$\sigma_o S$	$\mathrm{i}\nu_\iota X$	$\mathrm{i}\nu_{\jmath}Y$	$i\nu_{\kappa}Z$	$\mathrm{i}\beta_o T$	$\sigma_{\iota}L$	$\sigma_{j}M$	$\sigma_{\kappa}N$	$\gamma_{\iota}D$	$\gamma_{j}E$	$\gamma_{\kappa}F$	$\mathrm{i}\beta_{\iota}P$	$\mathrm{i}\beta_{\jmath}Q$	$\mathrm{i}\beta_\kappa R$	$\mathrm{i}\nu_o U$	$\gamma_o V$	$i \times [e_1 \text{ to } e_{15}]$
$B_{0\nu}^{\gamma\beta}$	$\sigma_o S$	$\gamma_{\iota}X$	$\gamma_{\jmath}Y$	$\gamma_{\kappa}Z$	$\beta_o T$	$\sigma_{\iota}L$	$\sigma_{j}M$	$\sigma_{\kappa}N$	$\nu_{\iota}D$	$\nu_{j}E$	$\nu_{\kappa}F$	$\beta_{\iota}P$	$\beta_j Q$	$\beta_{\kappa}R$	$\gamma_o U$	$\nu_o V$	$i \times [e_1 \text{ to } e_{15}]$
	$\sigma_o S$	$i\gamma_{\iota}X$	$i\gamma_j Y$	$i\gamma_{\kappa}Z$	$\mathrm{i}\beta_o T$	$\sigma_{\iota}L$	$\sigma_{j}M$	$\sigma_{\kappa}N$	$\nu_{\iota}D$	$\nu_{j}E$	$\nu_{\kappa}F$	$\mathrm{i}\beta_{\iota}P$	$\mathrm{i}\beta_{\jmath}Q$	$i\beta_{\kappa}R$	$\mathrm{i}\gamma_o U$	$\nu_o V$	$i \times [e_1 \text{ to } e_{15}]$
$B_{0\nu}^{\beta\gamma}$	$\sigma_o S$	$\beta_{\iota}X$	$\beta_j Y$	$\beta_{\kappa}Z$	$\gamma_o T$	$\sigma_{\iota}L$	$\sigma_{j}M$	$\sigma_{\kappa}N$	$\nu_{\iota}D$	$\nu_j E$	$\nu_{\kappa}F$	$\gamma_{\iota}P$	$\gamma_{\jmath}Q$	$\gamma_{\kappa}R$	$\beta_o U$	$\nu_o V$	$i \times [e_1 \text{ to } e_{15}]$
	$\sigma_o S$	$\mathrm{i}\beta_{\iota}X$	$\mathrm{i}\beta_{\jmath}Y$	$i\beta_{\kappa}Z$	$i\gamma_o T$	$\sigma_{\iota}L$	$\sigma_{j}M$	$\sigma_{\kappa}N$	$\nu_{\iota}D$	$\nu_{j}E$	$\nu_{\kappa}F$	$i\gamma_{\iota}P$	$\mathrm{i}\gamma_{\jmath}Q$	$i\gamma_{\kappa}R$	$\mathrm{i}\beta_o U$	$\nu_o V$	$i \times [e_1 \text{ to } e_{15}]$

TABLE 10. Graded spatially equivalent A_0 and B_0 orientations

For each of Γ_0 , A_0 and B_0 three sets of four of alignments share common even multivector components, suggesting that the even transverse multivectors for each set correspond to a spinor for a fundamental fermion. The Jordan bracket for their subalgebra matches the Lie bracket for the even $Cl_{3,1}^+$ subalgebra, so this may be consistent with Hestenes version of the Dirac equation[33].

For the assignment of A_0 to one chirality and B_0 to the opposite chirality, inspection of table 10 reveals that, for the change to the opposite chiralities, [x, y, z, t] transverse vectors are factored by unit octonions from a quaternionic subloop, e.g. for:

$$A_{0\beta}^{\mu o} \leftrightarrow B_{0\beta}^{\nu \gamma}$$
 and $A_{0\beta}^{o\mu} \leftrightarrow B_{0\beta}^{\gamma \nu}$: $[xyzt]$ are factored by λ_o

$$A^{\mu o}_{0\beta} \leftrightarrow B^{\gamma \nu}_{0\beta}$$
 and $A^{o \mu}_{0\beta} \leftrightarrow B^{\nu \gamma}_{0\beta} : [xyzt]$ are factored by α_o

For these subloops vectors are factored by either α_o or λ_o from the $[\sigma_o, \lambda_o, \alpha_o, \beta_o]$ subloop, and for: $A_{\alpha\beta}^{\beta\mu} \leftrightarrow B_{\alpha\nu}^{\beta\nu} : [xyz]$ are factored by $\sigma_o, [t] \times \lambda_o$

$$A^{\beta\mu}_{0\delta}$$
 ($P^{\nu\beta}_{0\gamma}$: [mus] are factored by c_{δ} , [t] $\times \lambda_{\delta}$

 $\begin{array}{l} A_{0\delta}^{\beta\mu} \leftrightarrow B_{0\gamma}^{\nu\beta} : [xyz] \text{ are factored by } \gamma_o, [t] \times \delta_o \\ A_{0\delta}^{\mu\beta} \leftrightarrow B_{0\gamma}^{\nu\beta} : [xyz] \text{ are factored by } \lambda_o, [t] \times \sigma_o \\ A_{0\delta}^{\mu\beta} \leftrightarrow B_{0\gamma}^{\beta\nu} : [xyz] \text{ For these subloops vectors are factored by } \delta_o, [t] \times \gamma_o \end{array}$

vectors are factored by elements from the $[\sigma_o, \lambda_o, \gamma_o, \delta_o]$ subloop.

Subloops for all such chirality changes include λ_o , so it is associated with a chirality operator

Properties of a possible unification algebra

5. Strong nuclear sector

Elements subscripted ι , j and κ , when complexified, can be associated with rotations in in three complex dimensions, for which SU(3) is applicable symmetry group. When $[\sigma_o, \iota_o, j_o, \kappa_o]$ are multiplied by α_o , the result is a loop of unit octonions. So, if α_o is fixed the associated automorphism group becomes the SU(3) subgroup of G2.

5.1. Colored fermions - quarks

In section 4.2 subloops $A_{1..6}$ and $B_{1..6}$ were assigned to quarks. Inspection of table 2 suggests that they can be combined in sets of three so that spatial equivalence is achieved for the combination, as elements subscripted ι, \jmath and κ would be included in a balanced way. Also, whilst a single subloop representing a single color quark would be unbalanced with respect to these subscripted elements, in a combination with a subloop representing its antiquark the imbalance can be eliminated.

5.2. Colored Bosons - Gluons

Subloops Σ_4 , Σ_5 and Σ_6 do not feature internal spatial equivalence, so are associated with a single color, and are subject to the strong nuclear force. For a given subloop/color, their $\sigma_{o\iota\jmath\kappa}$, $\lambda_{o\iota\jmath\kappa}$, $\mu_{o\iota\jmath\kappa}$, $\nu_{o\iota\jmath\kappa}$, $\alpha_{o\iota\jmath\kappa}$, $\beta_{o\iota\jmath\kappa}$, $\gamma_{o\iota\jmath\kappa}$, and $\delta_{o\iota\jmath\kappa}$ contents all match each other, so gluons are not subject to the electroweak force.

5.3. Flavor/Colored bosons - U bosons

With respect to subloops Σ_4 , Σ_5 and Σ_6 , subloops Σ_7 to Σ_{15} have a similar relationship to that for subloops Σ_1, Σ_2 and Σ_3 with respect to Σ_o . This suggests that they will acquire mass by a Brout-Englert-Higgs type mechanism generating bosons similar to the lepto-quark bosons featuring in Pati-Salam models[34].

5.4. Higgs Boson

An algebra assembled as $[S, T, U, V] \otimes [\sigma_o, \lambda_o, \mu_o, \nu_o] \otimes [\sigma_o, i\sigma_o, \alpha_o, i\alpha_o]$ has only scalar components with respect to the spatial dimensions for $CL_{3,1}(R)$ so could accommodate a subalgebra representing the Higgs boson.

6. Charge

In [3], charge was postulated as being associated with the proportion of $[\beta_{\iota}, \beta_{\jmath}, \beta_{\kappa}]$ present. This was dictated by the assignment of A_0 and B_0 to the electron/muon/tau family and Γ_0 to the neutrino family. However, this rule only confers charge for one electroweak boson subloop. A rule that generates charge assignments that are consistent with the fermion families' charges, and which confers charges for two electroweak boson subloops, is: to associate neutrality with the proportion of $[\lambda_{\iota}, \lambda_{\jmath}, \lambda_{\kappa}]$ present.

For this rule, the Γ_0 , Σ_0 and Σ_2 families are neutral, the A_0 and B_0 families have unit charge, the $A_{1..3}$ families and $B_{1..3}$ families have 1/3 charge and the $A_{4..6}$ families and $B_{1..3}$ families have 2/3 charge. The $\Sigma_{1..3}$ subloops would also have 1/3 charge, but this need not prevent these subloops from being used for gluons, as gluons are combinations of colors with anticolors, so combinations can have zero electric charge.

7. Supersymmetry

For each fermionic subalgebra, there is a bosonic subalgebra with the same $[\sigma_{o\iota\jmath\kappa}, \lambda_{o\iota\jmath\kappa}, \mu_{o\iota\jmath\kappa}, \nu_{o\iota\jmath\kappa}]$ content, but inverted $[\alpha_{o\iota\jmath\kappa}, \beta_{o\iota\jmath\kappa}, \gamma_{o\iota\jmath\kappa}, \delta_{o\iota\jmath\kappa}]$ content. This suggests a form of supersymmetry. The bosonic subalgebra Σ_0 is left without a supersymmetric partner.

8. Dark matter

U does not offer subalgebras that could represent fermionic dark matter. This suggests that the bosonic subalgebras postulated as representing U bosons may be responsible for the existence of dark matter, possibly combining to create bosonic dark matter particles in a similar way to that in which gluons can combine to create glueballs.

9. Measurement/collapse

For a model based on a non-associative algebra, it may be possible to ascribe the phenomenon of quantum measurement/collapse to its non-associativity. For a model based on $\mathbb{T} \otimes Cl_{3,1}(C)$, this suggests a universe propagating as a Huygens wave for a conformal space embedded in five dimensions with a $Cl_{0,5}(R) \cong Cl_{3,1}(C)$ multivector combined with absolute time. Between measurements particle trajectories would be deterministic, but, because handings and order of algebraic operations could differ for different points of observation, calculations of trajectories between events would be ambiguous. As a result, any attempt to predict events could only be probabilistic. Events would be loci for which calculations for all points of observation generate a consistent but not necessarily identical result, some latitude being possible subject to limits imposed by the Heisenberg uncertainty principle. Loci with inconsistent results would be occupied by "quantum foam". A theory based on this approach may require application of the principles of chaos theory.

10. Conclusion

It seems reasonable to suppose that, in the tradition of the periodic table and Bohr's model of the atom, there might be a simplistic mathematical pattern with a structure similar to that of the standard model. Just such a pattern can be found for \mathbb{U} . This may be a coincidence, but the similarities are striking, so the speculative analysis presented in this paper may assist in finding a path to a deeper understanding of the basis of reality.

11. Acknowledgements

I would like to thank members of the physics and mathematics community who have been responsive or helpful.

References

- Cawagas, R.E. et al.; The basic subalgebra structure of the Cayley-Dickson algebra of dimension 32 (Trigintaduonions); arXiv:0907.2047v3[math.RA] 1 Nov 2009.
- [2] Wallace, R.; Observations of a possible unification algebra; viXra:Mathematical Physics:1603.0115v5 17 Aug 2017
- [3] Wallace, R.; Further observations of a possible unification algebra; viXra:Mathematical Physics:2108.0090v1 19 Aug 2021
- [4] Nagy, G and Vojtechovsky, P; Loops a GAP package, Version 3.4.0; 2017, http://www.math.du.edu/loops.
- [5] The GAP Group, GAP Groups, Algorithms, and Programming, Version 4.10.0; 2018, http://www.gapsystem.org.
- [6] Furey, C.; Towards a unified theory of ideals; arXiv:1002.1497v5 [hep-th] 25 May 2018.
- [7] Furey, C.; Standard model physics from an algebra? arXiv:1611.09182v1 [hep-th] 16 Nov 2016
- [8] A. Anastasiou, L. Borsten, M. J. Duff L.J. Hughes, and S. Nagy. A magic pyramid of supergravities. JHEP, 04:178, 2014.

- [9] A. Anastasiou, L. Borsten, M. J. Duff L.J. Hughes, and S. Nagy. An octonionic formulation of the M-theory algebra. JHEP, 11:022, 2014.
- [10] J. Baez and J. Huerta. Division algebras and supersymmetry in Superstrings, Geometry, Topology, and C*-algebras, eds. R. Doran, G.Friedman and J. Rosenberg, Proc. Symp. Pure Math., 81:65(80, 2010).
- [11] J. Baez and J. Huerta. Division algebras and supersymmetry II. Adv. Math. Theor. Phys., 15:1373(1410, 2011).
- [12] A. Barducci, F. Buccella, R. Casalbuoni, L. Lusanna, and E. Sorace. Quantized grassmann variables and unified theories. Phys. Letters B, 67(344), 1977.
- [13] L. Boyle and S. Farnsworth. Non-commutative geometry, non-associative geometry and the standard model of particle physics. New J. Phys., 16:123027, 2014.
- [14] R. Casalbuoni and R. Gatto. Unified description of quarks and leptons. Phys. Letters B, 88(306), 1979.
- [15] G. Dixon. Division algebras: octonions, quaternions, complex numbers and the algebraic design of physics. Kluwer Academic Publishers, 1994.
- [16] G. Dixon. Seeable matter; unseeable antimatter. Conference Proceedings, in press, 2015.
- [17] C. Furey. A unified theory of ideals. Phys. Rev. D, 86(025024), 2012.
- [18] C. Furey. Generations: three prints, in colour. JHEP, 10(046), 2014.
- [19] C. Furey. Charge quantization from a number operator. Phys. Lett. B, 742:195(199, 2015).
- [20] M. Gunaydin and F. Gursey. Quark structure and the octonions. J. Math. Phys., 14, 1973.
- [21] M. Gunaydin and F. Gursey. Quark statistics and octonions. Phys. Rev. D, 9, 1974.
- [22] J. Huerta. Division algebras and supersymmetry III. arXiv:1109.3574 [hep-th], 2011.
- [23] J. Huerta. Division algebras and supersymmetry IV. arXiv:1409.4361 [hep-th], 2014.
- [24] C. A. Manogue and T. Dray. Octonions, E6, and particle physics. J. Phys. Conf. Ser., 254:012005, 2010.
- [25] S. Okubo. Introduction to octonion and other non- associative algebras in physics. Cambridge University Press, 1995.88
- [26] P. Ramond. Algebraic dreams. Contribution to Francqui Foundation Meeting in the honor of Marc Henneaux, arXiv:hep-th/0112261, 2001.
- [27] Carone, C.D. and Rastogi, A; An Exceptional Electroweak Model; arXiv:0712.1011v2 [hep-ph], 2008
- [28] Rastogi, A.; A G2 Electroweak Model, 2008; Undergraduate HonorsTheses, Paper 787; http://scholarworks.wm.edu/honorstheses/787
- [29] Dimopoulos, S. and Kaplan, D.E.; The weak mixing angle from an SU(3) symmetry at a TEV; *Physics Letters B 531*, 127, 2002
- [30] Englert, F. and Brout, R.; Broken symmetry and the mass of gauge vector mesons; In *Phys Review Lett.*, 13 (9): 32123, 1964
- [31] Higgs, P.; Phys Lett., 12, 132, 1964 and Phys Lett., 1964, 13, 508, 1964
- [32] Guralnik, G.S., Hagen, C.R. and Kibble, T.W.B.; Global conservation laws and massless particles; In Phys Review Lett., 13 (20): 585-87, 1964
- [33] Hestenes, D.; Geometry of the Dirac Theory; In A Symposium on the Mathematics of Physical Space-Time; Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Mexico City, 1981, 67-96.
- [34] Pati, J.C. and Salam, A.; Lepton Number As The Fourth Color; In Phys Rev. D; 1974, 10, 275.
- [35] Wallace, R.; The Pattern of Reality. Advances in Applied Clifford Algebras, 18-1, 115-133, 2008
- [36] Van Elfrinkhof, L: Eene eigenschap van de orthogonale substitutie van de vierde orde; Handelingen van het Nederlandsch Natuurkundig en Geneeskundig Congres, Delft, 1897.

email: irobertgwallace@gmail.com Robert G. Wallace

Appendix A. Cayley tables for M_L and T_L

A.1. Cayley tables

The Cayley tables of both $M_4(C)$ and \mathbb{T} can be assembled as normalised latin squares with elements ordered so that bit-wise 'exclusive or' (XOR) of binary representations of two elements' numbering generates the numbering of their product. As a result, if the sign of products is ignored, their Cayley tables are the same and, for subalgebras that include the negative of the identity, their subalgebra inventory is the same. To detail a scheme of ultra-complexification of $M_4(C)$, notation such as $e_0, e_1...e_{31}$ could be used for its elements. However, as one requirement for a unification algebra is consistency with respect to the principle of equivalence of spatial dimensions, an alternative approach to labelling unit elements has been adopted.

A.2. Notation for $M_4(C)$ unit elements

TABLE 11. Notation used to label 4×4 unit matrices

$$S = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$R = \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix}$$
$$P = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$M = \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$
$$Y = \begin{bmatrix} 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix}$$
$$E = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$
$$T = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
$$P = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$
$$X = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix}$$
$$N = \begin{bmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$
$$U = \begin{bmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$
$$V = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$
$$Q = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Note: the forms of these matrices differ from those used in previous papers by this author[35][2]. Positive forms have been chosen to allow [S, L, M, N] to represent unit elements for a right isoclinic quaternion algebra $\mathbb{H}_{\mathbb{R}}$, and [S, T, U, V] to represent unit elements for a left isoclinic quaternion algebra $\mathbb{H}_{\mathbb{L}}$, as used by Van Elfrinkhof[36].

The multiplication table for $M_4(C)$ using these labels is shown in Table 12.

TABLE 12. Labels and Cayley table for $\mathbb{M} \cong M_4(C)$

\downarrow	e_0	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9	e_{10}	e_{11}	e_{12}	e_{13}	e_{14}	e_{15}	e_{16}	e_{17}	e_{18}	e_{19}	e_{20}	e_{21}	e_{22}	e_{23}	e_{24}	e_{25}	e_{26}	e_{27}	e_{28}	e_{29}	e_{30}	e_{31}
	S	L	M	N	T	P	Q	R	U	X	Y	Ζ	V	D	E	F	iS	iL	iM	iN	iT	iP	iQ	iR	iU	iX	iY	iZ	iV	iD	iE	iF
S	+S	+L	+M	+N	+T	+P	+Q	+R	+U	+X	+Y	+Z	+V	+D	+E	+F	+iS	+iL	+iM	+iN	+iT	+iP	+iQ	+iR	+iU	+iX	+iY	+iZ	+iV	+iD	+iE	+iF
L	+L	-S	-N	+M	+P	-T	-R	+Q	+X	-U	-Z	+Y	+D	-V	-F	+E	+iL	-iS	-iN	+iM	+iP	-iT	-iR	+iQ	+iX	-iU	-iZ	+iY	+iD	-iV	-iF	+iE
M	+M	+N	-S	-L	+Q	+R	-T	-P	+Y	+Z	-U	-X	+E	+F	-V	-D	+iM	+iN	-iS	-iL	+iQ	+iR	-iT	-iP	+iY	+iZ	-iU	-iX	+iE	+iF	-iV	-iD
N	+N	-M	+L	-S	+R	-Q	+P	-T	+Z	-Y	+X	-U	+F	-E	+D	-V	+iN	-iM	+iL	-iS	+iR	-iQ	+iP	-iT	+iZ	-iY	+iX	-iU	+iF	-iE	+iD	-iV
T	+T	+P	+Q	+R	-S	-L	-M	-N	+V	+D	+E	+F	-U	-X	-Y	-Z	+iT	+iP	+iQ	+iR	-iS	-iL	-iM	-iN	+iV	+iD	+iE	+iF	-iU	-iX	-iY	-iZ
P	+P	-T	-R	+Q	-L	+S	+N	-M	+D	-V	-F	+E	-X	+U	+Z	-Y	+iP	-iT	-iR	+iQ	-iL	+iS	+iN	-iM	+iD	-iV	-iF	+iE	-iX	+iU	+iZ	-iY
Q	+Q	+R	-T	-P	-M	-N	+S	+L	+E	+F	-V	-D	-Y	-Z	+U	+X	+iQ	+iR	-iT	-iP	-iM	-iN	+iS	+iL	+iE	+iF	-iV	-iD	-iY	-iZ	+iU	+iX
R	+R	-Q	+P	-T	-N	+M	-L	+S	+F	-E	+D	-V	-Z	+Y	-X	+U	+iR	-iQ	+iP	-iT	-iN	+iM	-iL	+iS	+iF	-iE	+iD	-iV	-iZ	+iY	-iX	+iU
U	+U	+X	+Y	+Z	-V	-D	-E	-F	-S	-L	-M	-N	+T	+P	+Q	+R	+iU	+iX	+iY	+iZ	-iV	-iD	-iE	-iF	-iS	-iL	-iM	-iN	+iT	+iP	+iQ	+iR
X	+X	-U	-Z	+Y	-D	+V	+F	-E	-L	+S	+N	-M	+P	-T	-R	+Q	+iX	-iU	-iZ	+iY	-iD	+iV	+iF	-iE	-iL	+iS	+iN	-iM	+iP	-iT	-iR	+iQ
\underline{Y}	+Y	+Z	-U	-X	-E	-F	+V	+D	-M	-N	+S	+L	+Q	+R	-T	-P	+iY	+iZ	-iU	-iX	-iE	-iF	+iV	+iD	-iM	-iN	+iS	+iL	+iQ	+iR	-iT	-iP
2	+Z	-Y	+X	-U	-F	+E	-D	+V	-N	+M	-L	+S	+R	-Q	+P	-T	+iZ	-iY	+iX	-iU	-iF	+iE	-iD	+iV	-iN	+iM	-iL	+iS	+iR	-iQ	+iP	-iT
V	+V	+D	+E	+F	+U	+X	+Y	+Z	-T	-P	-Q	-R	-S	-L	-M	-N	+iV	+iD	+iE	+iF	+iU	+iX	+iY	+iZ	-iT	-iP	-iQ	-iR	-iS	-iL	-iM	-iN
\underline{D}	+D	-V	-F	+E	+X	-U	-Z	+Y	-P	+T	+R	-Q	-L	+S	+N	-M	+iD	-iV	-iF	+iE	+iX	-iU	-iZ	+iY	-iP	+iT	+iR	-iQ	-iL	+iS	+iN	-iM
E	+E	+F	-V	-D	+Y	+Z	-U	-X	-Q	-R	+T	+P	-M	-N	+S	+L	+iE	+iF	-iV	-iD	+iY	+iZ	-iU	-iX	-iQ	-iR	+iT	+iP	-iM	-iN	+iS	+iL
F	+F	-E	+D	-V	+Z	-Y	+X	-U	-R	+Q	-P	+T	-N	+M	-L	+S	+iF	-iE	+iD	-iV	+iZ	-iY	+iX	-iU	-iR	+iQ	-iP	+iT	-iN	+iM	-iL	+iS
S	+iS	+iL	+iM	+iN	+iT	+iP	+iQ	+iR	+iU	+iX	+iY	+iZ	+iV	+iD	+iE	+iF	-S	-L	-M	-N	-T	-P	-Q	-R	-U	-X	-Y	-Z	-V	-D	-E	-F
$\frac{L}{}$	+iL	-iS	-iN	+iM	+iP	-iT	-iR	+iQ	+iX	-iU	-iZ	+iY	+iD	-iV	-iF	+iE	-L	+S	+N	-M	-P	+T	+R	-Q	-X	+U	+Z	-Y	-D	+V	+F	-E
M	+iM	+iN	-iS	-iL	+iQ	+iR	-iT	-iP	+iY	+iZ	-iU	-iX	+iE	+iF	-iV	-iD	-M	-N	+S	+L	-Q	-R	+T	+P	-Y	-Z	+U	+X	-E	-F	+V	+D
N	+iN	-iM	+iL	-iS	+iR	-iQ	+iP	-iT	+iZ	-iY	+iX	-iU	+iF	-iE	+iD	-iV	-N	+M	-L	+S	-R	+Q	-P	+T	-Z	+Y	-X	+U	-F	+E	-D	+V
$\frac{T}{R}$	+iT	+iP	+iQ	+iR	-iS	-iL	-iM	-iN	+iV	+iD	+iE	+iF	-iU	-iX	-iY	-iZ	-T	-P	-Q	-R	+S	+L	+M	+N	-V	-D	-E	-F	+U	+X	+Y	+Z
$\frac{P}{Q}$	+iP	-iT	-iR	+iQ	-iL	+iS	+iN	-iM	+iD	-iV	-iF	+iE	-iX	+iU	+iZ	-iY	-P	+T	+R	-Q	+L	-S	-N	+M	-D	+V	+F	-E	+X	-U	-Z	+Y
$\frac{Q}{D}$	+iQ	+iR	-iT	-iP	-iM	-iN	+iS	+iL	+iE	+iF	-iV	-iD	-iY	-iZ	+iU	+iX	-Q	-R	+T	+P	+M	+N	-5	-L	-E	-F	+V	+D	+Y	+Z	-U	-X
$\frac{R}{U}$	+iR	-iQ	+iP	-iT	-iN	+iM	-iL	+iS	+iF	-iE	+iD	-iV	-iZ	+iY	-iX	+iU	-R	+Q	-P	+T	+N	-M	+L	-5	-F	+E	-D	+V	+Z	-Y	+X	-U
$\frac{U}{V}$	+iU	+iX	+iY	+iZ	-iV	-iD	-iE	-iF	-iS	-iL	-iM	-iN	+iT	+iP	+iQ	+iR	-U	-X	-Y	-Z	+V	+D	+E	+F	+S	+L	+M	+N	-T	-P	-Q	-R
X	+iX	-iU	-iZ	+iY	-iD	+iV	+iF	-iE	-iL	+iS	+iN	-iM	+iP	-iT	-iR	+iQ	-X	+U	+Z	-Y	+D	-V	-F	+E	+L	-S	-N	+M	-P	+T	+R	-Q
$\frac{Y}{q}$	+iY	+iZ	-iU	-iX	-iE	- <i>iF</i>	+iV	+iD	-iM	-iN	+iS	+iL	+iQ	+iR	-iT	-iP	-Y	-Z	+U	+X	+E	+F	-V	-D	+M	+N	-S	-L	-Q	-R	+T	+P
$\frac{Z}{X}$	+iZ	-iY	+iX	-iU	-1F	+iE	-iD	+iV	-iN	+iM	-iL	+iS	+iR	-iQ	+iP	-iT	-Z	+Y	-X	+U	+F	-E	+D	-V	+N	-M	+L	-S	-R	+Q	-P	+T
V	+iV	+iD	+iE	+iF	+iU	+iX	+iY	+iZ	-iT	-iP	-iQ	-iR	-iS	-iL	-iM	-iN	-V	-D	-E	-F	-U	-X	-Y	-Z	+T	+P	+Q	+R	+S	+L	+M	+N
$\frac{D}{D}$	+iD	-iV	-iF	+iE	+iX	-iU	-iZ	+iY	-iP	+iT	+iR	-iQ	-iL	+iS	+iN	-iM	-D	+V	+F'	-E	-X	+U	+Z	-Y	+P	-T	-R	+Q	+L	-S	-N	+M
E	+iE	+iF	-iV	-iD	+iY	+iZ	-iU	-iX	-iQ	-iR	+iT	+iP	-iM	-iN	+iS	+iL	-E	-F	+V	+D	-Y	-Z	+U	+X	+Q	+R	-T	-P	+M	+N	-S	-L
F	+iF	-iE	+iD	-iV	+iZ	-iY	+iX	-iU	-iR	+iQ	-iP	+iT	-iN	+iM	-iL	+iS	-F	+E	-D	+V	-Z	+Y	-X	+U	+R	-Q	+P	-T	+N	-M	+L	-S

A.3. Notation for \mathbb{T} unit elements

As for $M_4(C)$, for \mathbb{T} an alternative approach to labelling unit elements has been adopted. Greek letters with greek subscripts have been chosen. The subscripts relate unit elements in sets in a scheme similar to that relating sets of unit elements for $M_4(C)$ to the set chosen to represent a right isoclinc quaternion algebra as used by Van Elfrinkhof. The usual labelling for \mathbb{T} , as used by Cawagas et al, features the labels $e_0, e_1...e_{31}$. Those unit elements have been relabelled as shown in table 13.

e_0	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9	e_{10}	e_{11}	e_{12}	e_{13}	e_{14}	e_{15}
σ_o	σ_{ι}	σ_j	σ_{κ}	λ_o	λ_{ι}	λ_j	λ_{κ}	μ_o	μ_{ι}	μ_{j}	μ_{κ}	ν_o	ν_{ι}	ν_j	ν_{κ}
						1					1				
e_{16}	e_{17}	e_{18}	e_{19}	e_{20}	e_{21}	e_{22}	e_{23}	e_{24}	e_{25}	e_{26}	e_{27}	e_{28}	e_{29}	e_{30}	e_{31}

TABLE 13. Labels for \mathbb{T} basis elements

The multiplication table for $\mathbb T$ using these labels is shown in Table 14.

TABLE 14. Labels and Cayley table for $\mathbb T$ basis elements

\square	e_0	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9	e_{10}	e_{11}	e_{12}	e_{13}	e_{14}	e_{15}	e_{16}	e_{17}	e_{18}	e_{19}	e_{20}	e_{21}	e_{22}	e_{23}	e_{24}	e_{25}	e_{26}	e_{27}	e_{28}	e_{29}	e_{30}	e_{31}
	σ_o	σ_{ι}	σ_j	σ_{κ}	λ_o	λ_{ι}	λ_j	λ_{κ}	μ_o	μ_{ι}	μ_j	μ_{κ}	ν_o	ν_{ι}	ν_j	ν_{κ}	α_o	α_{ι}	α_j	α_{κ}	β_o	β_{ι}	β_j	β_{κ}	γ_o	γ_{ι}	γ_j	γ_{κ}	δ_o	δ_{ι}	δ_j	δ_{κ}
σ_o	$+\sigma_o$	$+\sigma_{\iota}$	$+\sigma_j$	$+\sigma_{\kappa}$	$+\lambda_o$	$+\lambda_{\iota}$	$+\lambda_j$	$+\lambda_{\kappa}$	$+\mu_o$	$+\mu_{\iota}$	$+\mu_j$	$+\mu_{\kappa}$	$+\nu_o$	$+\nu_{\iota}$	$+\nu_j$	$+\nu_{\kappa}$	$+\alpha_o$	$+\alpha_{\iota}$	$+\alpha_j$	$+\alpha_{\kappa}$	$+\beta_o$	$+\beta_{\iota}$	$+\beta_j$	$+\beta_{\kappa}$	$+\gamma_o$	$+\gamma_{\iota}$	$+\gamma_j$	$+\gamma_{\kappa}$	$+\delta_o$	$+\delta_{\iota}$	$+\delta_j$	$+\delta_{\kappa}$
σ_{ι}	$+\sigma_{\iota}$	$-\sigma_o$	$+\sigma_{\kappa}$	$-\sigma_j$	$+\lambda_{\iota}$	$-\lambda_o$	$-\lambda_{\kappa}$	$+\lambda_j$	$+\mu_{\iota}$	$-\mu_o$	$-\mu_{\kappa}$	$+\mu_j$	$-\nu_{\iota}$	$+\nu_o$	$+\nu_{\kappa}$	$-\nu_j$	$+\alpha_{\iota}$	$-\alpha_o$	$-\alpha_{\kappa}$	$+\alpha_j$	$-\beta_{\iota}$	$+\beta_o$	$+\beta_{\kappa}$	$\textbf{-}\beta_{j}$	$-\gamma_{\iota}$	$+\gamma_o$	$+\gamma_{\kappa}$	$-\gamma_j$	$+\delta_{\iota}$	$-\delta_o$	$-\delta_{\kappa}$	$+\delta_j$
σ_j	$+\sigma_j$	$-\sigma_{\kappa}$	$-\sigma_o$	$+\sigma_{\iota}$	$+\lambda_j$	$+\lambda_{\kappa}$	$-\lambda_o$	$-\lambda_{\iota}$	$+\mu_j$	$+\mu_{\kappa}$	$-\mu_o$	$-\mu_{\iota}$	$-\nu_j$	$-\nu_{\kappa}$	$+\nu_o$	$+\nu_{\iota}$	$+\alpha_j$	$+\alpha_{\kappa}$	$-\alpha_o$	$-\alpha_{\iota}$	$-\beta_j$	$-\beta_{\kappa}$	$+\beta_o$	$+\beta_{\iota}$	$-\gamma_j$	$-\gamma_{\kappa}$	$+\gamma_o$	$+\gamma_{\iota}$	$+\delta_j$	$+\delta_{\kappa}$	$-\delta_o$	$-\delta_{\iota}$
σ_{κ}	$+\sigma_{\kappa}$	$+\sigma_j$	$-\sigma_{\iota}$	$-\sigma_o$	$+\lambda_{\kappa}$	$-\lambda_j$	$+\lambda_{\iota}$	$-\lambda_o$	$+\mu_{\kappa}$	$-\mu_j$	$+\mu_{\iota}$	$-\mu_o$	$-\nu_{\kappa}$	$+\nu_j$	$-\nu_{\iota}$	$+\nu_o$	$+\alpha_{\kappa}$	$-\alpha_j$	$+\alpha_{\iota}$	$-\alpha_o$	$-\beta_{\kappa}$	$+\beta_j$	$-\beta_\iota$	$+\beta_o$	$-\gamma_{\kappa}$	$+\gamma_j$	$-\gamma_{\iota}$	$+\gamma_o$	$+\delta_{\kappa}$	$-\delta_j$	$+\delta_{\iota}$	$-\delta_o$
λ_o	$+\lambda_o$	$-\lambda_{\iota}$	$-\lambda_j$	$-\lambda_{\kappa}$	$-\sigma_o$	$+\sigma_{\iota}$	$+\sigma_j$	$+\sigma_{\kappa}$	$+\nu_o$	$+\nu_{\iota}$	$+\nu_j$	$+\nu_{\kappa}$	$-\mu_o$	$-\mu_{\iota}$	$-\mu_{j}$	$-\mu_{\kappa}$	$+\beta_o$	$+\beta_{\iota}$	$+\beta_j$	$+\beta_{\kappa}$	$-\alpha_o$	$-\alpha_{\iota}$	$-\alpha_j$	$-\alpha_{\kappa}$	$-\delta_o$	$-\delta_{\iota}$	$-\delta_j$	$-\delta_{\kappa}$	$+\gamma_o$	$+\gamma_{\iota}$	$+\gamma_j$	$+\gamma_{\kappa}$
λ_{ι}	$+\lambda_{\iota}$	$+\lambda_o$	$-\lambda_{\kappa}$	$+\lambda_j$	$-\sigma_{\iota}$	$-\sigma_o$	$-\sigma_{\kappa}$	$+\sigma_j$	$+\nu_{\iota}$	$-\nu_o$	$+\nu_{\kappa}$	$-\nu_j$	$+\mu_{\iota}$	$-\mu_o$	$+\mu_{\kappa}$	$-\mu_{j}$	$+\beta_{\iota}$	$-\beta_o$	$+\beta_{\kappa}$	$-\beta_j$	$+\alpha_{\iota}$	$-\alpha_o$	$+\alpha_{\kappa}$	$-\alpha_j$	$-\delta_{\iota}$	$+\delta_o$	$-\delta_{\kappa}$	$+\delta_j$	$-\gamma_{\iota}$	$+\gamma_o$	$-\gamma_{\kappa}$	$+\gamma_j$
λ_j	$+\lambda_j$	$+\lambda_{\kappa}$	$+\lambda_o$	$-\lambda_{\iota}$	$-\sigma_j$	$+\sigma_{\kappa}$	$-\sigma_o$	$-\sigma_{\iota}$	$+\nu_j$	$-\nu_{\kappa}$	$-\nu_o$	$+\nu_{\iota}$	$+\mu_j$	$-\mu_{\kappa}$	$-\mu_o$	$+\mu_{\iota}$	$+\beta_j$	$-\beta_{\kappa}$	$-\beta_o$	$+\beta_{\iota}$	$+\alpha_j$	$-\alpha_{\kappa}$	$-\alpha_o$	$+\alpha_{\iota}$	$-\delta_j$	$+\delta_{\kappa}$	$+\delta_o$	$-\delta_{\iota}$	$-\gamma_{\jmath}$	$+\gamma_{\kappa}$	$+\gamma_o$	$-\gamma_{\iota}$
λ_{κ}	$+\lambda_{\kappa}$	$-\lambda_j$	$+\lambda_{\iota}$	$+\lambda_o$	$-\sigma_{\kappa}$	$-\sigma_j$	$+\sigma_{\iota}$	$-\sigma_o$	$+\nu_{\kappa}$	$+\nu_j$	$-\nu_{\iota}$	$-\nu_o$	$+\mu_{\kappa}$	$+\mu_{j}$	$-\mu_{\iota}$	$-\mu_o$	$+\beta_{\kappa}$	$+\beta_j$	$-\beta_{\iota}$	$-\beta_o$	$+\alpha_{\kappa}$	$+\alpha_j$	$-\alpha_{\iota}$	$-\alpha_o$	$-\delta_{\kappa}$	$-\delta_j$	$+\delta_{\iota}$	$+\delta_o$	$-\gamma_{\kappa}$	$-\gamma_j$	$+\gamma_{\iota}$	$+\gamma_o$
μ_o	$+\mu_o$	$-\mu_{\iota}$	$-\mu_{j}$	$-\mu_{\kappa}$	$-\nu_o$	$-\nu_{\iota}$	$-\nu_j$	$-\nu_{\kappa}$	$-\sigma_o$	$+\sigma_{\iota}$	$+\sigma_j$	$+\sigma_{\kappa}$	$+\lambda_o$	$+\lambda_{\iota}$	$+\lambda_j$	$+\lambda_{\kappa}$	$+\gamma_o$	$+\gamma_{\iota}$	$+\gamma_j$	$+\gamma_{\kappa}$	$+\delta_o$	$+\delta_{\iota}$	$+\delta_j$	$+\delta_{\kappa}$	$-\alpha_o$	$-\alpha_{\iota}$	$-\alpha_j$	$-\alpha_{\kappa}$	$-\beta_o$	$-\beta_{\iota}$	$-\beta_j$	$-\beta_{\kappa}$
μ_{ι}	$+\mu_{\iota}$	$+\mu_o$	$-\mu_{\kappa}$	$+\mu_j$	$-\nu_{\iota}$	$+\nu_o$	$+\nu_{\kappa}$	$-\nu_j$	$-\sigma_{\iota}$	$-\sigma_o$	$-\sigma_{\kappa}$	$+\sigma_j$	$-\lambda_{\iota}$	$+\lambda_o$	$+\lambda_{\kappa}$	$-\lambda_j$	$+\gamma_{\iota}$	$-\gamma_o$	$+\gamma_{\kappa}$	$-\gamma_j$	$+\delta_{\iota}$	$-\delta_o$	$-\delta_{\kappa}$	$+\delta_j$	$+\alpha_{\iota}$	$-\alpha_o$	$+\alpha_{\kappa}$	$-\alpha_j$	$+\beta_{\iota}$	$-\beta_o$	$-\beta_{\kappa}$	$+\beta_j$
μ_{j}	$+\mu_j$	$+\mu_{\kappa}$	$+\mu_o$	$-\mu_{\iota}$	$-\nu_j$	$-\nu_{\kappa}$	$+\nu_o$	$+\nu_{\iota}$	$-\sigma_j$	$+\sigma_{\kappa}$	$-\sigma_o$	$-\sigma_{\iota}$	$-\lambda_j$	$-\lambda_{\kappa}$	$+\lambda_o$	$+\lambda_{\iota}$	$+\gamma_j$	$-\gamma_{\kappa}$	$-\gamma_o$	$+\gamma_{\iota}$	$+\delta_j$	$+\delta_{\kappa}$	$-\delta_o$	$-\delta_{\iota}$	$+\alpha_j$	$-\alpha_{\kappa}$	$-\alpha_o$	$+\alpha_{\iota}$	$+\beta_j$	$+\beta_{\kappa}$	$-\beta_o$	$-\beta_{\iota}$
μ_{κ}	$+\mu_{\kappa}$	$-\mu_{j}$	$+\mu_{\iota}$	$+\mu_o$	$-\nu_{\kappa}$	$+\nu_j$	$-\nu_{\iota}$	$+\nu_o$	$-\sigma_{\kappa}$	$-\sigma_j$	$+\sigma_{\iota}$	$-\sigma_o$	$-\lambda_{\kappa}$	$+\lambda_j$	$-\lambda_{\iota}$	$+\lambda_o$	$+\gamma_{\kappa}$	$+\gamma_{j}$	$-\gamma_{\iota}$	$-\gamma_o$	$+\delta_{\kappa}$	$-\delta_j$	$+\delta_{\iota}$	$-\delta_o$	$+\alpha_{\kappa}$	$+\alpha_j$	$-\alpha_{\iota}$	$-\alpha_o$	$+\beta_{\kappa}$	$-\beta_j$	$+\beta_{\iota}$	$-\beta_o$
ν_o	$+\nu_o$	$+\nu_{\iota}$	$+\nu_j$	$+\nu_{\kappa}$	$+\mu_o$	$-\mu_{\iota}$	$-\mu_j$	$-\mu_{\kappa}$	$-\lambda_o$	$+\lambda_{\iota}$	$+\lambda_j$	$+\lambda_{\kappa}$	$-\sigma_o$	$-\sigma_{\iota}$	$-\sigma_{j}$	$-\sigma_{\kappa}$	$+\delta_o$	$-\delta_{\iota}$	$-\delta_j$	$-\delta_{\kappa}$	$-\gamma_o$	$+\gamma_{\iota}$	$+\gamma_{j}$	$+\gamma_{\kappa}$	$+\beta_o$	$-\beta_{\iota}$	$-\beta_j$	$-\beta_{\kappa}$	$-\alpha_o$	$+\alpha_{\iota}$	$+\alpha_j$	$+\alpha_{\kappa}$
ν_{ι}	$+\nu_{\iota}$	$-\nu_o$	$+\nu_{\kappa}$	$-\nu_j$	$+\mu_{\iota}$	$+\mu_o$	$+\mu_{\kappa}$	$-\mu_{J}$	$-\lambda_{\iota}$	$-\lambda_o$	$+\lambda_{\kappa}$	$-\lambda_j$	$+\sigma_{\iota}$	$-\sigma_o$	$+\sigma_{\kappa}$	$-\sigma_{j}$	$+\delta_{\iota}$	$+\delta_o$	$-\delta_{\kappa}$	$+\delta_j$	$-\gamma_{\iota}$	$-\gamma_o$	$-\gamma_{\kappa}$	$+\gamma_j$	$+\beta_{\iota}$	$+\beta_o$	$-\beta_{\kappa}$	$+\beta_j$	$-\alpha_{\iota}$	$-\alpha_o$	$-\alpha_{\kappa}$	$+\alpha_j$
ν_j	$+\nu_j$	$-\nu_{\kappa}$	$-\nu_o$	$+\nu_{\iota}$	$+\mu_j$	$-\mu_{\kappa}$	$+\mu_o$	$+\mu_{\iota}$	$-\lambda_j$	$-\lambda_{\kappa}$	$-\lambda_o$	$+\lambda_{\iota}$	$+\sigma_j$	$-\sigma_{\kappa}$	$-\sigma_o$	$+\sigma_{\iota}$	$+\delta_j$	$+\delta_{\kappa}$	$+\delta_o$	$-\delta_{\iota}$	$-\gamma_j$	$+\gamma_{\kappa}$	$-\gamma_o$	$-\gamma_{\iota}$	$+\beta_j$	$+\beta_{\kappa}$	$+\beta_o$	$-\beta_{\iota}$	$-\alpha_j$	$+\alpha_{\kappa}$	$-\alpha_o$	$-\alpha_{\iota}$
ν_{κ}	$+\nu_{\kappa}$	$+\nu_j$	$-\nu_{\iota}$	$-\nu_o$	$+\mu_{\kappa}$	$+\mu_j$	$-\mu_{\iota}$	$+\mu_o$	$-\lambda_{\kappa}$	$+\lambda_j$	$-\lambda_{\iota}$	$-\lambda_o$	$+\sigma_{\kappa}$	$+\sigma_j$	$-\sigma_{\iota}$	$-\sigma_o$	$+\delta_{\kappa}$	$-\delta_j$	$+\delta_{\iota}$	$+\delta_o$	$-\gamma_{\kappa}$	$-\gamma_{\jmath}$	$+\gamma_{\iota}$	$-\gamma_o$	$+\beta_{\kappa}$	$-\beta_{j}$	$+\beta_{\iota}$	$+\beta_o$	$-\alpha_{\kappa}$	$-\alpha_j$	$+\alpha_{\iota}$	$-\alpha_o$
α_o	$+\alpha_o$	$-\alpha_{\iota}$	$-\alpha_j$	$-\alpha_{\kappa}$	$-\beta_o$	$-\beta_{\iota}$	$-\beta_j$	$-\beta_{\kappa}$	$-\gamma_o$	$\text{-}\gamma_\iota$	$-\gamma_j$	$-\gamma_{\kappa}$	$-\delta_o$	$-\delta_{\iota}$	$-\delta_j$	$-\delta_{\kappa}$	$-\sigma_o$	$+\sigma_{\iota}$	$+\sigma_j$	$+\sigma_{\kappa}$	$+\lambda_o$	$+\lambda_{\iota}$	$+\lambda_j$	$+\lambda_{\kappa}$	$+\mu_o$	$+\mu_{\iota}$	$+\mu_j$	$+\mu_{\kappa}$	$+\nu_o$	$+\nu_{\iota}$	$+\nu_j$	$+\nu_{\kappa}$
α_{ι}	$+\alpha_{\iota}$	$+\alpha_o$	$-\alpha_{\kappa}$	$+\alpha_j$	$-\beta_{\iota}$	$+\beta_o$	$+\beta_{\kappa}$	$-\beta_j$	$-\gamma_{\iota}$	$+\gamma_o$	$+\gamma_{\kappa}$	$\text{-}\gamma_{\jmath}$	$+\delta_{\iota}$	$-\delta_o$	$-\delta_{\kappa}$	$+\delta_j$	$-\sigma_{\iota}$	$-\sigma_o$	$-\sigma_{\kappa}$	$+\sigma_j$	$-\lambda_{\iota}$	$+\lambda_o$	$+\lambda_{\kappa}$	$-\lambda_j$	$-\mu_{\iota}$	$+\mu_o$	$+\mu_{\kappa}$	$-\mu_j$	$+\nu_{\iota}$	$-\nu_o$	$-\nu_{\kappa}$	$+\nu_j$
α_j	$+\alpha_j$	$+\alpha_{\kappa}$	$+\alpha_o$	$-\alpha_{\iota}$	$-\beta_j$	$-\beta_{\kappa}$	$+\beta_o$	$+\beta_{\iota}$	$-\gamma_j$	$-\gamma_{\kappa}$	$+\gamma_o$	$+\gamma_{\iota}$	$+\delta_j$	$+\delta_{\kappa}$	$-\delta_o$	$-\delta_{\iota}$	$-\sigma_j$	$+\sigma_{\kappa}$	$-\sigma_o$	$-\sigma_{\iota}$	$-\lambda_j$	$-\lambda_{\kappa}$	$+\lambda_o$	$+\lambda_{\iota}$	$-\mu_j$	$-\mu_{\kappa}$	$+\mu_o$	$+\mu_{\iota}$	$+\nu_j$	$+\nu_{\kappa}$	$-\nu_o$	$-\nu_{\iota}$
α_{κ}	$+\alpha_{\kappa}$	$-\alpha_j$	$+\alpha_{\iota}$	$+\alpha_o$	$-\beta_{\kappa}$	$+\beta_j$	$-\beta_{\iota}$	$+\beta_o$	$-\gamma_{\kappa}$	$+\gamma_j$	$-\gamma_{\iota}$	$+\gamma_o$	$+\delta_{\kappa}$	$-\delta_j$	$+\delta_{\iota}$	$-\delta_o$	$-\sigma_{\kappa}$	$-\sigma_j$	$+\sigma_{\iota}$	$-\sigma_o$	$-\lambda_{\kappa}$	$+\lambda_j$	$-\lambda_{\iota}$	$+\lambda_o$	$-\mu_{\kappa}$	$+\mu_j$	$-\mu_{\iota}$	$+\mu_o$	$+\nu_{\kappa}$	$-\nu_j$	$+\nu_{\iota}$	$-\nu_o$
β_o	$+\beta_o$	$+\beta_{\iota}$	$+\beta_j$	$+\beta_{\kappa}$	$+\alpha_o$	$-\alpha_{\iota}$	$-\alpha_j$	$-\alpha_{\kappa}$	$-\delta_o$	$-\delta_{\iota}$	$-\delta_j$	$-\delta_{\kappa}$	$+\gamma_o$	$+\gamma_{\iota}$	$+\gamma_j$	$+\gamma_{\kappa}$	$-\lambda_o$	$+\lambda_{\iota}$	$+\lambda_j$	$+\lambda_{\kappa}$	$-\sigma_o$	$-\sigma_{\iota}$	$-\sigma_j$	$-\sigma_{\kappa}$	$-\nu_o$	$-\nu_{\iota}$	$-\nu_j$	$-\nu_{\kappa}$	$+\mu_o$	$+\mu_{\iota}$	$+\mu_j$	$+\mu_{\kappa}$
β_{ι}	$+\beta_{\iota}$	$-\beta_o$	$+\beta_{\kappa}$	$-\beta_j$	$+\alpha_{\iota}$	$+\alpha_o$	$+\alpha_{\kappa}$	$-\alpha_j$	$-\delta_{\iota}$	$+\delta_o$	$-\delta_{\kappa}$	$+\delta_j$	$-\gamma_{\iota}$	$+\gamma_o$	$-\gamma_{\kappa}$	$+\gamma_j$	$-\lambda_{\iota}$	$-\lambda_o$	$+\lambda_{\kappa}$	$-\lambda_j$	$+\sigma_{\iota}$	$-\sigma_o$	$+\sigma_{\kappa}$	$-\sigma_j$	$-\nu_{\iota}$	$+\nu_o$	$-\nu_{\kappa}$	$+\nu_j$	$-\mu_{\iota}$	$+\mu_o$	$-\mu_{\kappa}$	$+\mu_j$
β_j	$+\beta_j$	$-\beta_{\kappa}$	$-\beta_o$	$+\beta_{\iota}$	$+\alpha_j$	$-\alpha_{\kappa}$	$+\alpha_o$	$+\alpha_{\iota}$	$-\delta_j$	$+\delta_{\kappa}$	$+\delta_o$	$-\delta_{\iota}$	$-\gamma_j$	$+\gamma_{\kappa}$	$+\gamma_o$	$-\gamma_{\iota}$	$-\lambda_j$	$-\lambda_{\kappa}$	$-\lambda_o$	$+\lambda_{\iota}$	$+\sigma_j$	$-\sigma_{\kappa}$	$-\sigma_o$	$+\sigma_{\iota}$	$-\nu_j$	$+\nu_{\kappa}$	$+\nu_o$	$-\nu_{\iota}$	$-\mu_j$	$+\mu_{\kappa}$	$+\mu_o$	$-\mu_{\iota}$
β_{κ}	$+\beta_{\kappa}$	$+\beta_j$	$-\beta_{\iota}$	$-\beta_o$	$+\alpha_{\kappa}$	$+\alpha_j$	$-\alpha_{\iota}$	$+\alpha_o$	$-\delta_{\kappa}$	$-\delta_j$	$+\delta_{\iota}$	$+\delta_o$	$-\gamma_{\kappa}$	$-\gamma_j$	$+\gamma_{\iota}$	$+\gamma_o$	$-\lambda_{\kappa}$	$+\lambda_j$	$-\lambda_{\iota}$	$-\lambda_o$	$+\sigma_{\kappa}$	$+\sigma_j$	$-\sigma_{\iota}$	$-\sigma_o$	$-\nu_{\kappa}$	$-\nu_j$	$+\nu_{\iota}$	$+\nu_o$	$-\mu_{\kappa}$	$-\mu_j$	$+\mu_{\iota}$	$+\mu_o$
γ_o	$+\gamma_o$	$+\gamma_{\iota}$	$+\gamma_j$	$+\gamma_{\kappa}$	$+\delta_o$	$+\delta_{\iota}$	$+\delta_j$	$+\delta_{\kappa}$	$+\alpha_o$	$-\alpha_{\iota}$	$-\alpha_j$	$-\alpha_{\kappa}$	$-\beta_o$	$-\beta_{\iota}$	$-\beta_j$	$-\beta_{\kappa}$	$-\mu_o$	$+\mu_{\iota}$	$+\mu_j$	$+\mu_{\kappa}$	$+\nu_o$	$+\nu_{\iota}$	$+\nu_j$	$+\nu_{\kappa}$	$-\sigma_o$	$-\sigma_{\iota}$	$-\sigma_j$	$-\sigma_{\kappa}$	$-\lambda_o$	$-\lambda_{\iota}$	$-\lambda_j$	$-\lambda_{\kappa}$
γ_{ι}	$+\gamma_{\iota}$	$-\gamma_o$	$+\gamma_{\kappa}$	$-\gamma_j$	$+\delta_{\iota}$	$-\delta_o$	$-\delta_{\kappa}$	$+\delta_j$	$+\alpha_{\iota}$	$+\alpha_o$	$+\alpha_{\kappa}$	$-\alpha_j$	$+\beta_{\iota}$	$-\beta_o$	$-\beta_{\kappa}$	$+\beta_j$	$-\mu_{\iota}$	$-\mu_o$	$+\mu_{\kappa}$	$-\mu_j$	$+\nu_{\iota}$	$-\nu_o$	$\text{-}\nu_{\kappa}$	$+\nu_j$	$+\sigma_{\iota}$	$-\sigma_o$	$+\sigma_{\kappa}$	$-\sigma_j$	$+\lambda_{\iota}$	$-\lambda_o$	$-\lambda_{\kappa}$	$+\lambda_j$
γ_j	$+\gamma_j$	$-\gamma_{\kappa}$	$-\gamma_o$	$+\gamma_{\iota}$	$+\delta_j$	$+\delta_{\kappa}$	$-\delta_o$	$-\delta_{\iota}$	$+\alpha_j$	$-\alpha_{\kappa}$	$+\alpha_o$	$+\alpha_{\iota}$	$+\beta_j$	$+\beta_{\kappa}$	$-\beta_o$	$-\beta_{\iota}$	$-\mu_j$	$-\mu_{\kappa}$	$-\mu_o$	$+\mu_{\iota}$	$+\nu_j$	$+\nu_{\kappa}$	$-\nu_o$	$-\nu_{\iota}$	$+\sigma_j$	$-\sigma_{\kappa}$	$-\sigma_o$	$+\sigma_{\iota}$	$+\lambda_j$	$+\lambda_{\kappa}$	$-\lambda_o$	$-\lambda_{\iota}$
γ_{κ}	$+\gamma_{\kappa}$	$+\gamma_j$	$-\gamma_{\iota}$	$-\gamma_o$	$+\delta_{\kappa}$	$-\delta_j$	$+\delta_{\iota}$	$-\delta_o$	$+\alpha_{\kappa}$	$+\alpha_j$	$-\alpha_{\iota}$	$+\alpha_o$	$+\beta_{\kappa}$	$-\beta_j$	$+\beta_{\iota}$	$-\beta_o$	$-\mu_{\kappa}$	$+\mu_j$	$-\mu_{\iota}$	$-\mu_o$	$+\nu_{\kappa}$	$-\nu_j$	$+\nu_{\iota}$	$-\nu_o$	$+\sigma_{\kappa}$	$+\sigma_j$	$-\sigma_{\iota}$	$-\sigma_o$	$+\lambda_{\kappa}$	$-\lambda_j$	$+\lambda_{\iota}$	$-\lambda_o$
δ_o	$+\delta_o$	$-\delta_{\iota}$	$-\delta_j$	$-\delta_{\kappa}$	$-\gamma_o$	$+\gamma_{\iota}$	$+\gamma_j$	$+\gamma_{\kappa}$	$+\beta_o$	$\textbf{-}\beta_\iota$	$-\beta_j$	$-\beta_{\kappa}$	$+\alpha_o$	$+\alpha_{\iota}$	$+\alpha_j$	$+\alpha_{\kappa}$	$-\nu_o$	$-\nu_{\iota}$	$-\nu_j$	$-\nu_{\kappa}$	$-\mu_o$	$+\mu_{\iota}$	$+\mu_j$	$+\mu_{\kappa}$	$+\lambda_o$	$-\lambda_{\iota}$	$-\lambda_j$	$-\lambda_{\kappa}$	$-\sigma_o$	$+\sigma_{\iota}$	$+\sigma_j$	$+\sigma_{\kappa}$
δ_{ι}	$+\delta_{\iota}$	$+\delta_o$	$-\delta_{\kappa}$	$+\delta_j$	$-\gamma_{\iota}$	$-\gamma_o$	$-\gamma_{\kappa}$	$+\gamma_j$	$+\beta_{\iota}$	$+\beta_o$	$-\beta_{\kappa}$	$+\beta_j$	$-\alpha_{\iota}$	$+\alpha_o$	$-\alpha_{\kappa}$	$+\alpha_j$	$-\nu_{\iota}$	$+\nu_o$	$-\nu_{\kappa}$	$+\nu_j$	$-\mu_{\iota}$	$-\mu_o$	$-\mu_{\kappa}$	$+\mu_j$	$+\lambda_{\iota}$	$+\lambda_o$	$-\lambda_{\kappa}$	$+\lambda_j$	$-\sigma_{\iota}$	$-\sigma_o$	$-\sigma_{\kappa}$	$+\sigma_j$
δ_j	$+\delta_j$	$+\delta_{\kappa}$	$+\delta_o$	$-\delta_{\iota}$	$-\gamma_j$	$+\gamma_{\kappa}$	$-\gamma_o$	$\text{-}\gamma_\iota$	$+\beta_j$	$+\beta_{\kappa}$	$+\beta_o$	$-\beta_{\iota}$	$-\alpha_j$	$+\alpha_{\kappa}$	$+\alpha_o$	$-\alpha_{\iota}$	$-\nu_j$	$+\nu_{\kappa}$	$+\nu_o$	$-\nu_{\iota}$	$-\mu_j$	$+\mu_{\kappa}$	$-\mu_o$	$-\mu_{\iota}$	$+\lambda_j$	$+\lambda_{\kappa}$	$+\lambda_o$	$-\lambda_{\iota}$	$-\sigma_j$	$+\sigma_{\kappa}$	$-\sigma_o$	$-\sigma_{\iota}$
δ_{κ}	$+\delta_{\kappa}$	$-\delta_j$	$+\delta_{\iota}$	$+\delta_o$	$-\gamma_{\kappa}$	$-\gamma_j$	$+\gamma_{\iota}$	$-\gamma_o$	$+\beta_{\kappa}$	${}^{-\beta_j}$	$+\beta_{\iota}$	$+\beta_o$	$-\alpha_{\kappa}$	$-\alpha_j$	$+\alpha_{\iota}$	$+\alpha_o$	$-\nu_{\kappa}$	$-\nu_j$	$+\nu_{\iota}$	$+\nu_o$	$-\mu_{\kappa}$	$-\mu_j$	$+\mu_{\iota}$	$-\mu_o$	$+\lambda_{\kappa}$	$-\lambda_j$	$+\lambda_{\iota}$	$+\lambda_o$	$-\sigma_{\kappa}$	$-\sigma_j$	$+\sigma_{\iota}$	$-\sigma_o$

Robert G. Wallace