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Division Algebra Covariant Derivative 

Abstract 

The classical definition for the gradient, divergence and curl utilizing the limit as the volume 

approaches zero, of the ratio of the integral over the enclosing surface divided by the integral over the 

enclosed volume can be consolidated to form an Ensemble Derivative. This form is constructed 

initially as a diffeomorphism between two compatible coordinate sets, one representing the intrinsic 

division algebra basis; u(v) and the other some basis v(u) within which differentiation is defined. The 

result is the structure for general covariance for division algebra analysis, where covariant differential 

equations are constructed by full applications of the Ensemble Derivative. 

*** 

There are alternate definitions for the familiar 3D gradient, divergence and curl that involve a limiting 

process on the ratio of the integral over the enclosing surface, to the integral over the enclosed volume 

as that volume approaches zero, while maintaining the point of application as an interior point. 

The differential surface normal vector dS multiplies the scalar function for gradient. 

    ò ρ dS 

Ñ ρ   =  lim                

       ò dV → 0   ò dV 

 

For divergence, the scalar product of differential surface normal and function vector is used. 

    ò A • dS 

Ñ • A   = lim                   

       ò dV → 0     ò dV 

 

For curl, the cross product of differential surface normal and function vector is used. 

    ò dS x A 

Ñ x A   = lim                    

       ò dV → 0     ò dV 

 

The numerators in these three forms are examples of scalar - vector multiplication, scalar result vector - 

vector multiplication, and vector result vector - vector multiplication. All of these are present in the 

single product of two Quaternions.  

A natural extension of the integral definitions for gradient, divergence and curl mentioned above would 

be to consolidate all three into one ensemble by replacing the three individual products with a single 

full algebraic product between a functional Quaternion algebraic element A and a 4D Quaternion 

differential surface normal, and replacing the 3D differential volume with the corresponding 4D 

differential volume. This would give us a holistic expression for the Quaternion Calculus operation of 

differentiation that is an ensemble of all three classical forms shown above. 

Define the Left Ensemble Derivative and Right Ensemble Derivative as (see also reference [1]) 
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    ò dS * A       ò A * dS 

Ε(A)    = lim                   (A)Ε    = lim                    

       ò dV → 0     ò dV          ò dV → 0     ò dV 

 

We must of course define the derivative application from both sides if we are dealing with a non-

commutative algebra. I take these integral representations to be the fundamental definition for n 

dimensional multivariate differentiation over a prescribed algebra, not just having utility as select 

alternate 3D forms. Thus, the definition will not be restricted to the Quaternions, it extends directly to 

the Octonions or generally for any n dimensional algebra over an n dimensional vector space. For 

Octonion Algebra, we just need to substitute the 8D algebraic element definitions for the differential 

surface normal and function A, the Octonion product * and 8D differential volume. 

The integral definition for differentiation has the ability to easily move to a description using an 

alternate independent variable set. If a functional relationship exists between the two variable sets, 

Jacobian formalism can be used to cast the differential surface normal and differential volume element 

in terms of the new set of variables, Jacobians, Jacobian matrices and their co-factor matrices. This 

allows us to define differentiation more fundamentally in the form of a proper diffeomorphism between 

the intrinsic algebraic system and an alternate system existing within the rules of the same basic 

algebra. The transformation properties for differential equations then become intrinsic to the proper 

fundamental definition of differentiation itself, not an add-on, afterthought or something modified from 

a more simplistic (e.g. rectilinear) definition. 

When partial differential equations are constructed free-form (by hand) within one coordinate system, 

they may not be appropriate in some other coordinate system even though there is a smooth map 

between systems and all partial derivatives are continuous. These differential equations are described as 

not being covariant. Problems can occur when the description of one coordinate system has 

dependencies on multiple independent variables spanning the alternate set. Since differentiation is a 

measure of functional variability within the neighborhood of the single point of application, this 

variability within the coordinate system itself is also in play. A proper, which is to say covariant, 

definition for differentiation must account for the variability of the coordinate system fundamentally. 

As defined, the Ensemble Derivative form does just that. The covariance comes from the consolidation 

of all subforms that were taken to be individually fundamental in the late 1800’s. Any covariant 

expression must likewise be cast with full ensemble forms. To this end, proper covariant differential 

equations describing physical effects must be constructed with whole applications of the Ensemble 

Derivative. The Ensemble Derivative becomes the fundamental building block for general covariance. 

Let’s move on within an Octonion Algebra framework. For a given native Octonion space spanned by 

our familiar intrinsic basis elements, assign an algebraic element for rectilinear position as 

u = u0 e0 + u1 e1 + u2 e2 + u3 e3 + u4 e4 + u5 e5 + u6 e6 + u7 e7 

The coefficients defining positional coordinates here are real valued, without bound and without 

granularity, allowing coordinate neighborhoods about any specific point to be smoothly and 

continuously defined. We may then define intrinsic and continuous Octonion functional elements as 

algebraic elements with coefficients that are real valued functions of position u in the form of 

A(u) = A0(u) e0 + A1(u) e1 + A2(u) e2 + A3(u) e3 + A4(u) e4 + A5(u) e5 + A6(u) e6 + A7(u) e7 

Next define an alternate positional representation v for the space defined by u. The objective here will 

be to cast the definition of differentiation in terms of this alternate coordinate system and its 

transformation back to the native u coordinates. We will require a functional relationship between the 
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intrinsic position u and the new system v such that there is a smooth, singular mapping of each unique 

position in u singularly to each unique position in v. We will also require a smooth mapping of each 

position in v singularly back to the same original unique position in u. Since we will not make any 

assumptions about the specific form the transformation will take, we will express the mappings as the 

unspecified functions 

uj  →  uj (v) 

vk →  vk (u) 

 

It will be convenient from now on to write expressions using summation notation and explicitly call out 

any exceptions, as implied in this representation for u where repeated indexes in a product term are 

summed over their range if not singularly stated on the other side of =. 

u0(v) e0 + u1(v) e1 + u2(v) e2 + u3(v) e3 + u4(v) e4 + u5(v) e5 + u6(v) e6 + u7(v) e7 = uj (v) ej 

Assume the following partial differentials exist and are continuous, and differentiate each sub-element 

coefficient of u with index j by partial ¶vi to yield the tangent coefficient matrix T 

Tij = ¶uj/¶vi 

The determinant of T = | T | is the Jacobian of the transformation v → u. Define this as 

J = | T | 

J must of course be non-zero for both transformations u ↔ v to exist. 

We can define the coefficients of hypercomplex system differential position displacement duj as 

duj = Tij dvi 

We may define an Octonion algebraic element basis set for the general curvilinear space v as z: 

zi = Tij ej 

If we look at the magnitude (norm) of each zi they will not in general be unity. While being so is not a 

problem mandating any adjustment, it sometimes is beneficial to represent using a unit magnitude basis 

element set for system v. Define the unity magnitude basis w then as 

wi = zi / N(zi) = Tij / (Tik Tik)
1/2 ej  fixed i and the sum over k is performed before the square root 

From this we may define an Octonion algebraic element equivalent to A(u) as 

F(v) = Fi(v) zi(v) = Fi Tij ej 

Here we emphasize both the coefficients and the new system basis vectors are functions of v. This is 

very important to remember when the calculus of the system is explored. If we let position u' 

correspond to position v' we must have 

A(u') = F(v') 

In this equality of course, the coefficients attached to like e basis elements on both sides match one by 

one, nothing more. This brings up one very important thing to keep in mind. For any diffeomorphism to 

or from an alternate hypercomplex coordinate system v, we never lose the fundamental basis elements 



© Richard Lockyer February 2022                   All Rights Reserved                                            4 

ej. They are always present, and always fundamentally define the operation of multiplication the same 

way independent of the choice of v. This implies Octonion Algebraic Invariance is coordinate system 

invariant, being entirely determined by the underlying algebra common to all v systems. 

The task now is to define the Ensemble Derivative form at a single point of application within the 

coordinate space for our v coordinate system using our fundamental limiting process above. 

Define C as the matrix of co-factors of T, where Cij is the co-factor for T element Tij. 

We may then define the inverse of T to be T-1 = (1/J) CT where CT
jk = J ¶vk / ¶uj is the transpose of C. 

The last equality comes about by Tij Tjk
-1 = δik (1 if i=k, 0 if i≠k) and ( ¶uj / ¶vi  ¶vk / ¶uj ) = δik   

In the hypercomplex v system, the differential volume element is scaled by the Jacobian and can be 

expressed in the v system as 

dV = J dv0 dv1 dv2 dv3 dv4 dv5 dv6 dv7 

Within the limit process above, the point of application is always an interior point of the volume we are 

taking in the limit tending towards zero. Since this limit definition process allows the enclosing surface 

to get arbitrarily close to this interior point, we may take the Jacobian within the differential volume 

element in the limit definition denominator outside of our volume integral, using instead its mean value 

defined as the Jacobian evaluated at the point of application. 

The differential surface normal dS in the v system may be expressed in terms of co-factor expansion as 

the Octonion algebraic element 

dSi = Cij ej dv0 dv1 dv2 dv3 dv4 dv5 dv6 dv7 / dvi 

= J dvi/duj ej dv0 dv1 dv2 dv3 dv4 dv5 dv6 dv7 / dvi 

 

Define the unit surface normal algebraic elements as ni. We may then define 

 

Cij ej dv0 dv1 dv2 dv3 dv4 dv5 dv6 dv7 / dvi = ni dSi. 

 

Unlike the Jacobian in the volume integral, the position the surface integral Jacobian is evaluated at is 

never at the point of application for the Ensemble Derivative. The limit process allows the surface to 

get arbitrarily close to the point of application, but it never gets there. Thus, the limit definition 

numerator Jacobian variation within the coordinate neighborhood of the point of application is very 

much in play, and as such it is not extricable from the limiting process on the surface integral. 

The limit expression for E(F) then becomes 

       1                        ò  (J  dvi/duj  ej  dv0 dv1 dv2 dv3 dv4 dv5 dv6 dv7 / dvi ) * F 

E(F)    =           lim                                                                                                           

       J    ò dV → 0             ò dv0 dv1 dv2 dv3 dv4 dv5 dv6 dv7 

 

The limit process will yield the following for the left application Ensemble Derivative E on the 

Octonion algebraic element F(v) 

E(F(v)) = 1/J ¶/¶vi [ J ¶vi/¶uj ej * F(v) ]   
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Since we have Cij = J ¶vi/¶uj this may also be written as 

E(F(v)) = 1/J ¶/¶vi [ Cij ej * F(v) ]   

It is critical to emphasize the point that F(v) here is a regular Octonion algebraic element. It is not a 

vector of v system basis coefficients, it is the sum of all scalar functionals dependent on v that happen 

to be attached to the same intrinsic basis element set member, each in turn. Likewise, the calculated 

result for E(F(v)) is a regular Octonion algebraic element. If one desires the result to be represented by 

the set of coefficients attached to the v system basis elements z, additional manipulation is required. 

More on this shortly. 

We have, rewriting from above using F(v) = Fk Tkl el 

E(F(v)) = 1/J ¶/¶vi [ Cij  Tkl  Fk ]  ej * el    

Here, the intrinsic basis elements are constants to the partial differentiation so can be moved out of the 

differentiation target. The Fk here are now the coefficients that scale the v system basis element zk. 

For both of these representations, the application of E from the right-side amounts to simply 

transposing the basis element products. 

(F(v))E = 1/J  ¶/¶vi [ Cij  Tkl  Fk ] el * ej    

We can trivialize the transformation to determine the Ensemble Derivative in the u system by equating 

u and v. Then the Jacobian J = 1, and ¶vi/¶uj = δij and ¶ul/¶vk = δkl. The Ensemble Derivative on A(u) 

then becomes 

E(A(u)) = ¶/¶ui [ δij δkl Ak ]  ej * el 

= ¶/¶uj Al(u) ej * el   

We can thus legitimately define a posteriori the “del” algebraic element operator as Ñj = ∂/¶uj ej and 

write 

E(A(u)) = Ñ * A 

This differential operator multiplies like any other Octonion algebraic element under the rules of the 

selected algebra. The partial differentiation is applied as a scalar operation on all of the operand 

coefficients separate from algebraic multiplication of the basis elements which of course are constants 

not participating in these partials. 

From above we had 

E(F(v)) = 1/J  ¶/¶vi [ J ¶vi/¶uj ej * F(v) ]   

When differentiating with respect to equivalent intrinsic basis elements on coefficients that in one case 

are functions dependent on the variable u, and in the other case functions dependent on the variable v, 

we could infer an equivalence map 

∂/¶uj [ ….  →  1/J  ¶/¶vi [ J ¶vi/¶uj …. 

This is different from the common chain rule, which states 

∂/¶uj [ ….  →   ¶vi/¶uj  ¶/¶vi [ …. 
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The two will only be identical for the specific case when J ¶vi/¶uj is not a function of v. A fair 

conclusion on this would be that the chain rule is not as general as many assume it is. But it is the 

foundation for tensor transformations, defining the required tensor form invariance over transformation 

of variables. Within tensor analysis, the definition of differentiation must repair this problem somehow, 

for it is indeed broken. Enter the Christoffel symbols to the rescue. Their addition to the tensor analysis 

covariant derivative is a repair job on the unfortunate, but truthfully somewhat utilitarian invariant 

form.  

The Ensemble Derivative on the other hand, correctly deals with the variability of the coordinate 

system coordinates themselves, and thus is intrinsically and generally covariant. A differential equation 

formed with whole applications of the Ensemble Derivative will be intrinsically covariant. This is an 

additional reason why I have given it the moniker Ensemble Derivative. No slicing, no dicing, no 

cleaver uses of vector identities glued together by hand required or even allowed to insure covariant 

results.  

However, just as we combined the separate limit on integration ratio representations for divergence, 

gradient and curl to define the Ensemble Derivative, we will be able to algebraically separate portions 

of its full description into their individual representations in the v basis system. The “how to do this” 

comes from understanding the notion of what each of these three forms are. What descriptively 

separates them is their algebraic description embodied by their intrinsic basis element products ever 

present for any v system definition. The Ensemble Derivative intrinsic basis element products are sums 

over all indexes j and l on the form ej * el where these indexes also are present in the T and C portions. 

If we were to restrict indexes j and l to j = l and sum both over the range 1 to 3 in our Quaternion 

representation, the result after also summing over all i and k without restriction will be the negative of 

the divergence as represented in the v system. We will do this later to verify the Ensemble Derivative 

form reproduces the correct known results for spherical-polar coordinates. 

Let us next take a look at the volume integral of the Ensemble derivative. We have 

ò E(F(v)) dV = ò  1/J ¶/¶vi [ Cij  Tkl  Fk ]  ej * el   J dv0 dv1 dv2 dv3 dv4 dv5 dv6 dv7 

Integrating over each index i individually using The Fundamental Law of Calculus we have 

ò E(F(v)) dV = ò [ Cij  Tkl  Fk ]  ej * el  dv0 dv1 dv2 dv3 dv4 dv5 dv6 dv7 / dvi 

From above this is equivalent to, taking the n-volume integration over the enclosing (n–1)-surface S 

with surface normal differential set dSi 

ò E(F(v)) dV = ò dSi * F(v) summed over index i 

This is the generalized Stokes theorem for the Ensemble Derivative, or what should be called The 

Fundamental Law of Multivariate Calculus over any n-dimensional space with an n-dimensional 

algebra defining the operation *. Just as the Ensemble Derivative unifies the classical operations of 

curl, divergence and gradient, this expression unifies Stokes’ Theorem, the Gauss Divergence Theorem 

and Green’s Theorem. The equivalent representation for application of the Ensemble Derivative from 

the right is easily shown as 

ò (F(v))E dV = ò F(v) * dSi  summed over index i 

For many applications of differentiation, it is optimal to have the results expressed in terms of the 

coefficients that scale each of the v system basis elements. We touched on this above when it was 

pointed out that the v system function being differentiated is placed within the Ensemble Derivative as 



© Richard Lockyer February 2022                   All Rights Reserved                                            7 

a regular algebraic element, and the result that pops out is likewise a regular algebraic element. The 

reason they must be is the operation * defined by the applied algebra must be performed within the 

definition of the Ensemble derivative and is independent of any v system definition. The specific 

summed quasi v system coefficients attached to each of the two intrinsic basis elements multiplied are 

scalar multiplied to set the coefficient sum attached to the product result, which becomes a portion of 

the final result post partial differentiation. 

Two different ways to look at F(v) or result R(v) = E(F(v)) generally use a common form M(v) 

M(v) = Mk Tkl el = Mk zk  k not summed but separately maintained, index l summed 

M(v) = Mk Tkl el = M'l el  l not summed but separately maintained, index k summed  

What we put into the Ensemble Derivative and what it gives back is the latter form. Each of the M'l are 

known sums of coefficients going in, and coming out post calculation. The Mk are not necessarily 

readily apparent in these sums due to the z structure. If they are of interest, we need a way to map 

between M'l and Mk. 

If we have all Mk in hand, forming the algebraic element M(v) from them is easy to build since T is 

known. Therefore, the map Mk → M'l is simply M'l = Mk Tkl. 

If we want to retrieve each Mk from known M'l, we must do a bit more work to formulate their proper 

extraction. We have Tkl = ¶ul/¶vk so 

M'l = Mk Tkl = Mk ¶ul/¶vk  so multiplying both sides by ¶vm/¶ul then summing over l we get 

M'l ¶vm/¶ul = Mk ¶ul/¶vk ¶vm/¶ul  but (¶ul/¶vk ¶vm/¶ul) sum l = δkm so 

M'l ¶vm/¶ul = Mk δkm = Mm  and we have ¶vm/¶ul = 1/J Cml so the map M'l → Mm is 

Mm = 1/J Cml M'l  

Another nicety is to represent F(v) and the result of its Ensemble derivative in terms of a unity 

magnitude v system basis wk = zk/|zk|. This is neither here nor there in developing T and generating its 

cofactor matrix C. These must remain direct results of the relationship defining u(v) and its partial 

derivatives forming T leading to C independent of the use or not of a unit norm v basis. We can 

however represent F(v) in terms of the v system unit norm basis and expect its Ensemble Derivative to 

likewise represented. We have  

Tkl el = zk and therefore |zk| = the norm of the algebraic element formed by the kth row of Tkl call Nk 

where we have  

Nk = (Tkl Tkl)
1/2  of course summing over l before taking the square root 

Replacing zk in in the equality Mk zk = M'j ej with zk/|zk| leads to the modification of the algebraic 

element to orthonormal v system basis coefficients map 

Mk = Nk/J Ckj M'j  

We must modify for the unity norm v system representation in algebraic elements to 

F(v) = Fk zk/|zk| = Fk wk = Fk Tkl/Nk el 
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These maps in both directions, whether or not unity scaled by choice, between algebraic element 

coefficients and v system basis coefficients are not limited to functions to form the Ensemble derivative 

on or its result. They are the general transformations between the intrinsic basis and the v basis 

systems. 

Since the Ensemble Derivative is applicable to Quaternions, and they are a quite a bit simpler than 

Octonions, it will be instructive to work out the case where the v system is spherical-polar coordinates 

with the addition of a time variable in the Quaternion scalar position, since we know or at least can 

readily look up what the correct answers should be. Define the v system as independent variables t, r, θ 

and φ with the corresponding mapping to the rectilinear u system having coefficients   

u0 = c t 

u1 = r sin(θ) cos(φ) 

u2 = r sin(θ) sin(φ) 

u3 = r cos(θ) 

 

We are taking t to represent the scalar time component of algebraic time here, since we are limiting the 

discussion to !. With c having the dimensions of speed: distance/time, all u system coefficients have 

dimension of length as we must require for the intrinsic rectilinear system. On the other hand, we have 

complete freedom for the dimensionality of the v system, as diverse as shown. We have for T then 

T00 = c  T0j = Tj0 = 0 for j ≠ 0 

T11 = sin(θ) cos(φ)   T12 = sin(θ) sin(φ)   T13 = cos(θ)   

T21 = r cos(θ) cos(φ)   T22 = r cos(θ) sin(φ)   T23 = – r sin(θ) 

T31 = – r sin(θ) sin(φ)   T32 = r sin(θ) cos(φ)   T33 = 0  

 

The Jacobian for this transformation is | T | = c r2 sin(θ). Now for the co-factor matrix C we have 

C00 = r2 sin(θ)  C0j = Cj0 = 0 for j ≠ 0 

C11 = c r2 sin2(θ) cos(φ)  C12 = c r2 sin2(θ) sin(φ)  C13 = c r2 sin(θ) cos(θ)   

C21 = c r sin(θ) cos(θ) cos(φ)  C22 = c r sin(θ) cos(θ) sin(φ)  C23 = – c r sin2(θ)   

C31 = – c r sin(φ)    C32 = c r cos(φ)   C33 = 0 

 

Typical literature for spherical-polar coordinates shows the functional coefficients as unity basis scaling 

factors. Since we will be looking for a direct comparison and such scaling impacts the calculus we are 

doing, we will do the same here. The norms for the z basis zi = Tij ej for the v system can be seen to be 

N(z0) = N0 = c  N(z1) = N1 = 1  N(z2) = N2 = r  N(z3) = N3 = r sin(θ) 

Before we do the differentiations ¶/¶vi we must replace the coefficients zk with the orthonormal basis 

wk = zk / Nk and make F(v) appropriate for the w basis: F(v) → Fk Tkl / Nk el. 

The full Ensemble Derivative is the sum of results for E(F(v)) = 1/J  ¶/¶vi [ Cij  Tkl  Fk / Nk ]  ej * el for 

each basis element product combination. Since we will first be looking for comparisons with the results 

for gradient, divergence and curl, we must individually sort them out from the full ensemble. To do this 

we must understand the rectilinear equivalence is provided by the algebraic product ej * el. We need 

only pick out the easily determined product pairs for each of the separate differential forms we seek.   

For the gradient with time derivative, we must restrict the Ensemble Derivative result basis index range 

to products ej * e0 for j: 0 to 3 and i,k summed over their full range, we have the result algebraic 

element for E(F(v)) = 1/J  ¶/¶vi [ Cij Tk0  (1/N(zk)) Fk ]  ej * e0   
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{ 1/c ¶/¶t (F0) } e0 

 

{ sin(θ) cos(φ) ¶/¶r (F0)  +  cos(θ) cos(φ) ¶/¶θ (F0) / r  –  sin(φ) ¶/¶φ (F0) / r sin(θ) } e1 

 

{ sin(θ) sin(φ) ¶/¶r (F0)  +  sin(φ) cos(θ) ¶/¶θ (F0) / r  +  cos(φ) ¶/¶φ (F0) / r sin(θ) } e2 

{ cos(θ) ¶/¶r (F0)  –  sin(θ) ¶/¶θ (F0) / r } e3 

Mapping to the v system basis, its coefficients are 

{ 1/c ¶/¶t (F0) } wt 

 

{ ¶/¶r (F0) } wr 

 

{ ¶/¶θ (F0) / r } wθ  

{ ¶/¶φ (F0) / r sin(θ) } wφ 

This is the expected form for the spherical-polar gradient of F0 + F0 time derivative. 

For en * en for n: 1 to 3 we have the algebraic element form for the negated divergence 

{– ¶/¶φ (Fφ) / r sin(θ)  –  ¶/¶r (Fr)  –  Fθ cos(θ) / r sin(θ)  –  2Fr / r – ¶/¶θ (Fθ) / r } e0 

Mapping to the v system basis, its coefficients are the same 

{– ¶/¶φ (Fφ) / r sin(θ)  –  ¶/¶r (Fr)  –  Fθ cos(θ) / r sin(θ)  –  2Fr / r – ¶/¶θ (Fθ) / r } wt 

 

This is the expected form for the negated divergence in spherical-polar coordinates.  

Next the components of the curl. The curl is the evaluation of 

= 1/J  { ¶/¶vi [ Ci2 Tj3  (1/N(zj)) Fj ]  e2 * e3   +  ¶/¶vk [ Ck3 Tl2  (1/N(zl)) Fl ]  e3 * e2} 

+ 1/J  { ¶/¶vi [ Ci3 Tj1  (1/N(zj)) Fj ]  e3 * e1   +  ¶/¶vk [ Ck1 Tl3  (1/N(zl)) Fl ]  e1 * e3} 

+ 1/J  { ¶/¶vi [ Ci1 Tj2  (1/N(zj)) Fj ]  e1 * e2   +  ¶/¶vk [ Ck2 Tl1  (1/N(zl)) Fl ]  e2 * e1} 

 

The algebraic element result is  

 

{ cos(θ) cos(φ) ¶/¶φ (Fr) / r sin(θ)  –  cos(φ) ¶/¶φ (Fθ) / r  –  Fθ sin(φ) / r  –  cos(θ) cos(φ) ¶/¶r (Fφ)  

+ sin(θ) cos(φ) ¶/¶θ (Fφ) / r  –  sin(φ) ¶/¶r (Fθ)  +  sin(φ) ¶/¶θ (Fr) / r } e1 

 

{– sin(φ) cos(θ) ¶/¶r (Fφ)  +  sin(θ) sin(φ) ¶/¶θ (Fφ) / r  +  sin(φ) cos(θ) ¶/¶φ (Fr) / r sin(θ)  

– sin(φ) ¶/¶φ (Fθ) / r  +  Fθ cos(φ) / r  +  cos(φ) ¶/¶r (Fθ)  –  cos(φ) ¶/¶θ (Fr) / r } e2 

 

{ sin(θ) ¶/¶r (Fφ)  +  cos(θ) ¶/¶θ (Fφ) / r  –  ¶/¶φ (Fr) / r  –  cos(θ) ¶/¶φ (Fθ) / r sin(θ)  +  Fφ / r sin(θ) } e3  

 

Mapping to the v system basis, its coefficients are 

{ ¶/¶θ (Fφ) / r  +  Fφ cos(θ) / r sin(θ)  –  ¶/¶φ (Fθ) / r sin(θ) } wr  

{ ¶/¶φ (Fr) / r sin(θ)  –  ¶/¶r (Fφ)  –  Fφ / r } wθ  
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{ Fθ / r  +  ¶/¶r (Fθ)  –  ¶/¶θ (Fr) / r } wφ 

This can be recognized as the curl expressed in spherical-polar coordinates. 

Now for something a bit more involved, the second order v system equivalent of –Ñ2 A, where here we 

will take Ñ2 to be the full D’Alembertian. The Ensemble form once again is  

E(F(v)) = 1/J ¶/¶vi [ Cij  Tkl  Fk ]  ej * el    

The equivalent form for –Ñ2 A is created by doing the complete Ensemble Derivative but with fixed 

index j, then a second application on its result once again with the same fixed j index, adding the results 

of each of these fixed j second order Ensemble Derivatives for all j values. The algebraic element result 

for our Quaternion spherical-polar v system is 

{ 1/c2 ¶2/¶t2 (F0)  –  cos(θ) ¶/¶θ (F0) / r
2 sin(θ)  –  sin-2(θ) ¶2/¶φ2 (F0) / r

2 sin2(θ)  –  2 ¶/¶r (F0) / r  

– ¶2/¶r2 (F0)  –  ¶2/¶θ2 (F0) / r
2 } e0  

 

{ –2 sin(θ) cos(φ) ¶/¶r (Fr) / r  –  sin(θ) cos(φ) ¶2/¶r2 (Fr)  –  2 cos(θ) cos(φ) ¶/¶r (Fθ) / r   

+ 2Fθ cos(θ) cos(φ) / r2  –  3 cos(θ) cos(φ) ¶/¶θ (Fr) / r
2  –  cos2(θ) cos(φ) ¶/¶θ (Fθ) / r

2 sin(θ)   

– cos(θ) cos(φ) ¶2/¶θ2 (Fθ) / r
2  +  sin(φ) cos(θ) ¶/¶θ (Fφ) / r2 sin(θ)  +  2 sin(φ) ¶/¶φ (Fr) / r

2 sin(θ)  

+ 2 sin(φ) cos(θ) ¶/¶φ (Fθ) / r
2 sin2(θ)  +  Fθ cos(θ) cos(φ) / r2 sin2(θ)  +  sin(φ) ¶2/¶φ2 (Fφ) / r2 sin2(θ)   

– Fφ sin(φ) / r2 sin2(θ)  +  1/c2 sin(θ) cos(φ) ¶2/¶t2 (Fr)  +  1/c2 cos(θ) cos(φ) ¶2/¶t2 (Fθ)   

– 1/c2 sin(φ) ¶2/¶t2 (Fφ)  –  cos(θ) cos(φ) ¶2/¶r2 (Fθ)  +  2 Fr sin(θ) cos(φ) / r2   

–  sin(θ) cos(φ) ¶2/¶θ2 (Fr) / r
2  +  2 sin(θ) cos(φ) ¶/¶θ (Fθ) / r

2  –  cos(φ) ¶2/¶φ2 (Fr) / r
2 sin(θ)   

–  cos(θ) cos(φ) ¶2/¶φ2 (Fθ) / r
2 sin2(θ)  +  2cos(φ) ¶/¶φ (Fφ) / r2 sin2(θ)  +  sin(φ) ¶2/¶r2 (Fφ)   

+ 2 sin(φ) ¶/¶r (Fφ) / r  +  sin(φ) ¶2/¶θ2 (Fφ) / r2 } e1  

 

{ –2 sin(θ) sin(φ) ¶/¶r (Fr) / r  –  sin(θ) sin(φ) ¶2/¶r2 (Fr)  –  2 sin(φ) cos(θ) ¶/¶r (Fθ) / r   

+ 2 Fθ sin(φ) cos(θ) / r2  –  3 sin(φ) cos(θ) ¶/¶θ (Fr) / r
2  –  sin(φ) cos2(θ) ¶/¶θ (Fθ) / r

2 sin(θ)   

– sin(φ) cos(θ) ¶2/¶θ2 (Fθ) / r
2  –  cos(θ) cos(φ) ¶/¶θ (Fφ) / r2 sin(θ)  –  2 cos(φ) ¶/¶φ (Fr) / r

2 sin(θ)   

– 2 cos(θ) cos(φ) ¶/¶φ (Fθ) / r
2 sin2(θ)  +  Fθ sin(φ) cos(θ) / r2 sin2(θ)  –  cos(φ) ¶2/¶φ2 (Fφ)/ r2 sin2(θ)   

+ Fφ cos(φ) / r2 sin2(θ)  –  sin(φ) cos(θ) ¶2/¶r2 (Fθ)  +  2 Fr sin(θ) sin(φ) / r2   

– sin(θ) sin(φ) ¶2/¶θ2 (Fr) / r
2  +  2 sin(θ) sin(φ) ¶/¶θ (Fθ) / r

2  +  1/c2 sin(θ) sin(φ) ¶2/¶t2 (Fr)   

+ 1/c2 sin(φ) cos(θ) ¶2/¶t2 (Fθ)  +  1/c2 cos(φ) ¶2/¶t2 (Fφ)  –  sin(φ) ¶2/¶φ2 (Fr) / r
2 sin(θ)   

– sin(φ) cos(θ) ¶2/¶φ2 (Fθ) / r
2 sin2(θ)  +  2 sin(φ) ¶/¶φ (Fφ) / r2 sin2(θ)  –  cos(φ) ¶2/¶r2 (Fφ)  

– 2 cos(φ) ¶/¶r (Fφ) / r  –  cos(φ) ¶2/¶θ2 (Fφ) / r2 } e2  

 

{ 1/c2 cos(θ) ¶2/¶t2 (Fr)  –  1/c2 sin(θ) ¶2/¶t2 (Fθ)  –  Fθ sin3(θ) / r2  +  2 sin(θ) ¶/¶r (Fθ) / r  

+ sin(θ) ¶2/¶r2 (Fθ)  –  2 cos(θ) ¶/¶r (Fr) / r  +  2 Fr cos(θ) / r2  –  cos2(θ) ¶/¶θ (Fr) / r
2 sin(θ)  

– cos(θ) ¶2/¶θ2 (Fr) / r
2  +  3 cos(θ) ¶/¶θ (Fθ) / r

2  –  cos(θ) ¶2/¶φ2 (Fr) / r
2 sin2(θ)   

+ ¶2/¶φ2 (Fθ) / r
2 sin(θ)  –  cos(θ) ¶2/¶r2 (Fr)  +  2 sin(θ) ¶/¶θ (Fr) / r

2  +  sin(θ) ¶2/¶θ2 (Fθ) / r
2   

+ Fθ cos4(θ) / r2 sin(θ) } e3  

 

Mapping to the v system basis, its coefficients are 

{ 1/c2 ¶2/¶t2 (F0)  –  cos(θ) ¶/¶θ (F0) / r
2 sin(θ)  –  ¶2/¶φ2 (F0) / r

2 sin2(θ)  –  2 ¶/¶r (F0) / r   

– ¶2/¶r2 (F0)  –  ¶2/¶θ2 (F0) / r
2 } wt 
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{ – 2 ¶/¶r (Fr) / r  –  ¶2/¶r2 (Fr)  +  1/c2 ¶2/¶t2 (Fr)  +  2Fr / r
2  –  ¶2/¶θ2 (Fr) / r

2   

– cos(θ) ¶/¶θ (Fr) / r
2 sin(θ)  +  2 Fθ cos(θ) / r2 sin(θ)  +  2 ¶/¶φ (Fφ) / r2 sin(θ) 

+ 2 ¶/¶θ (Fθ) / r
2  –  ¶2/¶φ2 (Fr) / r

2 sin2(θ) } wr  

 

{ – 2 ¶/¶r (Fθ) / r  –  ¶2/¶θ2 (Fθ) / r
2  +  1/c2 ¶2/¶t2 (Fθ)  –  ¶2/¶r2 (Fθ)  –  ¶2/¶φ2 (Fθ) / r

2 sin2(θ)   

– cos(θ) ¶/¶θ (Fθ) / r
2 sin(θ)  +  2 cos(θ) ¶/¶φ (Fφ) / r2 sin2(θ)  –  2 ¶/¶θ (Fr) / r

2  +  Fθ / r
2 sin2(θ) } wθ  

 

{ – cos(θ) ¶/¶θ (Fφ) / r2 sin(θ)  –  2 ¶/¶φ (Fr) / r
2 sin(θ)  –  2 cos(θ) ¶/¶φ (Fθ) / r

2 sin2(θ)   

– ¶2/¶φ2 (Fφ) / r2 sin2(θ)  +  Fφ / r2 sin2(θ)  +  1/c2 ¶2/¶t2 (Fφ)  –  ¶2/¶r2 (Fφ)  –2 ¶/¶r (Fφ) / r 

– ¶2/¶θ2 (Fφ) / r2 } wφ 

This can be verified to be the spherical-polar equivalent of –Ñ2 A. Each time we move to the unity 

norm v system basis, there is significant simplification. 

The Quaternion Ensemble Derivative has thus faithfully reproduced the gradient, divergence and curl 

in spherical-polar coordinates, as well as the second order form for –Ñ2 A. This validates the Ensemble 

Derivative as the general form for Quaternion differentiation, and by extension to Octonion 

differentiation, or any n dimensional space where multiplication is defined by its intrinsic n 

dimensional algebra. 

References 

[1] Richard D. Lockyer, 2012 FQXi Essay The Algebra of “Everything”, August 31, 2012 

https://fqxi.org/data/essay-contest-files/Lockyer_fqxi_essay_RickLock.pdf 

 

[2] Richard D. Lockyer, December 2020 An Algebraic proof Sedenions are not a division algebra and 

other consequences of Cayley-Dickson Algebra definition variation 

https://vixra.org/pdf/2010.0086v3.pdf 

[3] Richard D. Lockyer, January 2022 The Exclusive Or Group X(n) Correspondence With Cayley-

Dickson Algebras 

https://vixra.org/pdf/2201.0095v1.pdf 

 

[4] Richard D. Lockyer, February 2022 Hadamard Matrices And Division Algebras Only 

https://vixra.org/pdf/2202.0072v1.pdf 

 

 

 

 


