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In a two-dimensional space, a refractive index-curvature relation is formulated using the second rank tensor
of Ricci curvature. A scalar refractive index describes an isotropic linear optics. In a fibre bundle geometry, a
scalar refractive index is related to an Abelian (a linear) curvature form. The Gauss-Bonnet-Chern theorem
is formulated using a scalar refractive index. Because the Euler-Poincare characteristic is the topological
invariant then a scalar refractive index is also a topological invariant.
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In the geometrical optics, the refractive index-
curvature relation derived from the Fermat’s principle
describes ray propagation in a steady (time-independent)
state1. The refractive index-curvature2 relation can be
written as1,3–5

1

R
= N̂ . ~∇ ln n(r) (1)

where R is a radius of curvature1, N̂ is an unit vector
along the principal normal or has the same direction with
~∇ ln n(r), ~∇ ln n(r) means the gradient of a function ln n
at a point r and n(r) is a space-dependent refractive in-
dex, a scalar function of the coordinates only (a smooth
continuous function of the position6). We see eq.(1) is a
dot product of two vectors, so the result gives a scalar

quantity, N̂ . ~∇ ln n(r) =
∑dim
i=1 Ni∇i ln n(r), dim is a

number of dimension of space. Eq.(1) tells us that the
rays are therefore bent in the direction of increasing re-
fractive index 1.

In a 2-dimensional space7, we write eq.(1) as

Rµν = gµν N(µ ∂ν) lnn (2)

where Rµν is the second rank tensor of Ricci curvature8,9,

Rµν = gµν
R1212

g
10, a function of the metric tensor gµν ,

g = |(det gµν)| is a scalar density10, a real number, and
µ, ν run from 1 to 2. We write N(µ ∂ν) in eq.(2) to
accomodate the symmetry property of the second rank
tensor of Ricci curvature, Rµν ≡ Rνµ, where N(µ ∂ν) =
1
2 (Nµ ∂ν +Nν ∂µ).

The zeroth rank tensor (a scalar, a real number) of
the refractive index (1), (2) describes an isotropic linear
optics11. But, the refractive index can be not simply a
scalar12. The refractive index can also be a second rank
tensor which describes that the electric field component
along one axis may be affected by the electric field compo-
nent along another axis12. The second rank tensor of the
refractive index describes an anisotropic linear optics11.

The geometrical optics can be derived from the
Maxwell’s theory, an Abelian U(1) local gauge theory13.
That is why, in this article we also treat the geometi-
cal optics as an Abelian U(1) local gauge theory5. We

will formulate a curvature in a fibre bundle. Is there
a relationship between a fibre bundle and a gauge the-
ory? Originally, a fibre bundle and a gauge theory are
developed independently. Until it was realized that the
curvature (in a fibre bundle) and the field strength (in
Yang-Mills theory) are identical14.

Why do we need to formulate the curvature in a fi-
bre bundle instead of the Riemann-Christoffel curvature
tensor? As a consequence of the geometrical optics is
treated as an Abelian U(1) local gauge theory, so we need
to formulate the curvature in a fibre bundle as what we
call an Abelian (a linear) curvature form. A curvature
form in a fibre bundle can be an Abelian or a non-Abelian
(a non-linear). It differs with the Riemann-Christoffel
curvature tensor which has the non-linear form only15.

The curvature form, Ωαµ, in a fibre bundle can be writ-
ten as16,17

Ωαµ =
∑

Rαµβν du
β ∧ duν (3)

where Rαµβν is the fourth rank tensor of Riemann-
Christoffel curvature (which has the algebraic proper-
ties as symmetry, anti-symmetry and cyclicity10), uβ ,
uν are local coordinates and ∧ is a notation of the ex-
terior (wedge) product (it satisfies the distributive, anti-
commutative18,19 and associative laws)16,17. Ωαµ is an
anti-symmetric matrix of 2-forms20,21.

If we reformulate eq.(3) using eq.(2) and the Ricci-
Riemann relation in a 2-dimensional space, Rαµβν =

(gαβ gµν − gαν gµβ)
Rµν
gµν

, then we obtain∑
(gαβ gµν − gαν gµβ) N(µ ∂ν) lnn duβ ∧ duν

= Ωαµ (4)

Eq.(4) shows the relationship between the scalar refrac-
tive index and the curvature form in a 2-dimensional
space. We see that the scalar refractive index ”lives”
in a 2-dimensional space.

Let us introduce a general form of the curvature matrix,
Ω, which is a matrix of exterior two-forms16,22 below

Ω = dω − ω ∧ ω (5)



where ω is the connection matrix, one-form23,24. We see
that eq.(5) is a non-linear equation due to the second
term of the right hand side of eq.(5).

Can the curvature matrix equation (5) be an Abelian, a
linear equation? A gauge potential, A, can be regarded a
a local expression for a connection in a principal bundle23

as written below

A = σ∗ω (6)

where σ is a local section defined on a chart U of man-
ifold, base space, M . The local form of the curvature is
defined by23

F ≡ σ∗Ω (7)

where F is identified with the field strength. In a general
case, from Cartan’s structure equation, we find23

F = σ∗(dpω + ω ∧ ω) = dσ∗ω + σ∗ω ∧ σ∗ω

= dA+A ∧A (8)

where d is the exterior derivative on M . We see from
eqs.(7), (8) that

Ω = dpω + ω ∧ ω (9)

and

σ∗ dpω = dσ∗ ω (10)

In a special case, for an Abelian U(1) local gauge theory,
using eq.(6) and the fact that the exterior derivative obeys
the Leibniz rule25, F can be expressed in terms of the
gauge potential A23 as below

F = dA
σ∗ dpω = d(σ∗ω) = dσ∗ ω + σ∗ dω (11)

Eq.(11) implies

Ω = dpω (12)

Notation dp means the covariant derivative of a vector
valued one-form on a principal bundle, P (M,G), G is
structure group23. We see that eq.(12) is an Abelian, a
linear equation.

Let us consider dA in eqs.(8), (11). dA in such both
equations should be the same or in other words as a con-
sequence of eq.(10), dω in eq.(11) should be zero

dω = 0 (13)

It means that the connection matrix, one-form, ω, is
closed if dω = 023,26,27.

Can we see something interesting in eq.(10)? We see
that eq.(10) is analog with the Stokes theorem which can
be written roughly17 as∫

D

dω =

∫
∂D

ω (14)

So, we could say that dω = 0 is a consequence of the
Stokes theorem. Using the Stokes theorem (14), we see

that dω = 0 has the same meaning with ω is closed, i.e.
∂D = 0. What does dω = 0 imply in physics? Can
dω = 0 be related to a conserved quantity in physics?

Is there a relationship between the curvature matrix, Ω
(5), and the curvature form, Ωαµ (3)? Yes (there is)28.
If Ωαµ and ωαµ denote the components of curvature and
connection matrices, Ω and ω, respectively then we can
write16

Ω = (Ωαµ), ω = (ωαµ) (15)

So, the curvature matrices in eqs.(9), (12) can be written
using the curvature form17 respectively as below

Ωαµ = dpωαµ − ω τ
α ∧ ωµτ (16)

and

Ωαµ = dpωαµ (17)

We call eq.(17) as an Abelian (a linear) curvature form
equation.

As we mentioned that we treat the geometrical optics
as an Abelian U(1) local gauge theory, so we choose the
curvature form (17) to describe the geometrical optics.
By substituting eq.(4) into eq.(17), we obtain∑

(gαβ gµν − gαν gµβ) N(µ ∂ν) lnn duβ ∧ duν

= dpωαµ (18)

We call eq.(18) as an Abelian curvature form-scalar re-
fractive index relation.

Let us define the pfaffian29 of the curvature matrix, pf
Ω, as below16,30

pf Ω ≡
∑

εα1µ1...α2qµ2q
Ωα1µ1

∧ ... ∧ Ωα2qµ2q
(19)

where the curvature matrix, Ω, is any even-size complex
2q × 2q anti-symmetric matrix (if Ω is an odd-size com-
plex anti-symmetric matrix then the corresponding pfaf-
fian is defined to be zero), εα1µ1...α2qµ2q is the 2q-th rank
Levi-Civita tensor which has value +1 or -1 according as
its indices form an even or odd permutation of 1, ..., 2q,
and its otherwise zero, and the sum is extended over
all indices from 1 to 2q, q is a natural number. Here,
α1 < µ1, ... , α2q < µ2q and α1 < α2 < ... < α2q

16,30.
Shortly, the pfaffian of Ω (19) can be rewritten as

pf Ω =
∑

εαµ Ωαµ (20)

By substituting eqs.(17), (18) into eq.(20) we obtain∑
εαµ

∑
(gαβ gµν − gαν gµβ) N(µ ∂ν) lnn duβ ∧ duν

= pf Ω (21)

Using the pfaffian of Ω, the Gauss-Bonnet-Chern the-
orem31–33 says that16,32

(−1)q
1

22qπqq!

∫
M2q

pf Ω = χ(M2q) (22)
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where χ(M2q) is the Euler-Poincare characteristic34,35

(a topological invariant16, a global invariant31) of the
even dimensional oriented compact Riemannian mani-
fold, M2q. We consider q in M2q is the same as q in
the description of pf Ω. We interpret that the size (ordo)
of curvature matrix of the corresponding pfaffian is re-
lated to the number of a dimension of space (manifold).
The size of curvature matrix is the same as the number
of a dimension of space.

By substituting eq.(21) into eq.(22), we obtain the
Gauss-Bonnet-Chern theorem related to the scalar re-
fractive index as below

(−1)q
1

22qπqq!

∫
M2q

∑
εαµ∑

(gαβ gµν − gαν gµβ) N(µ ∂ν) lnn duβ ∧ duν

= χ(M2q) (23)

In case of a 2-dimensional space, i.e. for q = 1, eq.(23)
becomes

− 1

4π

∫
M2

∑
εαµ∑

(gαβ gµν − gαν gµβ) N(µ ∂ν) lnn duβ ∧ duν

= χ(M2) (24)

We see from eqs.(23), (24), the scalar refractive in-
dex is related to the Euler-Poincare characteristic. Be-
cause the Euler-Poincare characteristic is the topological
invariant36,37 (the global invariant31) we consider that
the scalar refractive index is also the topological invari-
ant (the local invariant). Eqs.(22), (23), (24) show that
the integral of a local topological invariant gives result a
global topological invariant.

The pfaffian of the curvature matrix (20) is defined to
be zero or non-zero if the curvature matrix is an odd-size
or an even-size complex anti-symmetric matrix respec-
tively. In turn, the zero or non-zero curvature form (3)
has a consequence that the Riemann-Christoffel curva-
ture tensor is vanish or not vanish respectively. The van-
ishing Riemann-Christoffel curvature tensor means vac-
uum space. In other words, the Riemann-Christoffel cur-
vature tensor must vanish in vacuum space38. So, does it
mean that the zero or non-zero curvature form is related
to vacuum or non-vacuum space (in turn a vanishing or
a non-vanishing field strength?)

The zero or non-zero Euler-Poincare characteristic (22)
is a consequence of the zero or non-zero pfaffian of the
curvature matrix respectively. Does it mean that the zero
or non-zero Euler-Poincare characteristic is related to
vacuum or non-vacuum space? What is the existence of
a topological invariant of the zero Euler-Poincare char-
acteristic or vacuum space?

We see from eq.(13) that the connection matrix,
one-form, ω, is closed. What is the meaning of a closed
one-form physically? Could we interpret dω = 0 related
to a conserved quantity (conservation law) in physics,
especially in the geometrical optics? What is such

conserved quantity in the geometrical optics?
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