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Abstract
By neglecting the cosmological constant Λ, Einstein’s field equations in absence of matter and other fields
read Gik = 0, which is not reasonable, since it violates the conservation law of total energy, momentum, and
stress, because the gravitational field energy and momentum density cannot be represented by a vanishing
Einstein tensor. In order to remedy this shortcoming, we construct a uniform metric, which allows us later to
get a more general one, that is asymptotically equal to the Schwarzschild metric. This metric has a plausible
energy-momentum density tensor of the gravitational field and correctly describes the effect of light deflection,
but the perihelion shift of Mercury is overestimated. Because of the authors’ different view in order to overcome
the shortcomings, different solutions are obtained.
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1. Introduction
Landau and Lifshitz [1] noticed, that there is no gravitational
field energy density as a source on the right hand side of
Einstein’s field equations. In § 95, it is written, that

Gravitational interaction plays a role only for
bodies with a sufficiently large mass (due to the
small gravitational constant), . . .

and in § 96 regarding the vanishing covariant derivative of the
energy-momentum density tensor of matter, T k

i;k = 0, that

In this form, however, this equation does not
generally express any conservation law whatever.
This is related to the fact that in a gravitational
field the four-momentum of the matter alone must
not be conserved, but rather the four-momentum
of matter plus gravitational field; the latter is not
included in the expression for T k

i .

Indeed, Einstein initially introduced the energy-momen-
tum density tensor of the gravitational field into his field

equations [2]1. However, it turned out, that this quantity,
which is calculated from the conservation law of energy and
momentum, is not a tensor. In this form, the expression for
the gravitational field energy and momentum density was not
covariant, which became a serious obstacle for creating the
complete field equations. Within only two years, a way out of
this dilemma was found, after Einstein simply had removed
the gravitational field energy and momentum density from
his theory. Then, the field equations became covariant and
correctly described the motion of Mercury.

Of course, experiments remain the most important tests
for the suitability of Einstein’s field equations. But there do
not exist enough data of strong gravitational fields. Therefore,
additional surveys will expand our understanding of gravity.

A continuous field is uniform in a small neighborhood
around any point in space-time. This trivial fact follows from

1We can estimate the magnitude of the correction to the Newtonian law
of gravity, if we take into account the gravitational mass of the field. This cor-
rection is on the same order as the correction of the Newtonian gravitational
theory caused by the general theory of relativity [3].
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the continuity of a smooth function. Therefore it is natural,
that a gravitational field should have a uniform metric in a
small neighborhood of points in space-time. However, the
approximated metric of the vacuum solution of Einstein’s field
equations is not homogeneous [4],

ds2 =

(
1+

2Φ

c2

)
c2dt2−

(
1− 2Φ

c2

)
dΩ

2 , (1)

where Φ is the Newtonian gravitational potential and

dΩ
2 = dx2 +dy2 +dz2 .

In the beginning of his work on general relativity, Einstein
found a relation between time in an accelerated and in an
inertial reference frame [5],

δτ =
(
1−gx/c2)

δ t ,

where g is the acceleration. However, the exact relation reads

dτ = exp
(
−gx

c2

)
dt , (2)

which reflects the symmetry of a uniformly accelerated frame
of reference [5]:

From the fact that the choice of the coordinate
origin should not affect this relation, we can con-
clude that it should be replaced by the exact rela-
tion.

From the principle of equivalence it follows, that in a uniform
gravitational field, Eq. (2) should be satisfied. However, in
subsequent works this ratio has not been used.

The next step in the study of a uniform gravitational field
was made by Harry Lass [6]. He described the accelerated
frame of reference and found its metric,

ds2 = exp
(
−2gx

c2

)(
c2dt2−dx2)−dy2−dz2 .

It is true, that this metric satisfies Einstein’s field equations
in empty space-time, Rik = 0, but it is not spatially isotropic.
This shortcoming has been overcome in Ref. [7],

ds2 = exp
(
−2gx

c2

)(
c2dt2−dΩ

2) .
Unquestionably, this metric is both, homogeneous and spa-
tially isotropic. Accordingly, metrics of the form

ds2 = exp
(

2h
c2

)(
c2dt2−dΩ

2) , (3)

where h is a function, which depends on the coordinates, seem
at first sight to be suitable for describing gravitational fields.
It is true, that one obtains plausible energy and momentum
densities of the gravitational field from metrics of the form
shown in Eq. (3), cf. Ref. [8], but in a more precise study, one

recognizes, that they are not suitable for describing the gravi-
tational field, because their coordinate velocity is constant, so
that consequently the observed light deflection is not obtained
within the framework of such metrics.

In the following, we discuss an attempt to modify the
Schwarzschild solution within the framework of a uniform
metric by using Einstein’s field equations.

2. Homogeneous metric

As mentioned above, metrics of the form given by Eq. (3) do
not satisfy the principles of the theory of general relativity.
Therefore, the metric of the approximated vacuum solution
shown in Eq. (1) serves as the starting point for creating a
uniform metric by regarding Einstein’s exact result, cf. Eq. (2),

ds2 = exp
(
−2gx

c2

)
c2dt2− exp

(
2gx
c2

)
dΩ

2 . (4)

From the geodesic equation, one finds the acceleration,

d2x
dt2 =−c2

Γ
1

00 =
c2

2
∂g00

∂x
g11 = g exp

(
−4gx

c2

)
, (5)

and its covariant counterpart with respect to this reference
frame,

d2x1

dτ2 =−c2
Γ

1
00

g11

g00
=−g ,

which proofs, that the metric given by Eq. (4) is homogeneous.
Moreover, this metric has a positive scalar curvature,

R =
2g2

c4 exp
(
−2gx

c2

)
. (6)

In order to determine the energy-momentum density ten-
sor, we have inserted the metric shown in Eq. (4) into Ein-
stein’s field equations, where in absence of matter and other
fields, the tensor

T̂ik =
c4

8πG
Gik =−

g2

8πG
diag

(
e−

4gx
c2 ,1,−1,−1

)
solely represents the gravitational field energy and momentum
density. Its prefactor on the right hand side resembles the en-
ergy density of an electrostatic field and equals the Newtonian
gravitational field energy density, cf. Ref. [1].

The dependence of T̂00 on the coordinate arises, because
the total energy of bodies in the second approximation of
the theory of general relativity depends on the gravitational
potential (see Problem 2, § 106 in Ref. [1]). This explains
the non-uniform acceleration in a uniform field, cf. Eq. (5).
The ambiguity of the asymptotic transition to Eq. (4) does
not allow us to state that this homogeneous metric is the final
result.
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3. Equation of the gravitational field
Since any field should be uniform in the limit of a small
neighborhood, consequently also the metric should be the one
of a uniform field in this limit. This property is fulfilled by
the uniform metric shown in Eq. (4). Accordingly, metrics of
the kind

ds2 = exp
(

2h
c2

)
c2dt2− exp

(
−2h

c2

)
dΩ

2 (7)

are also uniform in the limit of a small neighborhood around
any point in space-time, where h is a continuous function,
which depends on the coordinates. It is important to mention,
that the form of the metric given by Eq. (7) does not change,
if h is a linear transformation. Therefore, h has to be a linear
equation. The most suitable candidate for a linear covariant
equation is the wave equation2,

1
c2

∂ 2h
∂ t2 −∆h =−4πGT , (8)

where T is the trace of the energy-momentum density tensor
of matter. Consequently, a set of continuous real functions h
forms an additive group in the sense, that metrics of the kind
shown in Eq. (7) can be superposed.

Obviously, in case of large distances from a point-like
mass, the uniform metric given by Eq. (7) merges into the
metric of the approximated vacuum solution shown in Eq. (1).
Thus, the covariance and the correspondence principle are
fulfilled.

4. Metric of a point-like mass
In the stationary case, the wave equation (8) becomes the
Poisson equation

∆h = 0 ,

which has the spherically symmetric solution

h =
C1

r
+C2 .

The boundary conditions of the Cauchy problem can be speci-
fied at infinity. They read C1 =−GM and C2 = 0, so that

h =−GM
r

,

which is equivalent to the Newtonian gravitational potential Φ

with mass M in the origin. Consequently, the uniform variant
of the Schwarzschild metric is given by

ds2 = exp
(
−

rg

r

)
c2dt2− exp

( rg

r

)
dΩ̃

2 , (9)

where rg = 2GM/c2 and

dΩ̃
2 = dr2 + r2 (dθ

2 + sin2
θ dφ

2) .
2Nordström used a similar equation in his first relativistic theory of gravi-

ty [8].

The coordinate speed of light, which is given by this metric,
is asymptotically equal to the speed of light, that is observed
in Shapiro’s experiment [9],

c exp
(
−

rg

r

)
≈ c
(

1−
rg

r

)
.

The scalar curvature almost coincides with that one of the
homogeneous metric in Eq. (6),

R =
2g2

c4 exp
(
−

rg

r

)
,

where g =−GM/r2. The energy and momentum density of
the gravitational field can be obtained by using Einstein’s field
equations,

T̂ik =−
g2

8πG
diag

(
e−

2rg
r ,1,−r2,−r2 sin2

θ

)
,

where T̂00 at infinity equals the Newtonian gravitational field
energy density.

In order to compute the angle of light deflection and the
perihelion shift with the metric given by Eq. (9), the relativis-
tic Kepler problem has to be solved by using the geodesic
equations with the aid of(

ds
dλ

)2

= gµν

dxµ

dλ

dxν

dλ
= c2

(
dτ

dλ

)2

= ε ,

where for a massive particle λ = τ , while for a massless
particle, for which m = 0 and dτ = 0, another parameter λ

has to be used [10]. The solutions to the geodesic equations
read,

θ =
π

2
, `= r2 dφ

dλ
g00 , F =

dx0

dλ
g00 ,

ε =

[
F2−

(
dr
dλ

)2
]

g00− `2

r2 g00 .

(10)

The first result given by Eqs. (10), shows that the orbit is
located in the equatorial plane. The second solution represents
the constant relativistic angular momentum. The third one is
a further orbital constant, and

ε =

{
c2 (m 6= 0)
0 (m = 0)

.

By using the second and the fourth result from Eqs. (10), the
equation of orbital motion is derived,

φ(r) =
∫ dr

r2

[(
Fg00

`

)2

− 1
r2 −

εg00

`2

]− 1
2

. (11)

For light, ε = 0, and

0 =
dr
dφ

∣∣∣∣
r=r0

(12)
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at the radius of the sun, where r0 = R�. Then, by neglecting
terms of second and higher order, we obtain the angle of light
deflection

∆φ =
4a
R�

,

where a = GM/c2. This result conforms to observations.
The perihelion shift is calculated in the same manner by

using ε = c2 in Eqs. (11) and (12) respectively, where in this
case r0 = q in the perihelion and r0 = Q in the aphelion of
the orbit. The constant quantities in the equation of orbital
motion (11) read

χ ≡ F2

`2 =
g00(q)/q2−g00(Q)/Q2

g00(q)−g00(Q)
,

ζ ≡ c2

`2 = χg00(q)− g00(q)
q2 = χg00(Q)− g00(Q)

Q2 .

The metric coefficient g00 as well as its square, which appear
in Eq. (11), can be expanded until second order with high
enough accuracy. Then, with the aid of the constant auxiliary
quantities

α = a2 (8χ−2ζ )−1 , β = 2a(2χ−ζ ) , γ = χ−ζ ,

the equation of orbital motion (11) can be written in the form

φ(Q)−φ(q) =
∫ Q

q

dr
r

(
α +β r+ γr2)− 1

2

and be solved analytically, see e.g. formula 2.266 in Ref. [11].
The perihelion shift is then given by

∆φ = 2 [φ(Q)−φ(q)]−2π .

In contrast to Ref. [12], it turns out, that the computed pe-
rihelion shift of Mercury exceeds by far the observed one.
This result is not surprising by realizing the differences in the
accelerations, cf. Fig. 1.

5. Discussion
The metrics of uniformly accelerated systems, which have
been strictly obtained in Refs. [6, 7] are not applicable to
the theory of gravity. In fact, the metric, which is shown in
Eq. (3), describes space-time with a constant speed of light.
This shortcoming has been overcome with the metric given by
Eq. (7), which is homogeneous with respect to the covariant
acceleration.

There exists another metric, which is homogeneous with
respect to the contravariant acceleration, the Podosenov met-
ric [13], that reads in spherical coordinates

ds2 = exp
(
−

rg

r

)
c2dt2−dΩ̃

2 .

The spherical Podosenov metric shows gravitational accele-
rations, which are asymptotically equal to the Schwarzschild

0 2 4 6 8 10
−0.3

−0.2

−0.1

0

r/rg

d2 r/
dt

2
[ c2 /

r g
]

uniform
Schwarzschild

Podosenov
Newton

Figure 1. Comparison of the accelerations in different metrics,
d2r/dt2 =−c2Γ1

00.

metric, cf. Fig. 1. However, the speed of light, which de-
pends on the gravitational potential, is obtained incorrectly.
In addition, this metric has a zero value of G00.

Another disagreement with observations is, that the uni-
form variant of the Schwarzschild metric (9) as well as the
Podosenov metric do not show black hole solutions, see Fig. 1.

It is irrefutable, that the covariance of the gravitational
field equation and the correspondence to Newton’s theory
are not enough to consistently describe the gravitational field.
The reason for this is, that in empty space-time there is no
gravitational energy and momentum density in Einstein’s field
equations without the cosmological constant, i.e. Gik = 0.
Therefore, an additional condition or principle is required,
which is able to repair this shortcoming.

In this article, we have considered metrics, which are
consistent with Einstein’s exact relation shown in Eq. (2).
Unfortunately, all of them turned out to have significant flaws.
Perhaps there exists another metric, which gives results, that
are in agreement with observations. Future studies will show
this.

This is the status of research of the first version of this
work from December 31, 2019, which has also been translated
into Russian language on January 11, 2020. To that time, the
authors could not obtain satisfying results, which are able to
overcome the above demonstrated shortcomings. However,
meanwhile enormous progress has been made and further
articles have been published, whereby these problems can be
solved.

6. Conclusions
Much time is passed since the first version of this article has
been written. Naturally, meanwhile the authors have obtained
different solutions to the above shown problems because of
their different view. Therefore, the authors consider it appro-
priate to outline their different ideas and results.
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6.1 Rüster’s solution
In contrast to the whole article, throughout this subsection the
metric signature (−,+,+,+) is used.

Einstein’s field equations with the cosmological constant
in their mixed-tensor representation form the necessarily ex-
isting conservation law of total energy, momentum, and stress
in the theory of general relativity [14],

κ
−1

Λδ
i
k = T i

k−κ
−1Gi

k . (13)

Hence, the respective energy and momentum densities can be
assigned to the respective tensors in Eqs. (13):

• T i
k is the energy-momentum density tensor of matter,

• −κ−1Gi
k is the energy-momentum density tensor of the

gravitational field,

• κ−1Λδ i
k is the total energy-momentum density tensor,

which means, that the total energy-momentum density tensor
equals the energy-momentum density tensor of matter plus
the energy-momentum density tensor of the gravitational field,
see Refs. [14, 15].

Up to now, the cosmological constant erroneously is re-
lated to the energy density of the vacuum. Thereby, the cos-
mological constant problem arises, see e.g. Ref. [16]. There
appears a huge mismatch between the theoretical and the
observed value of the vacuum energy density, which cannot
be overcome by keeping this hypothesis. Moreover, the vac-
uum energy is defined as the difference of the non-vanishing
ground-state energy of a quantum-mechanical particle system
and the minimum of the energy of this system, if it would
be described classically [17]. Since the theory of general rel-
ativity is a classical gravitational and no quantum theory, it
is questionable why the cosmological constant Λ should be
related to the energy density of the vacuum [18]. The findings
in Ref. [14] give a logical and reasonable explanation for the
cosmological constant being a constant parameter, which is
proportional to the total energy density with respect to the
metric under consideration, which in consequence also means,
that there are different cosmological constants with respect to
different metrics.

By considering the empty space-time around a star for
example, the total energy density equals the energy density of
the gravitational field,

κ
−1

Λ =−κ
−1G0

0 . (14)

The Newtonian value of the energy density of the gravitational
field around a star is always negative. Consequently, also the
energy density of the gravitational field is negative around a
star in the theory of general relativity, −κ−1G0

0 < 0. Hence,
the total energy density and thereby the cosmological constant
with respect to the metric of a star or of any other celestial
object is negative, Λ < 0, cf. Eq. (14). This fact explains the
dark matter phenomenon [14]. With this finding, flat rotation
curves of spiral galaxies are obtained in Ref. [19].

By making use of the Friedmann-Lemaı̂tre-Robertson-
Walker (FLRW) metric, its positive value of the cosmological
constant explains the accelerated expansion of our universe
and also the dark energy phenomenon being caused by its
total energy density, which is represented by its cosmological
constant [14].

Hence, the cosmological constant in general has abso-
lutely nothing to do with cosmology except in case the whole
universe is considered by using the FLRW metric.

Since the existing condition to Einstein’s field equations in
empty space-time, Gik = 0, would not fulfill the conservation
law given by Eqs. (13), it has to be novated, because in empty
space-time the total energy-momentum density tensor equals
the energy-momentum density tensor of the gravitational field,

κ
−1

Λδ
i
k =−κ

−1Gi
k ,

which can simply be transformed into

Gik =−Λgik , Rik = Λgik .

The metric of a point-like mass is then no longer given by
the Schwarzschild metric, but by the de Sitter-Schwarzschild
metric, see Ref. [19],

ds2 =−
(

1+
2Φ̃

c2

)
c2dt2+

dr2

1+ 2Φ̃

c2

+r2 (dθ
2 + sin2

θ dφ
2) ,

(15)

where

Φ̃ =−GM
r
− Λc2r2

6

is the modified Newtonian gravitational potential of a point-
like mass [18].

Eq. (15) is a metric, which is not homogeneous with re-
spect to the covariant or contravariant accelerations, but it
is homogeneous because of its constant scalar curvature,
R = 4Λ, see Sec. 5.2 in Ref. [20]. This latter criterion for
the homogeneity of a metric is decisive, since constant ac-
celerations in the neighborhood of a point in space-time of
a metric can only be achieved in the flat space-time of the
Minkowski metric. The accelerations would of course vanish
in this case. This is the reason why it is in fact senseless to
search for metrics with such a property. The homogeneity of
a metric must only be related to its scalar curvature.

Because of the conservation law (13), the contribution of
the cosmological constant cannot be neglected in principle,
otherwise one would violate it, so that the Schwarzschild
metric is only a very good approximation, which is valid
only on “short” distances, and the de Sitter-Schwarzschild
metric (15) is the exact solution.

A tiny value of the cosmological constant would barely
alter the perihelion shift of a planet in a solar system in com-
parison when the cosmological constant is neglected [21].
When light deflection is considered, one recognizes, that it
has absolutely no effect on the deflection angle at all [21].
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Considerations about the cosmological constant in the con-
text of compounded celestial objects and gravitational waves
are made in Ref. [18]. The cosmological constant can be
neglected by regarding gravitational waves, because it is no
source of them. It only contributes as a potential to the so-
lution of the wave in the linearized Einstein field equations,
which is of less importance. Gravitational waves curve the
background, see §35.13. in Ref. [22]. The energy and momen-
tum density carried by gravitational waves is up to a constant
given by the Einstein tensor of the background. Since the
Einstein tensor up to a constant represents the energy and mo-
mentum density of the gravitational field, this demonstrates
that gravitational waves are oscillations of the energy and mo-
mentum density of the gravitational field, which are caused
by oscillating mass densities.

6.2 Morozov’s solution
First of all, the boundary conditions [23] are specified, instead
of the Schwarzschild boundary conditions

g00 ≈ 1+
2ϕ

c2 .

As the limiting value at infinity of the solution of the lumped-
mass problem, only the flat metric is proposed, that is consis-
tent with the Schwarzschild condition,

ds2 =

(
1± 2ϕ

c2

)
c2dt2−

(
1± 2ϕ

c2

)−1

dx2−dy2−dz2 .

This metric satisfies the equivalence principle for the Schwarz-
schild solution, since the Schwarzschild metric transforms into
this metric in an infinitely small volume.

Moreover, according to Morozov, the gravitational field
equation should have the form [24],

∂Γα
µν

∂xα

−Γ
α

µβ
Γ

β

να
= κ

(
Tµν −

T
2

gµν

)
.
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