
1

20220203

A Class of Super Perfect Magic Squares of Order Six

Zhi Li and Hua Li

（lizhi100678@sina.com, lihua2057@gmail.com）

Absrtact: in the construction of magic square, single even magic square

is the most difficult. In this paper, we find a kind of super perfect magic

square of order 6, which has a variety of dynamic change patterns and

can be called a ten thousand square graph.
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Magic square, also known as vertical and horizontal chart, is

recognized as the "Luoshu" originated in China. It has a history of more

than 4300 years in China, and was first recorded in Dadaili, a historical

literature in the Spring and Autumn Period [1]. Magic square is a natural

number matrix with the same number of rows and columns, filled with

the natural numbers starting from 1 to the square of row or column. The

sum of the numbers on each row, column and two diagonals is equal.

The value of the number of rows or columns is called the order of magic

square. For example, "Luoshu" ("nine palace vertical and horizontal
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diagram") is a third-order magic square, which is filled with nine

numbers from 1 to 9 in the 3x3 grid, so that the sum of the numbers on

the row, column and diagonal is 15. People have made a lot of

discussions on magic squares [2] [3], and obtained many precious,

diverse, ingenious and interesting magic squares [4]. For example, the

central part of the seventh order magic square constructed by Yang Hui

1275 in the Southern Song Dynasty is a fifth order magic square, which

again contains a third-order magic square and so on[5].

Magic squares can be divided into odd, single even and double even

orders according to order number. In the construction of magic square,

the magic square of single even order is the most difficult. For thousands

of years, with the spread of magic square all over the world, it has

aroused widespread international interest. The concept of magic square

has been expanded and given more characteristics. Such as magic square

composed of prime numbers. In the study of magic squares, determining

the number of magic squares of each order is an unsolved problem [5]

[6]. The number of magic squares of order 5 and below is certain, but

the number of magic squares of order 6 is an astronomical number,

which cannot be solved even with powerful computers, and can only be

estimated at present. On the other hand, the construction of magic

squares with special properties or extensions has attracted the attention

of researchers. However, most of them focus on how to complete the
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static structure of magic square, and lack of further change exploration.

By observing the structure of Rubik's cube and its solution [7], we

found a class of super perfect magic squares of order 6, that is, magic

squares with multiple changes and mutual conversion. Since natural

number 6 is the smallest single even number, the construction of magic

square of order 6 has typical significance. The super perfect magic

square of order 6 found in this paper is highly changeable and can be

called a ten thousand square diagram.

1. Structural characteristics of super perfect 6th order magic

square

1.1 As the basic pattern, the magic square of order 6 of Figure 1 can be

regarded as composed of 3x3 areas, each area is a sub pattern of 2x2,

and the area can be divided into three parts: corner, edge and center;

1.2 Each area consists of four connected numbers, i.e. n; n+1; n+2; N + 3,

n is the natural number 1 ~ 33;

1.3 On the diagonal, the sum of the corresponding numbers of central

symmetry is equal. As shown in Figure 1, 23 + 14, 24 + 13, 17 + 20, 5 + 32,

6 + 31 and 19 + 18 are all equal to 37.

The following discussion, unless otherwise specified, is based on the

basic pattern of Figure 1.
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Figure 1. The basic pattern.

2.Dynamic change of super perfect magic square of order 6

For the convenience of narration, the corresponding numbers before and

after the transformation are placed in two brackets respectively, which

are corresponding and interchanged one by one according to the

position. For example:

（1，2，3）-> （6，7，8）

Indicates that 1 and 6 are interchangeable, 2 and 7 are interchangeable,

3 and 8 are interchangeable, etc.

2.1 Transformations that keep the numbers on the diagonal

unchanged

(1) Row and column exchanges

Another magic square of order 6 can be derived by swapping lines 1, 2

and 3 with lines 6, 5 and 4, that is:

（23，21，4，1，30，32）-> （5，7，34，36，15，14）and
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（22，24，2，3，31，29）-> （8，6，35，33，13，16）and

（27，28，17，18，12，9）-> （26，25，19，20，10，11）

The same for exchanging columns 1, 2 and 3 with columns 6, 5 and 4,

that is:

（23，22，27，26，8，5）-> （32，29，9，11，16，14）and

（21，24，28，25，6，7）-> （30，31，12，10，13，15）and

（4，2，17，19，35，34）-> （1，3，18，20，33，36）

(2) Exchanges within a single edge area

The following exchanges deduce a new magic square, namely:

（4，1）-> （2，3）, or

（9，12）-> （11，10）, or

（28，25）-> （27，26）, or

（34，35）-> （36，33）, or

(3) Exchanges of two edge areas simultaneously

Namely:

（4，2，34）-> （1，3，36）

(4) Exchanges in both the central area and the edge area simultaneously

Namely:

（17，19，35）-> （18，20，33）, or

（4，2，17，19）-> （1，3，18，20）, or

（28，27，17，18）-> （25，26，19，20）

(5) Exchanges in both the corner areas and the edge areas
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simultaneously

Namely:

（22，30，9，16，36，34，7，26）-> （21，29，11，15，33，35，

8，28）

The total number of magic squares generated from the above

transformations in Figure 1 is 65536.

2.2 Transformations that keep the secondary vertex number of the

diagonal unchanged

(1) Keep the top left and the bottom right corner numbers unchanged,

Figure 2 can be obtained through appropriate derivation from Figure 1,

that is:

（7，26，22，4，32，16，35）-> （5，25，22，3，30，15，36）

(2) Similarly, keeping the top left and the bottom right corner numbers

unchanged, figure 3 can also be obtained through appropriate derivation

from Figure 2, that is:

(7, 3, 30) - > (8, 4, 29), while 36, 33, 35 and 34 rotate 90 degrees

clockwise.

(3) Similarly, only four vertex numbers are replaced, and the numbers on

other diagonals remain unchanged. After proper derivation, the six

magic squares of order 6 in Fig. 4 ~ Fig. 9 can be obtained.
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Figure 2. The number 23 in the upper left corner B.

Figure 3. The number 23 in the upper left corner C.

Figure 4. The number 22 in the upper left corner A.
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Figure 5. The number 22 in the upper left corner B.

Figure 6. The number 22 in the upper left corner C.

Figure 7. The number 21 in the upper left corner A.
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Figure 8. The number 21 in the upper left corner B.

Figure 9. The number 21 in the upper left corner C.

A total of 9 different graphs can be formed, and 202752 magic squares of

order 6 can be generated.

2.3 Transformations when the secondary vertex numbers on the

diagonal are variable

A group of 9 magic squares can be deduced by simple derivation after

the number 23, 22 or 21 is exchanged with the number 24 in Fig. 1;

Similarly, another group of 9 magic squares can be deduced after the

number 29, 30 or 32 is exchanged with the number 31 in Fig. 1.



10

For example, Figure 10 is one of the magic squares formed by simple

derivation after replacing the secondary vertex numbers 24 and 13 with

23 and 14 in Figure 1, that is:

（23，26，35，30，14）-> （24，25，34，29，13）

Figure 10. The number 23 is in the secondary vertex on the top left corner.

A total of 16 groups of 144 kinds of about 3,244,032 magic squares of

order 6 can be obtained.

3.Conclusion and discussion

From the results shown above, we can see that the super perfect magic

square of order 6 has the characteristics of variety. Different

permutations can produce 16 groups and 144 patterns, and each pattern

can produce thousands of sixth order magic squares. The average

number of magic squares produced by each pattern is more than 10000,

and the cumulative number of sixth order magic squares produced is

about 3244032. Therefore, this kind of pattern can also be called ten

thousand square graph.
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The research of magic square has become a system, but similar super

perfect magic square needs further research.

The single even magic square is not easy to construct. The method found

in this paper is easy to construct and expand the single even magic

square by hand, which is worthy of further exploration.
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