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A polynomial power series is constructed for the one-sided step function using a
modified Taylor series, whose derivative results in a new representation for Dirac

d-function.

It’s well-known that the Kronecker delta arises whenever an inner-product is performed

between any two orthogonal vectors belonging to a real/complex vector space spanned by

a countably finite/infinite number of dimensions and the Dirac delta function replaces the

Kronecker delta if the dimensionality of vector space is uncountable - labeled by a continuous

real-parameter. The Kronecker delta and the Dirac delta function are respectively given as

below:
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For all properties and various existing representations of delta function, see Refs.

From the Heaviside unit step function,
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the delta function can be obtained as a derivative:
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The one-sided step function, say R™(r), can be defined as,
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and still, the delta function - on the positive real line - can be obtained as a derivative:
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In the present paper, a polynomial power series is constructed for R*(r), from which the
d(r) follows as a derivative as shown below:

Let f(z) be an analytical function defined on the real line with |f(0)| < co. Therefore,
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and hence, a modified Taylor series can be obtained as,

where, f0(z) = f(x).
Let f(z) =" V {r|r € R}, then,
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where,
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zero on entire R and f(0) =1ifr=0 = n(0)=1ifr =0.
Let
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then,
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The usefulness of the above polynomial power series representation for delta function
given in Eq. (13) is not clear at the present moment, but still it’s presented here as a
mathematical possibility.
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