A New Representation for Dirac δ-function

N Gurappa
Research Center of Physics, Vel Tech Dr.RR \mathcal{F} Dr.SR Engineering College, Avadi, Chennai, Tamil Nadu 600 062, India

A polynomial power series is constructed for the one-sided step function using a modified Taylor series, whose derivative results in a new representation for Dirac δ-function.

It's well-known that the Kronecker delta arises whenever an inner-product is performed between any two orthogonal vectors belonging to a real/complex vector space spanned by a countably finite/infinite number of dimensions and the Dirac delta function replaces the Kronecker delta if the dimensionality of vector space is uncountable - labeled by a continuous real-parameter. The Kronecker delta and the Dirac delta function are respectively given as below:

$$
\delta_{i j}=\left\{\begin{array}{l}
1 \text { if } i=j \tag{1}\\
0 \forall i \neq j
\end{array}\right.
$$

where, $i, j=1,2,3, \cdots$ and

$$
\delta\left(x-x_{0}\right)=\left\{\begin{array}{cc}
\infty & \text { if } x=x_{0} \tag{2}\\
0 & \text { if } x \neq x_{0}
\end{array}\right.
$$

where, $x \in \mathbf{R}=$ set of real numbers such that,

$$
\begin{equation*}
\int_{-\infty}^{+\infty} d x \delta\left(x-x_{0}\right)=1 . \tag{3}
\end{equation*}
$$

For all properties and various existing representations of delta function, see Refs. [1-4]. From the Heaviside unit step function,

$$
H(x)=\left\{\begin{array}{l}
1 \text { if } x>0 \tag{4}\\
0 \text { if } x<0
\end{array}\right.
$$

the delta function can be obtained as a derivative:

$$
\begin{equation*}
\delta(x)=\frac{d H(x)}{d x} \tag{5}
\end{equation*}
$$

The one-sided step function, say $R^{+}(r)$, can be defined as,

$$
R^{+}(r)=\left\{\begin{array}{l}
1 \text { if } r>0 \tag{6}\\
0 \text { if } r=0,
\end{array}\right.
$$

and still, the delta function - on the positive real line - can be obtained as a derivative:

$$
\begin{equation*}
\delta(r)=\frac{d R^{+}(r)}{d r} \tag{7}
\end{equation*}
$$

In the present paper, a polynomial power series is constructed for $R^{+}(r)$, from which the $\delta(r)$ follows as a derivative as shown below:

Let $f(x)$ be an analytical function defined on the real line with $|f(0)|<\infty$. Therefore,

$$
\begin{align*}
f(x)-f(0) & =\frac{1}{1!} \int_{0}^{x} d t f^{\prime}(t) \\
& =\frac{x}{1!} f^{\prime}(x)-\frac{1}{2!} \int_{0}^{x} d t f^{\prime \prime}(t) \\
& =\frac{x}{1!} f^{\prime}(x)-\frac{x^{2}}{2!} f^{\prime \prime}(x)+\frac{x^{3}}{3!} \int_{0}^{x} d t f^{\prime \prime \prime}(t) \\
& =-\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{n}}{n!} f^{(n)}(x) \tag{8}
\end{align*}
$$

and hence, a modified Taylor series can be obtained as,

$$
\begin{equation*}
f(0)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n}}{n!} f^{(n)}(x) \tag{9}
\end{equation*}
$$

where, $f^{(0)}(x) \equiv f(x)$.
Let $f(x)=x^{r} \forall\left\{r \mid r \in \mathbf{R}^{+}\right\}$, then,

$$
\begin{align*}
f(0) & =x^{r}\left(1+\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!} \prod_{j=1}^{n}(r+1-j)\right) \\
& \equiv x^{r} \eta(r) \tag{10}
\end{align*}
$$

where,

$$
\begin{equation*}
\eta(r):=1+\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!} \prod_{j=1}^{n}(r+1-j) \tag{11}
\end{equation*}
$$

$f(0)=0 \forall\left\{r \in \mathbf{R}^{+} \mid r \neq 0\right\} \Longrightarrow \eta(r)=0 \forall\left\{r \in \mathbf{R}^{+} \mid r \neq 0\right\}$, because, x^{r} is not identically zero on entire \mathbf{R} and $f(0)=1$ if $r=0 \Longrightarrow \eta(0)=1$ if $r=0$.

Let

$$
\begin{equation*}
R^{+}(r):=1-\eta(r)=-\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!} \prod_{j=1}^{n}(r+1-j) \tag{12}
\end{equation*}
$$

then,

$$
\begin{equation*}
\delta(r)=\frac{d R^{+}(r)}{d r}=-\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!} \prod_{j=1}^{n}(r+1-j) \sum_{k=1}^{n}(r+1-k)^{-1} . \tag{13}
\end{equation*}
$$

The usefulness of the above polynomial power series representation for delta function given in Eq. (13) is not clear at the present moment, but still it's presented here as a mathematical possibility.

I thank Dr. G. Ramachandraish, Dr. B. Srinivasa Nara Singh and Dr. S. Venkatesh for useful comments.
[1] P.A.M. Dirac, The Principles of Quantum Mechanics (Oxford University Press, London, 1958).
[2] M.J. Lighthill, Introduction to Fourier Analysis and Generalized Functions, (Cambridge University Press, Cambridge, 1964).
[3] J. Lützen. The Prehistory of the Theory of Distributions, (Springer-Verlag, New York, 1982).
[4] K. Watanabe, Integral Transform Techniques for Green's Function, Lecture Notes in Applied and Computational Mechanics, 71, Series Eds. F. Pfeiffer and P. Wriggers, (Springer Cham Heidelberg New York Dordrecht London, 2013).

