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Abstract

The quasi-classical behavior of a charged particle
moving in a magnetic field is derived by the WKB ap-
proximation and wave-packet method from the Klein-
Gordon equation with the Schwinger radiative term.
The lifetime of the wave-packet state is calculated for
a constant magnetic field. The finite lifetime of the
trajectory is the proof of the nonstationary motion of
charges moving in magnetic field.

1 Introduction

The problem of the influence of the bremsstrahlung on a
charged particle moving in an electromagnetic field has been
a subject of interest for many years (Cloetens, 1969; Grandy,
1970; Jaffe, 1972; Sen Gupta, 1972; Sorg, 1971; Shen, 1972a;
Shen, 1972b; Rowe, 1975; Rowe, 1978). The natural approach to
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solve this problem is to derive the equation of motion involving
the bremsstrahlung term and the Lorentz-Dirac equation is
generally considered as the most appropriate equation describing
the physical process. It was obtained on basis of classical
electrodynamics by decomposing the energy momentum tensor
of the retarded self field into the sum that renormalizes mass
and a therm that gives radiation reaction (Dirac, 1938).

A theoretical re-derivation of this equation based on an ab-
sorber theory was provided by Wheeler and Feynman (Wheeler,
et al., 1945). Nevertheless the Lorentz-Dirac equation by the
different methods has certain imperfections which needs special
discussions and approaches not involved in the theory. The dif-
ficulties are as follows: a) The Lorentz-Dirac equation involves
the derivative of acceleration and it needs an extra-conditions
in addition to the Newtonian initial condition to determine the
motion. b) It gives runaway solutions which can be avoided only
by pre-acceleration (Landau, et al. 1988).

In certain cases it implies that the external energy supplied to
the particle goes only into kinetic energy and radiation is created
from an acceleration self-energy which becomes more and more
negative (Tse Chin, 1971).

The purpose of the present article is not of the re-derivation
of the Lorentz-Dirac equation without imperfections but to
derive by the combination of the WKB approximation and wave
packet method the classical behavior of a charged radiating
particle from the Klein-Gordon equation with the Schwinger
radiative term. Our problem is relate to the method Censor
who has considered the quantum mechanical problem of motion
of particles in a dissipative system using wave-packet and eikonal
representation of the wave function (Censor, 1979). The natural
idea which is presented in the Censor article and which is
accepted in our article is the stipulation that the group velocity
must be real quantity in a dissipative system using wave-packet
and eikonal representation of the wave function (Censor, 1979).
We follow the author article (Pardy, 1985)

2 Formulation of the problem and solution

Our starting point is the Klein-Gordon equation with the
Schwinger mass operator, or, in other words, with the radia-
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tive term (Schwinger, 1973; Tsai, 1973):

(ΠµΠµ +m2 + δm2)ϕ = 0, (1)

where

Πµ =
1

i
∂µ − eqAµ (2)

with

∂µ =
∂

∂xµ
, xµ ≡ (ct,x) ≡ (x0,x) ≡ (−x0,x) (3)

and

q =

(
0 −i
i 0

)
. (4)

The symbol Aµ is four-vector the electromagnetic potential,
q is the charge matrix in the charge space and ϕ is the two-
component wave function and the term δm2 is the radiative
correction of the following mathematical form (Schwinger, 1973;
Tsai, 1973):

δm2 = ie2
∫

(dk)

(2π)4
×

(2Π− k)µ
1

k2
1

Π− k)2 +m2
(2Π− k)µ + C.T., (5)

where C.T. are the so called contact terms (Schwinger, 1973;
Tsai, 1973).

The eigenvalues of the operator (5) has been calculated for a
constant magnetic field by Tsai to give

δm2 = κ+ iλ, (6)

where (with h̄ = 1, n = 0,1, 2, ...) and κ = Re δm2(E = 0,H ≡
(0, 0, H = const)), or,

κ =
α

π
m2

{(
eH

m2

)(
4

3
lg

m2

2eH
− 7

12

)
+

(2n+ 1)
eH

m2

(
8

3
ln

m2

2eH
− 32

5
lg 2 +

343

90

)}
(7)
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and λ = Im δm2(E = 0,H ≡ (0, 0, H = const)), or,

λ = −αm2×

{
4n

3

(
eH

m2

)
+

(
eH

m2

)3(
− 2

15
(2n+ 1)2 − 4

3
(2n+ 1) +

22

15

)}
.

(8)
In order to find some information concerning the classical

motion of the particle, we replace the operator δm2 in eq. (1) by
its eigenvalues and then use the well known fact that the classical
limit of the quantum-mechanical equations can be obtained by
the WKB approximation of the form:

ϕWKB = e
i
h̄S(a0 + h̄a1 + h̄2a2 + ...). (9)

It is easy to see that the zero-order approximation

ϕ(0)WKB = a0e
i
h̄S. (10)

generates the Hamilton-Jacobi equation

(P µ + eAµ)(Pµ + eAµ) +m2 + δm2 = 0 (11)

with (eq)′ = −e, where the latter incorporates the charge
assignment of particle with charge e, P µ = ∂µS is the generalized
momentum. However, the expression m2+δm2 in the Hamilton-
Jacobi equation is a complex number and it therefore makes the
Hamilton-Jacobi equation meaningless in the classical sense.

To overcome this obstacle in order to get the classical infor-
mation on the particle motion we will combine the zero-order
WKB approximation (10) with the wave packet method.

We can obviously write in the sufficiently space-time interval
the following formula (Pardy, 1985):

S ≈ S0 +
∂S

∂x
+
∂S

∂t
, (12)

or using the Hamilton-Jacobi equation P = ∂S/∂x and −H =
∂S/∂t, we have

S ≈ S0 + P · x−Ht, (13)

4



where P is the generalized momentum of a particle and H is
its energy. It is obvious for |δm2| � |m2| and A0 = 0, that
(p = P + A)

H(A0 = 0) = (p2 +m2 + δm2)1/2 ≈ E +
κ

2E
+
i

2

λ

E
, (14)

where E = −(p2 +m2)1/2 for bound states.
After insertion of eq. (14) into eq. (12) and then eq. (12)

into eq. (10) we get

ϕ(0)WKB ≈ a0e
i
h̄ [S0+P·x−Et]e

iλ
2Eh̄ te

iκ
2Eh̄ . (15)

which means that the particle with the complex mass is in the
quasi-stationary state which decays according to the decaying
law expλ/2Eh̄t with the decay rate

γ = − λ

h̄E
; E < 0; λ ≥ 0, (16)

where the formula (16) is in agreement with formula (69) in
monograph (Akhiezer, et al., 1969). To get further information,
we use the obvious approximation:

H ≈ H0 +
∂H

∂P
· (P−P0) + ... = H0 + v · (P−P0) + ..., (17)

where we have used the Hamilton equation v = ∂H/∂P, v being
the velocity of of th particle with momentum P. Then after
insertion of eq (17) into eq (13) we have:

S ≈ S0 −H0t+ P0 · x + (x− vt) · (P−P0). (18)

Now, we construct the wave packet solution of eq. (1) by
P-integration of eq. (10) with the exponent (18). We find

ϕ = a0 exp

{
i

h̄
(S0 −H0t+ P0 · x)

}
×∫

dPg(P) exp

{
i

h̄
(x− vt) · (P−P0)

}
, (19)

where g(P) is the suitable weight function which forms the
envelope of the wave packet G(P0,x− vt), or,
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G(P0,x− vt) =

∫
dPg(P) exp

{
i

h̄
(x− vt) · (P−P0)

}
(20)

The function ϕ in eq. (19) describes a wave packet with a
carrier wave

a0 exp

{
i

h̄
(S0 −H0t+ P0 · x)

}
(21)

and an envelope G(P0,x−vt) which moves at constant velocity
according to the law x = vt in the small space-time interval.

We identify the motion of the envelope with their classical
motion of the particle moving at the velocity v. But at this stage
of the investigation, v is the complex quantity and therefore it
does not mean that it is the physical velocity. To avoid this
obstacle in order to get the physically meaningful description of
reality, we stipulate the transformation

P0 → P0 + iε, (22)

where ε is to be determined from eq.

Im v = 0. (23)

Using

v(P0+iε,m
2+δm2) ≈ v(P0,m

2)+iε
∂v

∂P
+iλ

∂v

∂m2
+κ

∂v

∂m2
. (24)

For |δm2| � |m2|, |ε| � |P0|, we get after the application of
the requirement (23) the following equation for ε:

∂vi
∂Pj

εj + λ
∂vi
∂m2

= 0. (25)

Then instead of equation (24) we have

v = v(P0, (m∗)2); (m∗)2 = m2 + κ. (26)

The last formula (m∗)2 = m2 +κ can be easily interpreted in
such a way that the radiation of a charged particle moving in an
electromagnetic field changes its mass not only in the quantum
theory but also in its the quasi-classical limit.
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The transformation (22) leads to the transformation

i

h̄
v ·P0t→ +

i

h̄
v ·P0t−

2v · ε
2h̄

t, (27)

which necessitates the time dependence of the wave function of
the form

ϕ = exp−Γ

2
t, (28)

where

Γ = γ +
2v · ε
h̄

(29)

and may be easy to specify the quantity Γ using the obvious
relations

(δij − vivj)εj =
1

2
λ(p2 +m2)−1/2vi (30)

v · ε =
λ

2

v2

1− v2
(p2 +m2)−1/2. (31)

Then with v = p(p2 +m2)−1/2, we have

Γ = γ +
2v · ε
h̄

=
λ

h̄

(p2 +m2)1/2

m2
. (32)

The quantity Γ is here interpreted as a lifetime of a wave
packet moving at velocity v in a magnetic field on the orbit
corresponding to the quantum number n.

3 Discussion

The radiation of the accelerated particle with the nonzero charge
is the key for understanding certain phenomena in modern
physics and astrophysics, e.g. accelerators of particle, pulsars
and so on.

We have seen that by representing the motion of the particle
by the wave packet, corresponding to the solution of the Klein-
Gordon equation with the Schwinger radiative bremsstrahlung
term, the particle state is quasi-stationary with the decay rate
given by eq. (31). The result (31) is not in contradiction with
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the relation (15) because the decay rate (15) corresponds to the
quasi-stationary state of the wave function

ϕ(0)WKB = a0e
i
h̄S, (10)

while the decay rate (31) corresponds to the quasi-stationary
state of the wave packet, or, in other words to different real
situation.

The derived results in the present paper suggest the classical
picture of the motion of the particle undergoing the radiation
reaction. In the very small space-time interval a particle with
mass (m2 + κ)1/2 is moving with velocity v and it remains at
this velocity only for time Γ, Γ being the decay rate of the wave
packet (31) and after time γ the particle changes its velocity.
The change of velocity is caused by the complex mass of the
particle which corresponds to the influence of radiation of the
particle on the particle motion. The change of velocity leads to
the stochastic change of trajectory which is equivalent to the
Zitterbewegung of particle in magnetic field of LHC.
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