QUADRUPLET SUMS OF QUARK-LEPTON MASSES

BRUCE ZIMOV

Abstract

Adding the charm quark to the Koide triplet forms a quadruplet that approximates $\frac{2}{5}$. The precision of this result is accurate to $\mathcal{O}\left(10^{-5}\right)$. We find that the charm mass sits at a minimum of a general quadruplet curve. Using this calculated charm mass and the heavy leptons which are directly measured, we predict the mass of the up, down, strange, and bottom quarks. Determining mass in this way avoids the inconsistency of mixing the running mass with the pole mass for the sums of these quark masses and serves as a prediction for more accurate techniques.

1. Introduction

The well-known Koide formula [Koi82] [Koi83] is an empirical formula for the sum of the lepton masses accurate to $\mathcal{O}\left(10^{-5}\right)$.

$$
\begin{equation*}
K_{l} \equiv \frac{m_{e}+m_{\mu}+m_{\tau}}{\left(\sqrt{m_{e}}+\sqrt{m_{\mu}}+\sqrt{m_{\tau}}\right)^{2}}=\frac{2}{3} \tag{1}
\end{equation*}
$$

The number, $\frac{2}{3}$, is either a coincidence or represents something structural about the empirical masses of the leptons. The search for the number, $\frac{2}{3}$, using the quark masses has not been as accurate. Rodejohann and Zhang [RZ11] sorted the quarks into two groups according to heavy and light by grouping the charm quark with the heavy quarks and the strange quark with the light quarks. This weighted grouping is closer to $\frac{2}{3}$ than the vertical (family) grouping or the horizontal grouping but still not as successful as the Koide formula for the leptons. Kartavtsev [Kar11] suggested summing all six quark masses.

$$
\begin{equation*}
K_{q} \equiv \frac{\sum m_{q}}{\left(\sum \sqrt{m_{q}}\right)^{2}} \tag{2}
\end{equation*}
$$

Gao \& Li [GL16] pointed out that the quarks use different definitions of quark mass. The up,down, and strange quarks use the current quark mass, charm and bottom use the running mass at different energy scales, and the top quark is measured by its pole mass. They conclude that it is meaningless to combine the masses of these various quarks without distinguishing these differences.
Cao [Cao12] conjectured that since the heavy quark sum is only $.3 \%$ different than the Koide heavy lepton sum, the light lepton sum of the neutrino masses are within similar tolerance of the light quark sum. Cao's conjecture suggests that sums different than the number, $\frac{2}{3}$, could be physically relevant.

[^0]In this note, we find a novel relation in the quark-lepton mass data. We first find sums for the charm quark with accuracy to $\mathcal{O}\left(10^{-5}\right)$ by only using directly measured quantities in its construction. Our approach generalizes the notion of a grouping to include any possible groupings instead of being limited to the usual weighted, vertical, or horizontal grouping. By relaxing the grouping constraint, we widen the search for structure or coincidence in the data. We use the masses referenced in Zyla [ZPDG20]. We do not consider the neutrinos.

We adopt the following notation. Equation (1) will be represented as

$$
(e \mu \tau)=\frac{2}{3}
$$

for example. Equation (2) with four parameters instead of six will be represented as

$$
\left(q_{1} q_{2} q_{3} q_{4}\right)=\lambda
$$

for example.
We list the masses for the six quarks and three leptons in Table 1. The values of all of the triplet and quadruplet data we searched are listed in lexical order for the convenience of the reader in Table 2 of Appendix A. Only the lepton masses and the top quark mass are directly measurable. The other quark masses are usually determined by calculating the running mass at a particular energy scale. We take another approach. We find Koide-like relations using four parameter sums that derive these other masses, (up, down, strange, charm, bottom), from the directly measurable masses. Extending the Koide formula by adding a single quark to the lepton sum is fruitful. For example, the quadruplet $(e \mu \tau c)=\frac{2}{5}$ in Table 2 has a precision of $\mathcal{O}\left(10^{-5}\right)$ similar to the Koide formula (1). Is $\frac{2}{5}$ any more or less structural than $\frac{2}{3}$? This is the kind of question that Cao's conjecture raises.

TABLE 1. Masses of the quark-lepton mass matrix in GeV / c^{2}.

Particle	Mass	Particle	Mass	Particle	Mass
up	$0.00216_{-.00026}^{+.0049}$	charm	$1.27 \pm .02$	top	$172.76 \pm .30$
down	$0.00467_{-.00017}^{+.0048}$	strange	$0.093_{-.005}^{+.011}$	bottom	$4.18_{-.02}^{+.03}$
electron	0.0005109989461	muon	0.1056583745	tau	$1.77686 \pm .00012$
	± 0.0000000000031		± 0.0000000024		

2. Calculation of the quark masses

The Koide triplet $(e \mu \tau)$ has a value of $0.66666 \approx 2 / 3$, correct to $\mathcal{O}\left(10^{-5}\right)$. We find that the charm quark sum constructed by adding a quark to the Koide triplet preserves this level of precision. Let

$$
\begin{equation*}
(e \mu \tau q)=\frac{m_{e}+m_{\mu}+m_{\tau}+m_{q}}{\left(\sqrt{m_{e}}+\sqrt{m_{\mu}}+\sqrt{m_{\tau}}+\sqrt{m_{q}}\right)^{2}}=\lambda \tag{3}
\end{equation*}
$$

for some quark q. The precision of the $(e \mu \tau c) \lambda$-value of $0.4 \approx 2 / 5$ is correct to $\mathcal{O}\left(10^{-5}\right)$.

The mass of the charm quark can be determined based on the lepton masses alone by examining features of the

$$
(e \mu \tau q)=\lambda
$$

curve for quark mass q. We find the minimum λ value of this curve to be

$$
\lambda=.4
$$

$$
\text { at zero slope and } q=1.25534
$$

which can be identified with the mass of the charm quark.
Next we use the lepton masses and the calculated charm quark mass to determine the mass of the strange quark. We solve

$$
(e \mu \tau c)=\frac{\sqrt{(q c e)}}{2}
$$

for q. We find that

$$
q=.0964735
$$

which can be identified with the mass of the strange quark.
Similarly, the mass of the down quark can be determined based on the lepton masses along with the calculated charm quark mass. We solve

$$
(e \mu \tau c)=\frac{\sqrt{(q \mu e)}}{2}
$$

for q. We find that

$$
q=.0047
$$

which can be identified with the mass of the down quark.
The mass of the up quark can be determined using the calculated charm and strange masses along with the lepton masses. We solve

$$
(e \mu \tau c)=\frac{\sqrt{(\tau s q e)}}{2}
$$

for q. We find that

$$
q=.002105
$$

which can be identified with the mass of the up quark.
Using the calculated strange and down quark masses along with the calculated charm mass and the empirical lepton masses, we can determine in a similar way the bottom mass.

The mass of the bottom quark can be determined by solving

$$
(s d \tau c)=\frac{\sqrt{(q s \mu)}}{2}
$$

for q. We find that

$$
m_{q}=4.17994
$$

which can be identified with the mass of the bottom quark.
Extending the Koide formula by adding a single quark to the lepton sum is fruitful. There are oddities. For example, if we use the directly measured mass of the top quark in the following expression we have

$$
(e \mu t s)=\frac{m_{e}+m_{\mu}+m_{t}+m_{s}}{\left(\sqrt{m_{e}}+\sqrt{m_{\mu}}+\sqrt{m_{t}}+\sqrt{m_{s}}\right)^{2}}=\frac{m_{s}}{m_{\mu}}
$$

3. Summary

The charm mass prediction can be seen as a minimum of the ($e \mu \tau q$) curve.

The precision for all the predictions comes from the precision of the τ lepton, viz. $\mathcal{O}\left(10^{-5}\right)$. First, the strange and down masses can be predicted from the charm mass and the heavy leptons. Once the strange and down masses are in hand, then they along with the charm mass and heavy leptons are used to predict the up and bottom masses.

In general, a quark-lepton quadruplet can be equated to another quark-lepton triplet or quadruplet in the following way:

$$
2 \cdot \frac{\left(q_{1}+q_{2}+q_{3}+q_{4}\right)}{\left(\sqrt{q_{1}}+\sqrt{q_{2}}+\sqrt{q_{3}}+\sqrt{q_{4}}\right)^{2}}=\sqrt{\frac{\left(q+q_{5}+q_{6}+q_{7}\right)}{\left(\sqrt{q}+\sqrt{q_{5}}+\sqrt{q_{6}}+\sqrt{q_{7}}\right)^{2}}}
$$

When we solve the quadratic for the general quark mass, q, we get

$$
\begin{equation*}
q=\frac{\left(\sqrt{k_{2}^{2} k_{1}-k_{3}\left(k_{1}-1\right)} \pm k_{1} k_{2}\right)^{2}}{\left(k_{1}-1\right)^{2}} \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
& k_{1}=\left(2 \cdot \frac{\left(q_{1}+q_{2}+q_{3}+q_{4}\right)}{\left(\sqrt{q_{1}}+\sqrt{q_{2}}+\sqrt{q_{3}}+\sqrt{q_{4}}\right)^{2}}\right)^{2} \\
& k_{2}=\sqrt{q_{5}}+\sqrt{q_{6}}+\sqrt{q_{7}} \\
& k_{3}=q_{5}+q_{6}+q_{7}
\end{aligned}
$$

The charm mass point on the (e $\mu \tau q$) curve acts like a dividing point between the light quarks and the heavy quarks. The strange, up, and down mass predictions are less than the charm mass and use the negative solution to equation (4). The bottom mass prediction is greater than the charm mass and uses the positive solution to equation (4).

References

[Cao12] F. Cao, Phys.Rev. D 85 (2012), 113003. http://arXiv.org/abs/1205.4068. $\uparrow 1$
[GL16] Guan-Hua Gao and Nan Li, Eur.Phys.J. C 76 (2016), 139. $\uparrow 1$
[Koi82] Y. Koide, Lett.Nuovo Cim. 34 (1982), 201. $\uparrow 1$
[Koi83] \qquad , Phys. Lett. B 120 (1983), 161. $\uparrow 1$
[Kar11] A. Kartavtsev (2011). http://arXiv.org/abs/1111.0480. $\uparrow 1$
[RZ11] W. Rodejohann and H. Zhang, Phys.Lett. B 698 (2011), 152. http://arXiv.org/abs/1101. 5525. $\uparrow 1$
[ZPDG20] P.A. Zyla and Particle Data Group, Prog. Theor. Exp. Phys. (2020). 083C01 (2020) and 2021 update. $\uparrow 2$

Appendix A.

TABLE 2. Triplet and Quadruplet K_{q} sums of the quark-lepton mass matrix.

	Triplet Sum		Triplet Sum		Quad Sum		Quad Sum		Quad Sum
$t b \tau$	0.65475	bse	0.7595	$t b \tau c$	0.57788	tcue	0.81487	bsud	0.70477
$t b c$	0.66949	$b \mu u$	0.73457	$t b \tau s$	0.63156	tcud	0.84098	bsue	0.73096
$t b s$	0.73751	$b \mu d$	0.72187	$t b \tau \mu$	0.6301	tcue	0.84633	bsde	0.71835
$t b \mu$	0.73565	bue	0.74901	$t b \tau u$	0.65109	tcde	0.84377	buud	0.69547
$t b u$	0.76236	bud	0.89795	$t b \tau d$	0.64939	$t s \mu u$	0.90555	buиe	0.7211
$t b d$	0.76018	bue	0.9363	tbтe	0.65297	$t s \mu d$	0.9027	bude	0.70875
tbe	0.76474	$b d e$	0.91778	$t b c s$	0.64548	tspe	0.90868	bude	0.87955
$t \tau c$	0.72207	$\tau c s$	0.41073	$t b c \mu$	0.64397	tsud	0.9396	$\tau c s \mu$	0.33993
$t \tau s$	0.79922	$\tau c \mu$	0.40645	$t b c u$	0.6657	tsue	0.94595	$\tau c s u$	0.39753
$t \tau \mu$	0.79711	$\tau c u$	0.48535	$t b c d$	0.66393	tsde	0.94291	тcsd	0.39174
$t \tau u$	0.82749	$\tau c d$	0.47739	tbce	0.66764	thud	0.93689	$\tau c s e$	0.40416
$t \tau d$	0.82502	тсе	0.49446	$t b s \mu$	0.70793	tرue	0.94321	$\tau с \mu u$	0.39349
tre	0.83021	$\tau s \mu$	0.51267	$t b s u$	0.73311	$t \mu d e$	0.94019	$\tau c \mu d$	0.38779
tcs	0.81959	$\tau s u$	0.65979	tbsd	0.73107	tude	0.97946	$\tau с \mu e$	0.4
$t c \mu$	0.81739	тsd	0.64386	tbse	0.73536	$b \tau c s$	0.31646	тcud	0.46063
$t c u$	0.84901	$\tau s e$	0.6783	$t b \mu u$	0.73127	$b \tau c \mu$	0.31438	тсue	0.47679
$t c d$	0.84643	$\tau \mu u$	0.64869	$t b \mu d$	0.72923	$b \tau c u$	0.34905	$\tau c d e$	0.46904
tce	0.85184	$\tau \mu d$	0.6332	tbue	0.73352	$b \tau c d$	0.34584	$\tau s \mu u$	0.48977
$t s \mu$	0.91166	$\tau \mu e$	0.66666	tbud	0.75558	$b \tau c e$	0.35266	$\tau s \mu d$	0.47989
$t s u$	0.94912	тud	0.85094	tbue	0.7601	$b \tau s \mu$	0.38328	$\tau s \mu e$	0.5012
$t s d$	0.94606	тue	0.90524	tbde	0.75794	$b \tau s u$	0.43524	тsud	0.61087
tse	0.95248	$\tau d e$	0.8789	$t \tau c s$	0.69502	$b \tau s d$	0.43036	тsue	0.64261
$t \mu u$	0.94637	cs μ	0.47577	$t \tau c \mu$	0.69331	$b \tau s e$	0.44075	тsde	0.6273
$t \mu d$	0.94333	csu	0.62462	tгcu	0.71779	$b \tau \mu u$	0.43149	$\tau \mu u d$	0.60113
$t \mu e$	0.94971	csd	0.60766	$t \tau c d$	0.7158	$b \tau \mu d$	0.42668	$\tau \mu и е$	0.63199
tud	0.98279	cse	0.64451	tгce	0.71998	$b \tau \mu e$	0.43692	$\tau \mu d e$	0.61711
tue	0.98959	cرu	0.61361	$t \tau s \mu$	0.76566	bтud	0.48898	тude	0.82522
$t d e$	0.98633	chd	0.59718	$t \tau s u$	0.79423	bтue	0.50169	csuи	0.45223
$b \tau c$	0.35618	сле	0.63288	$t \tau s d$	0.7919	$b \tau d e$	0.4956	csud	0.44222
$b \tau s$	0.44614	cud	0.82806	tıse	0.79678	$b c s \mu$	0.39088	csue	0.46392
$b \tau \mu$	0.44223	cue	0.88969	$t \tau \mu u$	0.79214	bcsu	0.4468	csud	0.57259
$b \tau u$	0.50829	cde	0.85972	$t \tau \mu d$	0.78982	bcsd	0.44151	csue	0.60617
$b \tau d$	0.50208	spu	0.43882	tт μ e	0.79468	bcse	0.45279	csde	0.58997
$b \tau e$	0.51531	sud	0.41692	tтud	0.81978	bcuu	0.44276	cuud	0.56316
$b c s$	0.45865	sue	0.46764	tгue	0.82492	$b c \mu d$	0.43754	сяие	0.59573
$b c \mu$	0.45443	sud	0.56654	$t \tau d e$	0.82246	bcдe	0.44865	cude	0.58003
$b c u$	0.52652	sue	0.68382	$t c s \mu$	0.7847	bcud	0.50528	cude	0.79903
$b c d$	0.51968	sde	0.6264	tcsu	0.8144	bcue	0.51925	suud	0.37041
$b c e$	0.53426	mud	0.58139	$t c s d$	0.81198	bcde	0.51255	sцue	0.41194
$b s \mu$	0.61214	$\mu u e$	0.69737	tcse	0.81705	bspu	0.5917	sude	0.39217
bsu	0.74473	$\mu d e$	0.6405	tс $\mu \boldsymbol{u}$	0.81222	bspd	0.58264	sude	0.51273
$b s d$	0.73176	ude	0.38875	$t c \mu d$	0.80981	bspe	0.60199	$\mu u d e$	0.52833

Calimesa Research Institute, 33562 Yucaipa Blvd 4-321, Yucaipa, CA 92399, USA
Email address: katcha997@aol.com

[^0]: Date: December 15, 2021.

