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Abstract

It is proved that

· For any positive integer d, there are infinitely many prime gaps of size

2d.

· Every even number greater than 2 is the sum of two prime numbers.

Our method from the analysis of distribution density of pseudo primes in spe-

cific set is to transform them into upper bound problem of the maximum gaps

between overlapping pseudo primes, then the two are essentially the same

problem.
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1. Introduction

In number theory, Polignac’s conjecture was made by Alphonse de Polignac

in 1849 and states:

For any positive even number n, there are infinitely many prime gaps of

size n. In other words: There are infinitely many cases of two consecutive prime

numbers with difference n. The case n = 2, it is the twin prime conjecture.

Although the conjecture has not yet been proven or disproven for any

given value of n, in 2013 an important breakthrough was made by Zhang

Yitang who proved that there are infinitely many prime gaps of size n for

some value of n < 70, 000, 000. Later that year, James Maynard announced a

related breakthrough which proved that there are infinitely many prime gaps
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of some size less than or equal to 600. As of April 14, 2014, one year after

Zhang’s announcement, according to the Polymath project wiki, n has been

reduced to 246. Further, assuming the Elliott–Halberstam conjecture and its

generalized form, the Polymath project wiki states that n has been reduced to

12 and 6, respectively [6].

Goldbach’s conjecture is one of the oldest and best-known unsolved prob-

lems in number theory and all of mathematics. It was proposed by the German

mathematician Christian Goldbach in a letter to Leonhard Euler on 7 June

1742. It states that every even whole number greater than 2 is the sum of two

prime numbers. The conjecture has been shown to hold for all integers less

than 4× 1018, but remains unproven despite considerable effort [3].

In this paper, we will prove the above two conjectures.

· Theorem 1. For any positive integer d, there are infinitely many prime

gaps of size 2d.

· Theorem 2. Every even number greater than 2 is the sum of two prime

numbers.

Here is a brief introduction to the main ideas of proofs.

In the study of a + b problems, the Pω (x, z) type sieve function is com-

monly used. Since Brun obtained 9 + 9, many research results on a + b type

propositions have corresponding forms of twin prime number problem. For

example, the Brun-Buchstab sieve method for deriving the 5 + 5 problem can

also be used to prove with almost the same complexity that there are infinite

positive integers n such that the number of prime factors for n and n+ 2 does

not exceed 5. But the complexity of these two problems shows a significant dif-

ference when the Selberg sieve is used to estimate the upper bound of Pw (x, z).

At this point, the two problems can be linked together through the monotonic

principle in the sieve method.

The abstract form of the sieve method is usually referred to as

S (A,P) := A \
⋃
p∈P
Ap,

where A is a set of integers, P is a set of prime numbers, and Ap is a subset

of all elements in A that can be divisible by p. It is easy to see from the

Inclusion-Exclusion Principle that

#S (A,P) =
∑
Q⊆P

(−1)#Q#AQ,

For any subset Q of P,

AQ :=
⋂
p∈Q
Ap.

It can be seen that the sieve method is essentially calculating the number of

remaining elements in the Difference of a set and the Union. The basic problem
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of the sieve method is to estimate the upper bound and positive lower bound

of the sieve function (if any).

In typical scenarios, the modern definition of the sieve function is

S (A,P, z) := {a ∈ A : ∀p|P (z) , p - a} ,

where

P (z) =
∏
p ∈ P
p < z

p.

It is easy to see that

#S (A,P, z) =
∑
a ∈ A

(a, P (z)) = 1

1,

That is to calculate the number of elements in A that are coprime with P (z).

So when using the sieve method to study twin prime numbers and the Goldbach

problem, that is A = {i (i− 2) : i ≤ w} and A = {i (w − i) : i ≤ w}.
The form of the sieve function on a continuous interval will be like

S (0, P ;P ) := {0 ≤ a < P : (a, P ) = 1} ,

where

P =
∏
p∈P

p,

P is composed of the first n odd prime numbers

P := {p1, p2, p3, · · · , pn} .

When n is sufficiently large, for any positive integer d, if h and h− d are

both elements of S (0, P ;P ), then there must exist two odd numbers q1 and q2
in S (0, P ;P ) that are coprime with P and with a gap of size 2d, such as:

q1 = 2h− P ,

q2 = 2 (h− d)− P .

It is easy to know that a sufficient condition for q1 and q2 to be prime numbers

is that their values are both on the interval
[
pn, p

2
n + 2pn

]
.

Defining product functions

v (a) =
∏
p ∈ P

a ≡ 0 (p) ∨ a ≡ d (p)

p.
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Then, for the problem of the gap between prime numbers, there is a sieve

function that removes multiple congruence classes

S2 (0, P ;P, v (a)) := {0 ≤ a < P : (v (a) , P ) = 1} .

In this way, the problem of the gap between two prime numbers is trans-

formed into the problem of the distribution of elements in the S2 sieve. Con-

sidering the gap between adjacent elements in S2 sieve, if the maximum gap

between adjacent elements in S2 sieve is not greater than p2n
2 , then there must

be at least one element h∗ in S2 sieve, so that the values of q∗1 = 2h∗ − P and

q∗2 = 2 (h∗ − d)− P are both within the interval
[
pn, p

2
n + 2pn

]
.

The problem of the sum of two prime numbers is similar. Simply replace

the (h − d) in the q2 expression with (d − h), and replace −P with +P , then

we can obtain that the two elements q1 and q2 satisfy q1 + q2 = 2d. But this

constraint is more stringent on the maximum gap between adjacent elements

in S2, to ensure that such a prime pair always exists continuously for any d.

So we unified the sum of two prime numbers problem and the gap between

prime numbers problem into the minimum upper bound problem of the gaps

between adjacent elements in the S2 sieve.

Certainly, we can also describe this same problem in a more intuitive set

form.

For any positive integer d, take a sufficiently large prime pn, where pn is

the n-th odd prime. [∗1]

Let the set H denotes all integers without factors p1, p2, · · · , pn.

H = {h : (∀p ∈ {p1, p2, · · · , pn}) (p - |h|)} [∗2]

For any element h belongs to H, if (h− d) also belongs to H, there must

be two odd pseudo primes [∗3] q1 and q2 with a gap of size 2d belonging to H,

such as:

q1 = 2h− T ,
q2 = 2 (h− d)− T ,

where

T =
∏

p∈{p1,p2,··· ,pn}

p.

Then the sufficient condition for them to be real prime numbers is in the

domain
[
pn, p

2
n + 2pn

]
.

Let H∗ be the set of overlapping pseudo primes [∗4], composed of all

elements that meet the above conditions.

H∗ = {h : h ∈ H ∧ (h− d) ∈ H} .

Now let’s consider the gaps between adjacent elements belong to H∗. Ob-

viously, if the maximum gaps between adjacent elements belong to H∗ are less
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than p2n
2 , there will be at least one element h∗ belongs to H, so that q1 and

q2 are both in the domain
[
pn, p

2
n + 2pn

]
, because the range is greater than p2n.

The case of sums of two primes is similar, except that (h− d) will be

replaced by (d− h) and the condition of maximum gaps between adjacent

elements belong to H∗ must be less than p2n
8 .

Therefore, the core of this proofs is that the upper bound of the maximum

gaps between overlapping pseudo primes must be less than p2n
8 . By estimating

the maximum length of consecutive elements in the complement set of H∗, we

will prove that it holds when pn is greater than 2096.

Remark 1.

[∗1] in other words, as long as d is sufficiently small, such as d = 1, then pn
can be arbitrary. Actually, pn > 2d will be enough.

[∗2] for example, for pn = 5, H={...,-4,-2,-1,1,2,4,7,8,11,13,14,16,17,...}.
[∗3] pseudo prime means that it contains no factors p1, p2, · · · , pn.

[∗4] overlapping pseudo prime means that element h and its corresponding

element (h− d) are both pseudo primes in set H.

2. Notation and definitions

Notation.

a, b, c, d, h, i, j, k, m, n, q, t, w, u : integers.

p: a prime number.

pt: the t-th odd prime number p1=3, p2=5, etc.

a | d means a is a divisor of d.

a - d means a does not divide d.

x: variable.

bxc means the largest integer which does not exceed x.

dxe means the least integer not less than x.Ç
d

a

å
means d choose a; the binomail coefficient

d!

a! (d− a)!
.

A: an abstract field for function parameter.

Z: the field of integers.

M◦: the base set of p1, p2, · · · , pn.

Mi: infinite set generated by elements of M◦ with offset i.

Mi∪j means Mi ∪Mj .

A [a, b) means A ∩ [a, b).

|A| denote the cardinality of set A.

λ (A, d): generate a new set by adding d to each element of set A.

T (a): product function.

χ (a,A): use 0 or 1 to indicate whether a belongs to A.
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Λ (d): the von Mangoldt function.

θ (x): the first Chebyshev function.

ψ (x): the second Chebyshev function.

(a1, a2, a3, · · · ), (· · · ): ordered arrays.

ρ ((a1, a2, · · · )) , ϑ ((· · · )): custom functions for lemma declaration.

µ ((a1, a2, · · · ) ,m): a custom function for proving lemma.

J (p) , K (p) , S (w): custom functions for proving lemma.

% (x): a custom function, we will prove that it is less than 1.

η: used to denote the gaps of overlapping pseudo primes.

Li (a, t): used to estimate η .

T , H: custom sets.

v (H1,H2, · · · ): defined to assist in estimating Li (a, t).

(f (x))′ means f ′ (x), that is the derivative of f (x).

exp {· · · }: exponential function.

inf{· · · }: greatest lower bound.

sup{· · · }: least upper bound.

Definition 1. For n ≥ 1,

M◦ = {p1, p2, · · · , pn} .

Definition 2. For any i,

Mi =
⋃

k ∈ Z
m ∈M◦

{km+ i}.

Definition 3. For any i and j,

Mi∪j = Mi ∪Mj .

Definition 4. Let λ be the function, defined by

λ (A, d) = {m : m = a+ d ∧ a ∈ A} .

Definition 5. For any a,

T (a) =
∏
m∈M◦

(m− a).

Definition 6. Let the function χ be given by

χ (a,A) =

®
1 if a ∈ A,
0 otherwise.

Definition 7. The von Mangoldt function Λ is defined by

Λ (d) =

®
ln p if d = pk ∧ k ≥ 1,

0 otherwise.
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The unique factorization property of the natural numbers implies

ln d =
∑
a|d

Λ (a),

the sum is taken over all integers a that divide d [7].

Definition 8. The first Chebyshev function θ (x) is defined by

θ (x) =
∑
p≤x

ln p,

where the sum is over primes p ≤ x [2].

Definition 9. The second Chebyshev function ψ (x) is defined similarly

ψ (x) =
∑
k∈N

∑
pk≤x

ln p =
∑
d≤x

Λ (d) ,

with the sum extending over all prime powers not exceeding x [2].

3. Lemmas

In this section we introduce a number of prerequisite results, some of them

given here may not be in the strongest forms, but they are adequate for the

proofs of Theorems 1 and 2.

Lemma 1. (∀i, j) ( Mj = λ (Mi, j − i) ) .

Proof. By Definition 2 and Definition 4, we obtain

Mj =
⋃

k ∈ Z
m ∈M◦

{km+ j}

=
⋃

k ∈ Z
m ∈M◦

{km+ i+ (j − i)}

= λ (Mi, j − i) .

Lemma 2. (∀i, h, a) ( χ (h, Mi) = χ (h+ a, λ (Mi, a)) = χ (h+ a, Mi+a) ) .

Proof. Let us suppose

χ (h, Mi) = 1,

then

(∃k0 ∈ Z ∧m0 ∈M◦) ( k0m0 + i = h ) .
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And by Lemma 1,

λ (Mi, a) = Mi+a.

Hence,

χ (h+ a, λ (Mi, a)) = χ (h+ a, Mi+a)

= χ ((k0m0 + i) + a, Mi+a)

= χ (k0m0 + (i+ a) , Mi+a)

= 1.

Otherwise,

χ (h, Mi) = 0,

then

(∀k ∈ Z ∧m ∈M◦) ( km+ i 6= h ) .

Hence,

h+ a 6= km+ (i+ a) ,

i.e.

χ (h+ a, Mi+a) = χ (h+ a, λ (Mi, a)) = 0.

So that

(∀i, h, a) ( χ (h, Mi) = χ (h+ a, λ (Mi, a)) = χ (h+ a, Mi+a) ) .

Lemma 3. (∀i, h ∧m ∈M0) ( χ (m (h− i) + i, Mi) = 1 ) .

Proof. Obviously,

(∃k0 ∈ Z ∧m0 ∈M◦) ( k0m0 + 0 = m ) .

Let

k1 = k0 (h− i) ,
then

m (h− i) + i = k1m0 + i.

So that

χ (m (h− i) + i, Mi) = χ (k1m0 + i, Mi) = 1.

Lemma 4. (∀i, h ∧ u /∈M0) ( χ (h, Mi) = χ (u (h− i) + i, Mi) ) .

Proof. Suppose that

χ (h, Mi) = 1,

then

(∃k0 ∈ Z ∧m0 ∈M◦) ( k0m0 + i = h ) .
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Hence,

χ (u (h− i) + i, Mi) = χ ((uk0)m0 + i, Mi) = 1.

Otherwise,

χ (h, Mi) = 0,

then

(∀k0 ∈ Z ∧m0 ∈M◦) ( k0m0 + i 6= h ) .

Noting that

(∀k1 ∈ Z ∧m1 ∈M◦) ( k1m1 + 0 6= u ) .

Combining the both, we have

(∀k2 ∈ Z ∧m2 ∈M◦) ( k2m2 6= u (h− i) ) .

Thus,

u (h− i) + i 6= k2m2 + i,

i.e.

χ (u (h− i) + i, Mi) = 0.

So that

(∀i, h ∧ u /∈M0) ( χ (h, Mi) = χ (u (h− i) + i, Mi) ) .

Remark 2. A stronger conclusion is that

{m : 0 ≤ m < T (0) ∧m /∈M0}

is a multiplicative group of integers modulo T (0). It will not be proved here

because this conclusion is not used in the proofs of this paper.

Lemma 5. (∀i, h, d) ( χ (h, Mi) = χ (h+ dT (0) , Mi) ) .

Proof. By Lemma 2,

χ (h, Mi) = χ
(
h+ dT (0) , Mi+dT (0)

)
,

and

Mi+dT (0) = λ (Mi, dT (0)) =
⋃

k ∈ Z
m ∈M◦

{km+ i+ dT (0)}.

By the Definition 5,

T (0) =
∏
m∈M◦

m.

This implies that

(∀k ∈ Z ∧m ∈M◦) ((∃k0 ∈ Z) ( km+ dT (0) = k0m ))
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Combining this with above,

Mi+dT (0) =
⋃

k ∈ Z
m ∈M◦

{km+ i+ dT (0)}(3.1)

=
⋃

k0 ∈ Z
m ∈M◦

{k0m+ i}

= Mi.

Hence,

χ (h, Mi) = χ
(
h+ dT (0) , Mi+dT (0)

)
= χ (h+ dT (0) , Mi) .

Remark 3. So we can see that Mi is periodic and its period is T (0).

Lemma 6. (∀i, j, h, d) ( χ (h, Mi∪j) = χ (h+ dT (0) , Mi∪j) ) .

Proof. By Lemma 5 we have

χ (h, Mi) = χ (h+ dT (0) , Mi) ,

and

χ (h, Mj) = χ (h+ dT (0) , Mj) .

It is easy to see that

χ (h+ dT (0) , Mi∪j) = χ (h+ dT (0) , Mi) ~ χ (h+ dT (0) , Mj)

= χ (h, Mi) ~ χ (h, Mj)

= χ (h, Mi∪j) ,

where we do not need to know exactly what operator ~ does.

Remark 4. We can also prove it by the truth table.
χ (h,Mi) χ (h,Mj) χ(h+ dT (0) χ(h+ dT (0) χ (h,Mi∪j) χ(h+ dT (0)

,Mi) ,Mj) ,Mi∪j)

0 0 0 0 0 0

0 1 0 1 1 1

1 0 1 0 1 1

1 1 1 1 1 1

So Mi∪j and Mi have the same period.

Lemma 7. |M0 [0, T (0))| = T (0)− T (1) .
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Proof. It is easy to see that

|M0 [0, T (0))| =

∣∣∣∣∣∣ ⋃
m0∈M0[0,T (0))

m0

∣∣∣∣∣∣
=

∣∣∣∣∣∣ ⋃
(∀k∈Z∧m∈M◦)(m0=km∧m0∈[0,T (0)))

m0

∣∣∣∣∣∣

= T (0)



∑
{m1} ⊆M◦
|{m1}| = 1

Ä
1
m1

ä
−

∑
{m1,m2} ⊆M◦

m1 < m2

Ä
1

m1m2

ä
+

∑
{m1,m2,m3} ⊆M◦
m1 < m2 < m3

Ä
1

m1m2m3

ä
−

· · ·+ (−1)n−1
∑

{m1,m2,m3, · · · ,mn} ⊆M◦
m1 < m2 < m3 < · · · < mn

Ä
1

m1m2m3···mn

ä

.

Then the alternating series can be reduced to showing that

|M0 [0, T (0))| = T (0)

Å
1− T (1)

T (0)

ã
= T (0)− T (1) .

Lemma 8. (∀i, a) ( |Mi [a, a+ T (0))| = T (0)− T (1) ) .

Proof. By Lemma 2,

|Mi [a, a+ T (0))| = |λ (Mi, −a) [a− a,a + T (0)− a)|
= |Mi−a [0, T (0))|
= |M0 [0, T (0))| .

By Lemma 7,

|Mi [a, a+ T (0))| = |M0 [0, T (0))| = T (0)− T (1) .

Lemma 9. (∀i, j, a) ( |Mi∪j [a, a+ T (0))| ≤ T (0)− T (2) < T (0) ) .

Proof. If

(∃k ∈ Z) ( j = i+ kT (0) ) ,
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then (by (3.1))

|Mi∪j [a, a+ T (0))| = |Mi∪i [a, a+ T (0))|
= |Mi [a, a+ T (0))|
= T (0)− T (1) .

Otherwise, let us suppose

(∀m ∈M0) ( j − i 6≡ 0 (mod m) ) .

It is similar to the proof of Lemma 7, we have

|Mi∪j [0, T (0))| =

T (0)



∑
{m1} ⊆M◦
|{m1}| = 1

Ä
21

m1

ä
−

∑
{m1,m2} ⊆M◦

m1 < m2

Ä
22

m1m2

ä
+

∑
{m1,m2,m3} ⊆M◦
m1 < m2 < m3

Ä
23

m1m2m3

ä
−

· · ·+ (−1)n−1
∑

{m1,m2,m3, · · · ,mn} ⊆M◦
m1 < m2 < m3 < · · · < mn

Ä
2n

m1m2m3···mn

ä

.

Then the alternating series can be reduced to showing that

|Mi∪j [0, T (0))| = T (0)

Å
1− T (2)

T (0)

ã
= T (0)− T (2) .

For the opposite case, there is at least one m ∈M◦ such that the coefficient of

each term containing m in the above alternating series is divided by 2.

The reason is that

(∃m ∈M◦) ( {km+ j : k ∈ Z} = {km+ i : k ∈ Z} ) .

Therefore,

|Mi∪j [0, T (0))| < T (0)

Å
1− T (2)

T (0)

ã
= T (0)− T (2) ,

when

(∃m ∈M0) ( j − i ≡ 0 (mod m) ) .

Obviously,

T (0) > T (1) > T (2) > 0.

Combining with the above, we have

|Mi∪j [0, T (0))| ≤ T (0)− T (2) < T (0) .
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By Lemma 6, Mi∪j is periodic with T (0), and considering Lemma 8, we can

get

|Mi∪j [a, a+ T (0))| = |Mi∪j [0, T (0))| ≤ T (0)− T (2) < T (0) .

Lemma 10. (∃η > 0) ((∀i, j, a) ( |Mi∪j [a, a+ η)| < η )) .

Proof. By Lemma 9, there are at least T (2) numbers in any range T (0)

that make

χ (h, Mi∪j) = 0,

where

h ∈ [a, a+ T (0)) .

It can also be expressed as

(∀i, j, a)

ÑÑ ∑
h∈[a,a+T (0))∧χ(h,Mi∪j)=0

1

é
≥ T (2) > 0

é
So that

0 < η ≤ T (0) .

On the basis of Lemma 10 we have

Lemma 11. (∀i, j, a) ((∃h ∈ [a, a+ η)) ( χ (h, Mi) = χ (h+ j − i, Mi) = 0 )) .

Proof. By Lemma 10,

(∀i, j, a) ((∃h0 ∈ [a, a+ η)) ( χ (h0, Mi∪j) = 0 )) ,

so that

χ (h0, Mi) = χ (h0, Mj) = 0.

By Lemma 2,

χ (h0, Mj) = χ (h0 + j − i, Mi) .

Therefore,

χ (h0, Mi) = χ (h0 + j − i, Mi) = 0.

Lemma 12. For t ≥ 1,

(∀m1,m2,m3, · · · ,mt ∈M◦)

(∑
δ∈T

ρ (δ) ≤
∑
δ∈T

ϑ (δ)

)
where

ρ ((a1, a2, a3, · · · ))
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=


0 (∃j > i ≥ 1) (ai = aj ∧ ai - (j − i)) ,∏

m ∈M◦
m| (a1a2a3 · · · )

1

m
otherwise.

and

ϑ ((a1, a2, a3, · · · )) =
1

a1a2a3 · · ·
,

and

T =
⋃

{h1,h2,h3,··· ,ht}={1,2,3,··· ,t}

{(mh1 ,mh2 ,mh3 , · · · ,mht)} .

Proof. Let

(∀ω ≥ 1) (mt+ω = pn+ω) ,

and

T (n) =
⋃

{h1,h2,h3,··· ,hn}={1,2,3,··· ,n}

{(mh1 ,mh2 ,mh3 , · · · ,mhn)}.

ThenÑ ∑
δ∈T ∧ρ(δ) 6=0

1

é
/ |T | ≤ lim

n→∞

Ñ ∑
δ∈T (n)∧ρ(δ) 6=0

1

é
/ |T (n)|

=

Ñ ∏
m∈M◦∧m|(m1m2m3···mt)

m

é
/ (m1m2m3 · · ·mt) .

So that

∑
δ∈T

ρ (δ) =

Ñ ∑
δ∈T ∧ρ(δ) 6=0

1

éÑ ∏
m∈M◦∧m|(m1m2m3···mt)

1

m

é
≤ |T |
m1m2m3 · · ·mt

=
∑
δ∈T

ϑ (δ).

On the basis of Lemma 12 we have

Lemma 13. For t ≥ 1, ∑
δ∈T

ρ (δ) ≤
∑
δ∈T

ϑ (δ)
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where

T =
⋃

m1 ∈M◦
m2 ∈M◦

...

mt ∈M◦

{(m1,m2,m3, · · · ,mt)}.

Proof. Let

J (p) =
∑
d∈[1,t]

®
0 md 6= p,

1 md = p.

and

s =
∑

h1 ≥ 0 ∧ h2 ≥ 0 ∧ · · · ∧ hn ≥ 0

h1 + h2 + · · ·+ hn = t

1,

and

{T1, T2, · · · , Ts}
=

⋃
h1 ≥ 0 ∧ h2 ≥ 0 ∧ · · · ∧ hn ≥ 0

h1 + h2 + · · ·+ hn = t

(



⋃
m1 ∈M◦
m2 ∈M◦

...

mt ∈M◦
(∀d ∈ [1, n]) (J (pd) = hd)

{(m1,m2,m3, · · · ,mt)}





.

It is easy to see that

T = T1 ∪ T2 ∪ · · · ∪ Ts,
and

(∀s ≥ j > i ≥ 1) (Tj ∩ Ti = φ) .

Combining this with Lemma 12, we have∑
δ∈T

ρ (δ) =
∑
d∈[1,s]

∑
δd∈Td

ρ (δd) ≤
∑
d∈[1,s]

∑
δd∈Td

ϑ (δd) =
∑
δ∈T

ϑ (δ).
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Similarly, for

(∀ω ≥ 1) (mt+ω = pn+ω) ,

and

T (n) =
⋃

{h1,h2,h3,··· ,hn}={1,2,3,··· ,n}

{(mh1 ,mh2 ,mh3 , · · · ,mhn)},

we also have ∑
δ∈T (n)

ρ (δ) ≤
∑

δ∈T (n)

ϑ (δ).

Lemma 14. (∀x ≥ 3)Ñ ∏
2<p≤x

(
1− 2p−1

)
≥ 0.4

ln2 x

é
.

Proof. By Mertens’ second theorem [5],∑
p≤x

(
p−1
)

= ln lnx+M +O (1/ lnx) .

The value of M is approximately [4]

M ≈ 0.261497212847642784 · · · .

For p > 2, ∑
2<p≤x

(
p−1
)

= ln lnx+M ′ +O (1/ lnx) .

The value of M ′ is approximately

M ′ ≈ −0.238502787152357217 · · · .

Since ∣∣ln (1− 2p−1
)

+ 2p−1
∣∣ =

∣∣∣∣∣
∫ 1−2p−1

1

(
t−1 − 1

)
dt

∣∣∣∣∣
=

∣∣∣∣2p − 2

p
− 22

2p2
− 23

3p3
− 24

4p4
− · · ·

∣∣∣∣
<

22

2p2
+

23

2p3
+

24

2p4
+ · · ·

=
2

p (p− 2)
,

and ∑
p>2

2

p (p− 2)
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is convergent, the series ∑
p>2

(
ln
(
1− 2p−1

)
+ 2p−1

)
must be convergent. Because the series∑

p>2

(
p−1
)

is divergent and so the product∏
p>2

(
1− 2p−1

)
must diverge also (to zero). We can deduce that∑

2<p≤x

(
ln
(
1− 2p−1

)
+ 2p−1

)

=
∑
p

(
ln
(
1− 2p−1

)
+ 2p−1

)
−
∑
p>x

(
ln
(
1− 2p−1

)
+ 2p−1

)
=
∑
p

(
ln
(
1− 2p−1

)
+ 2p−1

)
+O

(∑
p>x

Å
1

p (p− 2)

ã)
=
∑
p

(
ln
(
1− 2p−1

)
+ 2p−1

)
+O

(
x−1

)
,

ln

Ñ ∏
2<p≤x

(
1− 2p−1

)é
= −2

∑
p≤x

(
p−1
)

+
∑

2<p≤x

(
ln
(
1− 2p−1

)
+ 2p−1

)
= −2 ln lnx− 2M ′ +

∑
2<p≤x

(
ln
(
1− 2p−1

)
+ 2p−1

)
+O

(
ln−1 x

)
.

It’s known from numerical calculation∑
p>2

(
ln
(
1− 2p−1

)
+ 2p−1

)
≈ −0.660393386913.

Combining with the above, we can crudely estimate∏
2<p≤x

(
1− 2p−1

)
≥ 0.4

ln2 x

through numerical analysis.
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Lemma 15. (∀x ≥ 1) (
bxc!(
bx2 c!

)2 < 6
x
2

)
.

Proof. If bxc = 2k is even, then

bxc!(
bx2 c!

)2 =

Ç
2k

k

å
≤ 22k = 4

x
2 ≤ 22k+1

Å
1 +

1

2

ãk
< 6

x
2 ,

because it’s the largest binomail coefficient in the binomail expansion of (1 + 1)2k.

Otherwise, bxc = 2k + 1 is odd, then

bxc!(
bx2 c!

)2 =

Ç
2k + 1

k

å
(k + 1) ≤ 22k (k + 1) ≤ 22k+1

Å
1 +

1

2

ãk
< 6

x
2 .

Lemma 16. Upper bounds exist for both θ (x) and ψ (x) that

(∀x ≥ 1) ( θ (x) ≤ ψ (x) < x ln 6 ) .

Proof. By Definition 9, we have

ln (bxc!) = ψ (x) + ψ
(x

2

)
+ ψ

(x
3

)
+ ψ

(x
4

)
+ · · · .

Changing x to
x

2
, and inserting -2ln

(
bx

2
c!
)

into the above equation we obtain

ln (bxc!)− 2 ln
(
bx

2
c!
)

= ψ (x)− ψ
(x

2

)
+ ψ

(x
3

)
− ψ

(x
4

)
+ · · · .

It is obvious that

ψ (x) ≥ ψ
(x

2

)
≥ ψ

(x
3

)
≥ ψ

(x
4

)
≥ · · · ,

so that

ψ (x)− ψ
(x

2

)
≤ ln (bxc!)− 2 ln

(
bx

2
c!
)

= ln

(
bxc!(
bx2 c!

)2
)
.

Combining this with Lemma 15, we can get

ψ (x)− ψ
(x

2

)
<
(x

2

)
ln 6.
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Changing x to
x

2
,
x

4
,
x

8
, · · · , we have

ψ
(x

2

)
− ψ

(x
4

)
<
(x

4

)
ln 6,

ψ
(x

4

)
− ψ

(x
8

)
<
(x

8

)
ln 6,

ψ
(x

8

)
− ψ

( x
16

)
<
( x

16

)
ln 6,

...

Adding up them all, we have

ψ (x) < x ln 6.

It is easy to see that the relationship between θ (x) and ψ (x) is given by

ψ (x) =
∑
d≥1

θ
Ä
x

1
d

ä
.

There is the fact that

θ (x) ≤ ψ (x) < x ln 6.

Lemma 17. For x ≥ 3, let

% (x) =

Ñ ∏
2<p≤x

p

éÑ
1−

∏
2<p≤x

(
1− 2p−1

)é(
ln2 x
0.4

)
x ln 6

,

then % (x) < 1.

Proof. By Lemma 16,

ln

Ñ ∏
2<p≤x

p

é
< θ (x) < x ln 6,

thus Ñ ∏
2<p≤x

p

é
< exp {x ln 6} .

By Lemma 14, Ñ
1−

∏
2<p≤x

(
1− 2p−1

)é
≤
Å

1− 0.4

ln2 x

ã
.
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Combining these results with numerical analysis we obtain

% (x) < exp {x ln 6}
Å

1− 0.4

ln2 x

ã( ln2 x
0.4

)
x ln 6

< exp {x ln 6} exp {−x ln 6}
= 1.

4. Estimation of L2(a, t) and η

In this section we estimate L2 (a, t) and η.

First, for t ≥ 0, let

L1 (a, t) = {m : {m,m+ 1,m+ 2, · · · ,m+ t} ⊆Mi [a, a+ T (0) + t)} .

We can see that for each element in L1 (a, t), it denotes that there are (t+ 1)

consecutive elements in Mi [a, a+ T (0) + t). We have

|L1 (a, t)| ≤ T (0)

Å
1− T (1)

T (0)

ãt+1

.

Proof. Considering the proof of Lemma 7 and Lemma 8, and combining

this with Lemma 12 and Lemma 13, we have

|L1 (a, t)| =

∣∣∣∣∣∣ ⋂w∈[0,t]Mi+w [a, a+ T (0))

∣∣∣∣∣∣ =

∣∣∣∣∣∣ ⋂w∈[0,t]
⋃

m∈M◦
{km+ i+ w} [a, a+ T (0))

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⋃
m0 ∈M◦
m1 ∈M◦

...

mt ∈M◦

⋂
w∈[0,t]

{kmw + i+ w} [a, a+ T (0))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≤
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T (0)



∑
{m1} ⊆M◦
|{m1}| = 1

Ä
1
m1

ä
−

∑
{m1,m2} ⊆M◦

m1 < m2

Ä
1

m1m2

ä
+

∑
{m1,m2,m3} ⊆M◦
m1 < m2 < m3

Ä
1

m1m2m3

ä
−

· · ·+ (−1)n−1
∑

{m1,m2,m3, · · · ,mn} ⊆M◦
m1 < m2 < m3 < · · · < mn

Ä
1

m1m2m3···mn

ä


t+1

= T (0)

Å
1− T (1)

T (0)

ãt+1

.

i.e.

|L1 (a, t)| ≤ T (0)

Å
1− T (1)

T (0)

ãt+1

.

Because according to Lemma 12 and Lemma 13, we can see that the count of

a specific t+1 consecutive elements appearing in the range T (0) is not greater

than the value characterized by the function ϑ.

T (0)
∑

ρ (δ) ≤ T (0)
∑

ϑ (δ).

Next, let us look at the case of

L2 (a, t) = {m : {m,m+ 1,m+ 2, · · · ,m+ t} ⊆Mi∪j [a, a+ T (0) + t)} .

We can also see that for each element in L2 (a, t) , it denotes that there are

(t+ 1) consecutive elements in Mi∪j [a, a+ T (0) + t) .

It is similar to the case of L1 (a, t), combining this with Lemma 9 and

Lemma 13, we have

|L2 (a, t+ 1)| ≤

T (0)



∑
{m1} ⊆M◦
|{m1}| = 1

Ä
21

m1

ä
−

∑
{m1,m2} ⊆M◦

m1 < m2

Ä
22

m1m2

ä
+

∑
{m1,m2,m3} ⊆M◦
m1 < m2 < m3

Ä
23

m1m2m3

ä
−

· · ·+ (−1)n−1
∑

{m1,m2,m3, · · · ,mn} ⊆M◦
m1 < m2 < m3 < · · · < mn

Ä
2n

m1m2m3···mn

ä


t+1

= T (0)

Å
1− T (2)

T (0)

ãt+1

.
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Now we can deduce that

(4.1) (∀t ≥ 0)

Ç
|L2 (a, t)| ≤ T (0)

Å
1− T (2)

T (0)

ãt+1
å
.

Considering the relationship between L2 (a, t) and η (in Lemma 10, Lemma 11),

we have

(4.2) η ≥ inf {m+ 1 : m ≥ 0 ∧ |L2 (a,m)| = 0} ,

according to the definition of L2 (a, t).

For the next proof of theorems, we assume that there exists η that satisfies

(4.3) η ≤ p2n
8
.

It requires ∣∣∣∣L2

Å
a, bp

2
n

8
c − 1

ã∣∣∣∣ = 0.

By (4.1), we have

∣∣∣∣L2

Å
a, bp

2
n

8
c − 1

ã∣∣∣∣ < T (0)

Å
1− T (2)

T (0)

ãbp2n
8
c

=

Ñ∏
p∈M◦

p

éÑ
1−

∏
p∈M◦

(
1− 2p−1

)ébp2n8 c
.

By Lemma 17, we know that we have∣∣∣∣L2

Å
a, bp

2
n

8
c − 1

ã∣∣∣∣ < 1

when

(4.4)

Ç
ln2 pn

0.4

å
pn ln 6 < bp

2
n

8
c.

Let

f (x) =
x2

8
−
Ç

ln2 x

0.4

å
x ln 6.

Then for x 6= 0, Å
f (x)

x

ã′
=

1

8
− 2 ln 6 lnx

0.4x
.

We can easily get a crude result thatÅ
f (x)

x

ã′
> 0

when x > 436 through numerical analysis.

So that f (x) is monotonically increasing when x > 436.
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Next, the numerical analysis is continued, we can easily get another crude

result that

f (x) > 0

when x > 2096.

Now we know that the condition (4.4) is satisfied when pn > 2096.

Therefore, (4.3) holds for pn > 2096.

i.e.

(∀pn > 2096)

Å
(∃η)

Å
η ≤ p2n

8

ãã
.

5. Proof of theorems

We are now in the position to prove Theorem 1 and 2.

For n with pn ≤ 2096, we know that the theorems hold through computer

verification.

Otherwise, we have

η ≤ p2n
8
.

Since

η ≤ p2n
8
<
p2n + 1

2
,

combining this with Lemma 11, we haveÅ
∀a, i, j ∈

ï
i+ 1, i+

pn + 1

2

ããÅÅ
∃h ∈

ï
a, a+

p2n + 1

2

ãã
( χ (h, Mi) = χ (h+ j − i, Mi) = 0 )

ã
.

And let

a = i+
T (0) + pn

2
,

we have Å
∀i, j ∈

ï
1,
pn + 1

2

ããÅÅ
∃h ∈

ï
i+

T (0) + pn
2

,(5.1)

i+
T (0) + p2n + pn + 1

2

ãã
( χ (h, Mi) = χ (h+ j, Mi) = 0 )

ã
.

Then we can deduce that for every h in (5.1) satisfying the condition

( χ (h, Mi) = χ (h+ j, Mi) = 0 ) ,

so we have q1 and q2 are both prime numbers, defined by

q1 = 2 (h− i)− T (0) ,

q2 = q1 + 2j = 2 (h− i)− T (0) + 2j.
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Proof. Since

χ (h, Mi) = χ (h+ j, Mi) = 0,

we have

χ (h, Mi) = χ (h− i, λ (Mi, 0− i)) = χ (h− i, M0) = 0.

Because the prime number 2 does not belong to M◦,
by Lemma 4, we have

χ (h, Mi) = χ (2 (h− i) + i, Mi) = 0.

Combining this with Lemma 5 we have

χ (h, Mi) = χ ( 2 (h− i) + i− T (0) , Mi) = χ ( q1, M0) = 0.

i.e.

(5.2) (∀m ∈M◦) ( q1 6≡ 0 (mod m) ) .

Similarly, we have

χ (h+ j, Mi) = χ ( 2 (h− i) + i− T (0) + 2j, Mi) = χ (q2, M0) = 0.

i.e.

(5.3) (∀m ∈M◦) ( q2 6≡ 0 (mod m) ) .

Noting that the domain of h, we can deduce

q1 ∈ [pn, pn (pn + 1)] ,

q2 ∈ [pn + 2, pn (pn + 2)] .

Obviously,

T (0) 6≡ 0 (mod 2) ,

q1 6≡ 0 (mod 2) ,

q2 6≡ 0 (mod 2) .

And M◦ contains all odd primes not greater than pn, so that

∀w ∈ [pn, pn (pn + 2)] ,

if w is not a prime number, there must be

(∃m ∈ (M◦ ∪ {2})) ( w ≡ 0 (mod m) ) .

Thus, combined with (5.2) and (5.3), q1 and q2 must be prime numbers.

This implies that

for every ps > 2096, there must be primes pa and pb between ps and

p2s + 2ps, Å
∀d ∈

ï
1,
ps + 1

2

ãã
( pa − pb = 2d ) .
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i.e.

(∀ps > 2096)
((
∃pa, pb ∈

[
ps, p

2
s + 2ps

])ÅÅ
∀d ∈

ï
1,
ps + 1

2

ãã
( pa − pb = 2d )

ãã
.

Since there are infinite primes, we can conclude that for any positive inte-

ger d, there are infinitely many prime gaps of size 2d. This proves Theorem

1.

Next, let us transform the problem of gaps between primes into the prob-

lem of sums of two primes.

Let

a = i+
(T (0) + p1)

2
.

Since

η ≤ p2n
8
,

combining this with Lemma 10, we have

(5.4)

Å
∀i, j ∈

ï
i+ p1 + dp

2
n

8
e, i+ p1 + bp

2
n

2
c
ããÅÅ

∃h ∈
ï
i+

T (0) + p1
2

,

i+
T (0) + p1

2
+ dp

2
n

8
e
ãã

( χ (h, Mi∪j) = 0 )

ã
.

Then we can deduce that for every h in (5.4) satisfying the condition

( χ (h, Mi∪j) = 0 ) ,

so we have q1 and q2 are both prime numbers, defined by

q1 = 2 (h− i)− T (0) ,

q2 = 2 (j − h) + T (0) .

Proof. By the condition,

χ (h, Mi) = χ (h, Mj) = 0.

Then it is similar to the proof of Theorem 1,

χ (q1, M0) = χ (2 (h− i) , M0) = χ (h− i, M0) = χ (h, Mi) = 0,

χ (q2, M0) = χ (2 (j − h) , M0) = χ (h− j, M0) = χ (h, Mj) = 0.

It is easy to see that

(∀m ∈ (M◦ ∪ {2})) ( q1 6≡ 0 (mod m) ) ,

(∀m ∈ (M◦ ∪ {2})) ( q2 6≡ 0 (mod m) ) .
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Noting that the domain of h, we can deduce

q1 ∈
ï
p1, 2dp

2
n

8
e+ p1

ã
,

q2 ∈
[
p1, p

2
n + p1

)
.

So q1 and q2 are both prime numbers.

Now let us look at the domain of (q1 + q2),

q1 + q2 = 2 (j − i) ∈
ï
2p1 + 2dp

2
n

8
e, 2p1 + 2bp

2
n

2
c
ã
.

This implies that

for every ps > 2096, there must be primes pa and pb between p1 and

p2s + p1, Å
∀d ∈

ï
p1 + dp

2
s

8
e, p1 + bp

2
s

2
c
ãã

( pa + pb = 2d ) .

i.e.

(∀ps > 2096)

Å(
∃pa, pb ∈

[
p1, p

2
s + p1

])ÅÅ
∀d ∈

ï
p1 + dp

2
s

8
e,(5.5)

p1 + bp
2
s

2
c
ãã

( pa + pb = 2d )

ãã
.

By Bertrand-Chebyshev theorem [1], we have

ps+1 < 2ps,

then
p2s+1

8
<
p2s
2
,

so

(∀s > 1)

Çï
p1 + dp

2
s

8
e, p1 + bp

2
s

2
c
ã
∩
ñ
p1 + d

p2s+1

8
e, p1 + b

p2s+1

2
c
å
6= φ

å
.

Combining this with (5.5), we can conclude that

(∀ps > 2096)

Å
(∃pa, pb)

ÅÅ
∀d ∈

ï
p1 + dp

2
u

8
e, p1 + bp

2
s

2
c
ãã

( pa + pb = 2d )

ãã
,

where pu is the smallest prime number greater than 2096, that is, 2099.

It is easy to get

p1 + dp
2
u

8
e = 3 + 550726 = 550729.

i.e.

(∀ps > 2096)

Å
(∃pa, pb)

ÅÅ
∀d ∈

ï
550729, p1 + bp

2
s

2
c
ãã

( pa + pb = 2d )

ãã
.

While the results of d ∈ [1, 550729) can be obtained by computer-aided verifi-

cation.
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Since there are infinite primes, we can conclude that every even number

greater than 2 is the sum of two prime numbers. This proves Theorem 2.
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