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Abstract 
Geometrical constraints for general relativity and quantum mechanics are formulated in a 
multidimensional Cartesian space. A fundamental relationship between these correspondences and 
complementarity constraints directs us towards a new understanding of the fundamental 
relationship between relativity and quantum theory. The set of geometrical constraints of this n-
dimensional topology are expressed in terms of a hyper-dimensional Minkowski metric, Mn for n 
> 4 which yields naturally closed cosmological solutions to Einstein’s field equations which also 
yields compatibility between Einstein’s field equations and the current big bang model without 
Guth's inflationary model and its possible Googol ~10100 solutions as related to string theory. A 
comprehensive group theoretical approach to the model of the Cartesian space incorporates dark 
energy and dark matter which results from the model in a natural manner. A lemma is formulated 
for the relationship of the maximum invariance for an n-dimensional Cartesian space and the 
dimensions of that space. Group multiplication tables for the Mn geometry are formulated for a 
Cartesian 10 and 11 dimensional spaces.  
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1. Introduction  
 
A group theoretical prescription is made for a geometrical interpretation of the spacetime manifold 
as an extension, modification, and reinterpretation of Wheeler's wormhole topology [1,2]. In the 
procedure presented a set of physical dimensions of quantized quantities that act as dimensions in 
the Cartesian manifold termed extended dimensions (ED) are uniquely expressed in terms of 
geometric constraints. These constraints or conditions are re-expressed in terms of conditions on 
the manifold of the universal constants.  
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By use of the ED interpretation, a set of generalized Heisenberg uncertainty relations are 
developed, as a generalized set of complementarities formulated canonically conjugate variables 
obeying commutation relations expressible in terms of the ED. A group theoretical formulation is 
constructed for the generalized complementarity relations on a generalized metrical space, Mn. The 
extended dimensions are interpreted as a representation of the geometrical structure of the 
spacetime manifold and are manifest in classical mechanics, electromagnetics, strong and weak 
interactions and cosmology and also act as a unifying element of this group theoretic approach.  
 
Since the advent of Einstein's theory of special relativity in 1915, his general theory of relativity 
in 1905, and development of the quantum concept of Planck near the turn of the last century, and 
the further development of the quantum theory in the 1920's and 1930's, physicists have been 
attempting to reconcile these theories into a comprehensive and consistent framework with the 
long existing foundations of classical mechanics.  
 
Attempts have been made with the introduction of the correspondence principle between classical 
and quantum mechanics, based on a scale correspondence to Planck's constant, and Bohr's 
principle of complementarity expressed in the Heisenberg uncertainty principle, and the Dirac 
formulation of relativistic quantum field theory. Complementarity and phase space relations are 
based on the neoclassical Hamilton-Jacobi theory.  
 
We present five propositions acting to unify the various branches of physics. These propositions 
are:  
 
(1) The fundamental role in physics of constancy as expressed by the universal constants, and also 
constraints on dynamic processes, conservation principles and group symmetry relations.  
 
(2) The fundamental significance of canonically conjugate relations as an expression of a basic set 
of dual variables in Nature.  
 
(3) A geometrical interpretation of the space-time manifold in terms of a discrete set of quantities 
which comprise dimensional manifold space vectors. 
  
(4) The introduction of a new quantization procedure in terms of these fundamental discrete 
dimensional vectors and scalars as elements of a group theory.  
 
(5) Introduction of a ten-and 11D Cartesian space which represents, in group theoretical terms, 
micro and macro generalized correspondences and universal complementarity. The metrical 
expression is performed for the Cartesian space for EnD where nis the number of extended 
dimensions of the space 
 
These propositions lead to the following new concepts when the universal constants, in Planck unit 
formulation, are placed on a fundamental theoretical basis. A set of physical variables, uniquely 
expressed in terms of universal constants, termed extended dimensions or EnD, is developed [3,4]. 
All physical variables can be expressed in extended dimensional form. These discrete entities 
represent the geometrical constraints of the spacetime manifold and obey a set of canonically 



conjugate relations, which are like Heisenberg uncertainty relations in terms of generalized phase 
space conditions [5]. A group theoretic interpretation yields a common basis for cosmology and 
the quantum theory. In this conceptual framework, a detailed discussion of the group theoretical 
formalism is given in [6] and the detailed structure of the generalized Minkowski metrical space 
is given in [7]. This approach appears to lead to a unification of relativity and quantum theories.  
 
 
 2. The N-dimensional Cartesian Space Geometry  
 
Rene Descartes in 1619, suggested, in addition to his three spatial rectilinear coordinates, that time, 
velocity, energy, and momentum, etc. be considered as coordinates [8]. Spinoza, in his treatise on 
ethics [9], suggested the concepts of space, time, and substance (matter). Einstein, who wrote a 
preface for the republication of Spinoza’s work, was influenced by both authors’ consideration of 
additional dimensions to the coordinates of space, such as time, which led to his consideration of 
the Minkowski four-spacetime [10]. Dimensional quantities similar to those of Planck were 
developed by G.N. Lewis [11]. Our multidimensional space, in terms of group theory, [6] and an 
extended Minkowski metric, [7] denoted as Mn for n > 4 and usually n < 11, we term the Cartesian 
geometry.  
 
In an earlier paper, we examined the manner in which a set of geometrical constraints yield closed 
cosmological solutions to Einstein's field equations [12,13]. These constraints are expressed as a 
set of quantities or extended physical dimensions which are uniquely defined in terms of universal 
constants [1,4-7,12]. We have also presented a set of canonically conjugate relations of these 
physical variables expressed in terms of extended dimensions, EnD [6]. It was demonstrated that 
the quantized variables have operator representations [7], and a generalized form of the 
Schrodinger wave equation was developed in terms of these operators [13].  
 
The set of geometrical constraints expressed in n-dimensional topology of the Cartesian geometry 
comprise a multidimensional space called the Cartesian space. [3,6,12] This multidimensional 
geometry was given in terms of invariant extended dimensions termed the EnD [4]. The metric for 
invariant dimensions is called the generalized Minkowski metric, Mn [7]. In this paper we 
demonstrate the manner in n which the EnD geometrical constraints act in quantum theory and in 
relativistic physics, and the fundamental relationship of these two formalisms. The motivation is 
to determine a fundamental basis of the relativity and quantum theories in the context of quantum 
gravity [3,4]. 
 
 
 3. The Basis of the Cartesian Space Theoretical Approach  
 
M. Planck introduced a set of units which are physical variables unequally expressed in terms of 
universal constants [14]. A similar, more limited approach was considered by G.N. Lewis and M. 
Randall [5,11]. Wheeler and others explained the use of the EnD quantities in geometrodynamic 
cosmological models [13,15]. Some of the EnD’s relevant here are:  
 

Planck's length or Wheeler’s wormhole length, 3/ ;G c  time, 5/ ;t G c  momentum



3 / ;p c G   energy, 5 /E c G  and the Planck’s density 5 2/ .c G    In these equations, ,G  
and c denote, respectively, Planck's constant, the universal gravitational constant, and the velocity 
of light. Other extended dimensions, or EnD’s, are given in Table 1 of Ref. [7].  
 
These quantities can represent geometrodynamic quantities or physical variables as well as EnD’s. 
That is, each EnD has an associated physical variable [6,7]. Note the somewhat different 
terminology in Refs. [3-7,12,16]. In relation to our terminology, EnD’s or quantized variables, we 
define two distinct quantization procedures, primary in terms of the quantized variables, and the 
standard quantization procedure [3,5,6,7]. The distinguishing characteristic between these two 
procedures is the classical, quantum, or relativistic domain of physics [3,5-7,12,13]; but in all these 
procedures there exists a set of canonically conjugate variables, termed the generalized Heisenberg 
relations [5,7]. It can be demonstrated that these two procedures give equivalent results. We form 
sets of pair relations as relativistic invariant “four-vectors” [7]. In the next section, we will develop 
the relationship between the canonically conjugate formalism of the EnD’s and the set of invariant 
relations that make up the generalized Minkowski metric space, Mn. 
 
 
 4. Cartesian Space Geometrical Constraints in Relativity and Quantum 
Mechanics  
 
 The set of canonically conjugate relations, are given in Fig. 1. We have the two usual relations,
( , )x p     and ( , ) ,E t    also four new relations [6]. We shall denote possible pair representations 

as the generalized pair ( , ),i i    where index i runs 1 to 3 for vector variables and i = 1 for scalar 

variables. In Fig. 1, we consider only one component of each vector; for example, 1 2 3.x x x x     

 
In this notation, for the pair ( , ),    if 1,   have the canonical conjugate (cc) pair ( , ) ,x p     

and for 2,   we have the cc pair ( , ) .E t     The four new relations (4) are for 3, ( , ) ;x E c     
4, ( , ) / ; 5, ( , ) / ;p t c x t F      and 6, ( , ) ,p E F     where F is the universal force,

4 / .F c G  Extensive literature exists which discusses the interpretation of the scalar Heisenberg 
relation ( , ) .E t    Time operators have been presented by several authors [5,17,18]. H. Eberly and 
L. P. S. Singh [18] develop an unambiguous and non-singular statement of the energy-time 
uncertainty relationship. We develop a time operator (as well as a space operator) in conjunction 
with the development of the generalized Schrödinger equation [13], which V. S. Olkhousky and E. 
Recami also discuss [19]. Eberly and Singh use the density matrix formalism to develop time 
operators and their uncertainty principle with Hamiltonian operators.  
 
We can form an invariant generalized line element in terms of a universal constant, or combinations 
of universal constants, between any two variables, i  and ,i where again the index i runs 1 to 3 

for vector variables and i = 1 for scalar variables and the index   runs 1 to n where n is defined 
as the dimensionality of the Cartesian space .nD  Considering one component vector quantities, for 

example 1x x  and 1,p p  we can define a  Cartesian 4-space as    , , , .kx x t p E  For example, 

we have the usual invariant relation:  
 



 2 2 2 2
1s x c t                                                                  (1) 

 
 for one component of x; for an isotropic subspace 1 2 3x x x x     in Eq. (1) and for metrical 

signature ( , , , ).     There are six invariant line-elements for a Cartesian 4-space [4,7]. We define 
a generalized 4-vector invariant. The usual definition of a 4-vector, for invariance relations, is in 
terms of a spatial vector quantity and a temporal scalar quantity which form an invariant variable 
pair relation in terms of the invariance of the universal constant, c.  

The usual case is Eq. (1) and now we have:  
 

 2 2 2
2 2

1
.S p E

c                                                              (2)  

 
 Again, we consider one component of the momentum vector only: 1 2 3.p p p p    We show six 

invariant relations for a Cartesian 4-space in Table 1. We have the usual relations for 1  , 2   
and for 3.   We have one of the new relations in terms of the invariance of the force, F. 
  

 
 

Figure 1. Pair variable relations represented schematically as the generalized Heisenberg 
Relations, where   denotes a particular variable pair; for example, 4   denotes the pair 

   4, 4 , / .p t c          
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F                                                                 (3) 

 
The universal cosmological force is uniquely expressed in terms of the universal constants c and 
G as 4 /F c G  [4,13]; thus, the invariance of the expression in Eq. (3) is dependent on the 
invariance of the universal constants c and G. For 5   in Table 1, we have a 6-subspace for the 
(x,p) variable pair and for 6,   we have a 2-subspace for the (E,t) variable pair. Using the one 
component forms, as in Eqs. (1) and (2), each subspace is then a 2-space.  
 
The generalized invariant 4-vector (which can also be a 6 or 2-vector space) can be formed in 
terms of any two variables in terms of the invariance of many of the universal constants, ,  G and 
c or combinations of them. Using 1-component vector quantities, the set of generalized invariant 
relations are generalized 2-subspaces. A generalized invariant expression for a multidimensional 
Cartesian space is given in Ref. [7], both for the 4-space and a 10-space in terms of 1-component 
vector and scalar coordinates,    , , , , , , , ,x x t p E m c a P L   where m is mass, a is acceleration, P 

is power and L is angular momentum; other quantities are defined previously. In Ref. [4] a higher-
order Cartesian space of as many as thirty dimensions is presented which includes electromagnetic 
and thermodynamic coordinates  
[4,12,19-21].  
 
The generalized form of an invariant variable pair is:  
 

2 2 2s m                                                                     (4) 

 
for any two variables ik  and ,ik where   and   run from 1 to n which is the dimensionality of 

the Cartesian space being considered and the index   runs 1 to I (I is the number of invariant 
relations for a  Cartesian space of n dimensions). As before i runs 1 to 3 for vectors and i = 1 for 
scalars. The invariance relation between any two variables is expressed in terms of the metrical 
elements m  which are expressed in terms of universal constants or combinations of universal 

constants. The constant elements form a non-diagonal matrix termed the generalized Minkowski 
metric, nM  [4,7].  

 
A generalized invariant, for all n dimensions of the space, can be expressed in terms of the diagonal 
form of the Minkowski metric. The diagonal form of 4M is an analytic expression in a form that 

can be simplified in a linearized formalism [22]. In this approximation, the formalism is quite 
useful. In the full analytic form, there are a number of interesting implications of the theory [15]. 
In [4,7] we detail the group theoretical formulation of the Cartesian space for an n-dimensional 
representation. In [4], we consider nD  for n as a 10 and 11D space. In the EnD model, the group 

generators are considered to form a finite algebra and a mapping is performed to the nSU  special 

unitary groups, having infinitesimal group generators. The details of the group structure and 
multiplication tables are given in [4]. The Heisenberg uncertainties fall naturally out of the nD  

group formalism.  
 



In forming the invariants for a particular Cartesian space, of dimensionality n, the maximum 
number of invariants that can be formed is given by the following Lemma.  
 
Lemma: Given: a Cartesian space of dimensionality n; the number of invariants of the Cartesian 
space of one less dimension (n - 1); plus the number of dimensions of the n - 1 dimensional space.  
 
Let nI  be the maximum number of invariants for a Cartesian space of n dimensions and let I be 

the maximum number of invariants for a Cartesian space of 1n n    dimensions, then:  
 

 .n nI I n                                                                  (5) 

 
 A rigorous proof of this new Lemma is given in Ref. [7].  
  
In developing the generalized Heisenberg relations and generalized invariance in a 
multidimensional geometry, in which each dimensioned physical variable is considered on an 
equal footing, we see that physical variables can be paired in uncertainty relations, such as those 
in Fig. 1. Also, paired variables can form invariant relations in terms of universal constants, as in 
Table 1. The relationship between these two pair relationships, as given in-more detail in Refs. [6] 
and [7], is presented in Table 2. For example, the index 1   denotes the Heisenberg pair (x,p); the 
index 5,  denotes the same pair (x,p) in an invariant relation. In the notation in Table 2, 

3    and 4,   both denote the same variable pair related in a Heisenberg relation and as 
a relativistic invariant. In this manner, and with the assumption of equal footing of physical 
variables, we see a way in which quantum mechanics and relativistic invariance can be tied 
together by a geometrical model of the manifold.  
  

 
 



Table 1. Pair-variable relations as invariants in terms of the elements of the generalized 
Minkowski metric. Six such invariant pair relations can be formed for a 4-dimensional 
Cartesian space.  
 

Note that all invariant expressions in this paper are special relativistic invariants. General 
relativistic invariants are discussed in [7] as are light cone relations for the generalized special 
relativistic invariants. In [4], the quantized variable geometrical constraints are applied in general 
relativity and closed cosmological solutions are found for Einstein's field equations. Experimental 
evidence for closed cosmologies are sited in [4,12,15].  
 
 In [4,7,12], we formulate the manner in which we solve Einstein’s field equations in the n-
dimensional Cartesian space which leads to uniquely closed cosmological solutions. In [4] we 
formulate in detail quantum cosmogenesis and evolution of the current universe. Self-consistency 
between a modified big bang model and Einstein’s field equations is attained without Guth’s 
inflationary model, [23] which is extraneous in this picture. Also, our model is consistent with 
nucleon abundances [12]. Note that Guth’s model may require a velocity of 36 10  the velocity of 
light. Dark matter comes out naturally from this new, self-consistent model, and modifications to 
the cosmic evolution allow us to account for dark matter and dark energy. Current Hubble’s 
constant values, and critical densities, appear consistent with observed densities and matter content 
of the universe, and may accommodate a cosmological constant value   near zero, and yet still 
accommodate an apparent dark energy component [24].  

 
Table 2. We can represent the relation between a pair of physical variables in two different 
formalisms. We have the uncertainty relation between two variables ( , )p   where the 

index  denotes a particular variable pair. We can also represent an invariant relation 
between two variables as ( , )   and the index denotes a particular invariant relation. 

For 1   and 2 we have the usual quantum mechanical relation and for 1   and 2 we 
have the usual invariant 4-vector relations. Table 2 depicts the manner in which these two 
representations of paired variables relate to each other. 



 
 5. Closed Cosmologies, Missing Matter, and Energy Without Inflation  
 
 Einstein originally introduced the cosmological constant to create a Steady State universal model 
in 1915. Sadly, this all changed in the early 1920’s when Hubble’s discovery of red shift was 
erroneously interpreted as a Doppler expansion of the universe; Hubble discovered redshift not a 
Doppler expansion of the Universe. In current thinking however, the Hubble constant is the ratio 
of the velocity of recession over the distance to the stellar, galactic or other cosmological structures 
for:  
  

 
0

/ 1V R t
H

R R t
                                                                 (6) 

 
where R is the distance to the nearest galactic or stellar source, V R  is the velocity of recession 
and 0t is the age of the universe. The Doppler red shift is given as /z     where   is the rest 

frame wavelength emitted from the observed cosmological object.  
 
Einstein stated that his inclusion of the cosmological constant   was the greatest blunder of his 
career, when in actuality, his greatest mistake was abandoning what he knew to be correct. 
Currently, astrophysicists have partly corrected this error by reinstating   as an explanation of 
very distant galactic acceleration [25]. We write Einstein’s field equations as:  
 

 
4

1 8

2

G
R g R g T

c    


                                                    (7)  

where T is the Riemann-Christoffel curvature mass-energy tensor, and 4 8
/F c G T

F 


   is the 

Rauscher cosmological acceleration force. The term R  is the Ricci Curvature tensor and R is 

the space time curvature.  
 
One of the most promising explanations of non-gravitational and non-electromagnetic acceleration 
of the universe is due to the vacuum energy which is implied as a source of the acceleration. This 
manifestation of the vacuum energy may be expressed as the need to reintroduce Einstein's 
cosmological constant , where, rather than ensuring a static universe, it forms a more dynamic 
one with an acceleration parameter as a function of R, the cosmological distance. Thus,   may 
become an effective gravitational repulsion term (especially when crossing from the Hubble 
Universe to a Holographic Anthropic Multiverse). The additional term g can be related to the 

vacuum in the following manner. We express the right side of Einstein's field equations in terms 

of the stress energy tensor as 
4

8 G
G T

c 


   and write this symbolically as two terms, 

4

8
,vacG

G T T
c  
      where c = 1 = G and ( )vacT  represents the stress energy of the vacuum 

and can be written as ( ) ,
8

vacT g



  that is, the stress energy density expressed as the cosmological 



constant term contributes to the vacuum energy density; the vacuum density ( )
00 / 8 .vac vacT     

In standard approaches ( )vac is considered to be small or ( ) ( ) 29 3~ 10 / ;vac matter gm cm   but in 

fact, the structure of the vacuum of 93 3~ 10 /gm cm  may well determine the structure and form 

of observable matter. Note that the limits for 0    are units of 2.cm  Acceleration appears to 
occur at the edge of the known universe. The accelerating universe, apparent magnitude vs. red 
shift, z from 0z  to 1z   is statistically significant. Galactic red shifts will eventually vanish beyond 

the event horizon where 6.z   On the Schwarzschild universe see [4,12,15] and the next section.  
  
We examine the concept of the action of the vacuum as a dynamic system that may explain the 
recently observed anomalous expansion rates indicated by high z. Most recently, the Sloan Digital 
Sky Survey telescope at Apache Point, New Mexico, has identified a very high red shift quasar at 
z = 4.75. This red shift indicates that this cosmological object ought to be 13.75 billion years old, 
formed when the universe was less than one billion years old. Note in the standard view, the 
gravitational red shift of  
 the sum is:  

 62 10 .r e

e

z
 

 


                                                            (8) 

 
The Sloan Digital Sky survey’s main task is to measure red shifts and they have identified several 
new quasars, the most distant ever observed [26]. Their most distant quasar has a z = 6.28 and 
another quasar has a z = 5.73 which was discovered last year by the Sloan survey. In fact, 
observable red shifts have been identified for four quasars in this survey: z = 5.80, z = 5.82, z = 
5.99and z = 6.28, which are the highest z quasars yet observed. It is believed that 20 more quasars 
with z > 6 will be found [27]. The so-termed missing mass, first suggested by Fritz Zwicky in 1933, 
is considered to be different from any ordinary matter in the universe in that there are zero 
detectable emissions or absorption of light in any known or ordinary manner. The rate of expansion 
of the big bang universe from a black hole indicates the conditions for a closed universe, and 
throughout the evolution of the universe [4,15]. Currently, it is thought that the observed mass of 
the universe indicates that 94% of the matter needed for a just closed universe is missing [15].  
 

The critical density for a just closed universe is 
23

.
8c

H

G



  Hubble's constant is given as ,

R
H

R



 

where R is the distance scale, and R  the velocity as determined by red shift, z. We then deduce 

that
2

1
c R

   and thus, also, the time scale of the universe, 0

1
~ t

H
 is affected. Variations in the red 

shift and the distance scale estimates affect the most likely value of .c  Nuclear abundance and x-

ray data are also relevant to determining the value of c  [12].  

 
The value is about 29 3~ 2.4 10 /c gm cm   derived from 73.8 / sec/ .H Km MPC  These density 

estimates are very sensitive to the (Deuterium/Hydrogen interstellar ratios). These densities only 
account for a few percent of the value needed to fit with the current big bang Schwarzschild 
universe which has about 94% of the closed universe as missing mass. The form of the missing 
mass is hypothesized to be, in part, in the form of black holes, interstellar plasma, or vacuum state 



energy [28]. Some astrophysicists consider the missing mass may be cold dark matter (CDM). 
Three proposed pictures emerge. Dark matter is said to only weakly interact with ordinary matter. 
Three models have been put forward:  
  
(1) The concept of WIMP’s, or weakly interacting massive particles, that create vibrations and 
bursts of light and heat, (perhaps as quasars which rotate around the center of the galaxy);  
 
(2) MACHO’s or massive compact halo objects, which may relate to the clumping of galaxies; and  
 
(3) HPVS’s or hyperspace resonance vacuum structures, which relates to both of the above models 
and expands on them. If the vacuum energy is structured and, black holes, and galactic matter, it 
may act to guide the evolution of universal features such as galactic clumping, since galaxy 
formation and evolution is thought to have started and from a relatively uniform distribution during 
cosmogenesis.  
  
All three of these models fail to yield phenomena that are directly observable by even the most 
sophisticated telescopes; but their properties are reflected in the form of matter–energy we observe, 
ranging from particles, to galaxies, to galactic clusters, and beyond. Some of these models have 
within them empirical implications of a matter-energy and entropy evolution occurring throughout 
cosmogenesis and cosmology [4]. This, in turn, leads to a reconciliation of the Hoyle-Narlikar 
matter creation model with the big bang cosmology through the formulation of the little whimper 
model [15,29]. This picture leads to a just closed cosmology throughout the evolution of the 
universe.  
 
 
 6. Quantum Cosmology and The Evolution of a Closed Schwarzschild Universe  
 
 The initial condition constraints that characterize cosmogenesis are chosen to be the quantum 
gravity level vacuum containing the Planck length of 33~ 10 ,cm and quantized time of 

44~ 10 sect   [4,17]. E.R. Harrison discusses early universe quantities, which are Planck-like units 
related to the vacuum energy [30]. They are the initial conditions of the universe, in our model, 
and act as a set of constraints throughout the evolution of the universe. E.R. Harrison, as we do, 
discusses the role of the vacuum in quantum gravity and mechanics and such units as length, time 
and energy, and also the thermodynamic properties of cosmogenesis [4,15,30]. See the previous 
section on the discussion of the vacuum state contributions to the stress energy term.  
 
In Table 3, we list some characteristic early universe physical quantities as quantized variables and 
compare these to characteristic present day universe values which obey the Schwarzschild 

condition 
2

2
.s

Gm
R

c
  The length 33~ 10 cm  can be interpreted as the limit of length in the 

manifold, and 44~ 10 sec  the corresponding characteristic time for / ,c t   where c, the velocity 
of light is taken to be the characteristic signal propagation velocity in the manifold. The present-
day magnitude of the physical variable of length is the size of the universe, 27~ 10R cm and the 
age of the universe is 17

0 ~ 10 sec,t  and c the velocity of light, 10~ 10 / sec.c cm   

 



The fundamental vacuum velocity is the velocity of maximal real mass signal propagation in the 
manifold, .v c  The approximate critical density for a just closed universe is

2 29 33 / 8 ~ 10 / ,c H G gm cm    in this case [2,4] where   is taken as zero and 1.   In the 

previous section we considered cases where 0.   The ratio /R R H  is Hubble's constant, and, 
for 18

0 1/ , 2.4 10 / sec/ ,t H H cm cm    where 0t is the initial time condition of the universe and 

H is Hubble's constant. Note that for the present universe 18 2710 / sec/ 10R HR cm cm    giving
10~ 10 / sec,R cm  or velocity of light. We have examined the limits set by deuterium abundance as 

a constraint on H in Ref. [15].  
 
We calculate the evolution from initial to current characteristic values of physical variables during 
cosmogenesis to the present-day universe. In Table 4 we tabulate the initial values of physical 
variables and their values throughout the evolution of the universe. These values are plotted in 
Figure 2 (ordinate of physical variables in their respective units) versus time (abscissa in seconds) 
for various physical variables. The physical variable values in Table 4 are obtained as follows: At 
time, 4410 sec,t   all physical variables assume their Planck unit values as initial constraints on 
the universe. We assume that the characteristic velocity of signal propagation of the universe is 

,v c  the velocity of light; therefore, the radius at any time is .R vt  Utilizing the Schwarzschild 

condition, we obtain the mass as 2 / 2 .s sm c R G   

 
The corresponding density for the Schwarzschild condition is given by 3/s sm R   where the 

subscript s denotes the Schwarzschild criterion. In Table 3 and Figure 2 we denote this density as 

2  which is compared to R. Omnes’ [31] values ( 1 ) and E. R. Harrison’s values, ( 3 ) [30,32]. 

The expression for Hubble's constant for a now or present-day universe applies as 23 / 8c H G   

for 29 3~ 10 / .c gm cm   For the initial conditions of the universe, 93 3~ 10 / ,i gm cm  where we 

utilize 23 / 8 .i H G   If we take G as a constant, then 2 938 / 3 10H G   or  
43 10~ 10 / sec / ~ 10 / sec.H cm R RH cm   We can still use the present-day value of Hubble's 

constant, 18~ 10 / sec/H cm cm  to define 0 ,t H  as 171.37 10 sec,  or the age of the universe. We 

must note that there is still some controversy over the value of H but the D abundance does set 
constraints on H [15]. We also make the implied assumption that the microscopic (nuclear and 
atomic) and macroscopic (electromagnetic and gravitational) physics, are valid throughout the 
evolution of the universe.  
 
The total energy of the universe is given by 2( ) ,s sE m t c  where again the subscript denotes the 

Schwarzschild mass at any time, t, and /s sT E k  is the energy particle. Comparison can be made 

to E.R. Harrison [30,32]. The relationship /s sT E k  holds for initial conditions only. In general, 

throughout the evolution of the universe, 1/ .sT E  The increase in energy (and mass) has to be 

reconciled with the cooling off or decrease in temperature. We will now omit the subscript s. The 
entropy under the Schwarzschild condition is given as ( ) / ,s I iS m t S m   where IS  and ,im  are 

the quantized variable initial conditions of the universe and ( )im t  is the Schwarzschild mass as a 

function of time. The initial entropy is 1610 / deg,S k erg   where k is the Boltzmann constant. 



In Table 3 and Figure 2 we denote this entropy as .iS   

  

 
 

Table 3. The early universe physical quantities are the Planck units which are compared to some 
present-day characteristic values of physical variables on the scale of the universe.  
 

 We compare this to the entropy, denoted 2 ,S obtained from the third law of thermodynamics, 

~ /S E T  where ( ) ( ),f iE E t E t    and for temperature, ( ).T T t  We can use the 

approximation ~ ( )fE E t  since for 3010 sec, .f it E E   For 0t t  (present age of universe), 

2S   76 16(10 10 ) / 3erg K   7510 / ,erg K which agrees with E. R. Harrison's value [30,32]. The 

Force is given by ( ) / ( )s sF E t R t  with the ratio being constant and given by the universal force, 
4 / .F c G  The power is given by p vF  and for , ,v c P cF   which is the quantized power. 

Interpretation of the quantized Force and quantized Power for an isotropic homogeneous universe 



with a Robertson metric is given in Rauscher E A[4,15] In Table 3, the present day Power, 
57~ 10 / secp dynes cm  is just the power to expand the universe to its present day configuration, 

which is a factor of 100 less than the usual power value. The Pressure, 7 2~ 10p dynes cm   is the 

present density pressure for a critical density, 29 3~ 10 .c gm cm   The acceleration is given by 

( ) / ( ),s sa t F m t  and ( )sm t is the Schwarzschild mass. As the big bang expansion continues, the 

rate of expansion slows down. The results in Table 4 and Figure 3 are consistent with this 
calculation.  
 
The frequency    is given as 1/ .t   There have been some attempts to calculate the total 
rotation of the universe [15]. This rotation may possibly be interpreted in a Machian sense [3]. The 
theory of general relativity is compatible with Mach's principle but is left out of the usual 
interpretation of frames of reference. Indeed, Mach's principle is consistent with matter creation 
and may even be explained by the continuous creation of matter (matter-energy) [4]. In the 
multidimensional geometrical model, we may be able to formulate matter-energy creation in terms 
of a coordinate transformation. Very simply, we can consider a model in which “stretching” field 
lines “pops” particles into existence from the vacuum, i.e., space-time transforms into matter-
energy by a generalized rotation of the dual Riemannian sheets of the Cartesian topology [4]. It is 
shown by E.A. Rauscher that the generalized Minkowski metric has this property, if rotations in 
the Cartesian space are considered [6,7].  
 

  
 Table 4. Schwarzschild Evolution of the Universe.  
 

The remarkable fact then emerges that in order to maintain the Schwarzschild condition, as an 
initial and present condition, we must evoke matter creation (at a macroscopic constant rate) to 
make this model self-consistent between Einstein’s field equations and the big bang, which 
precludes the need for the inflationary model. It appears that we may be able to reconcile the 
continuous creation and big bang cosmologies in our “little whimper” model, in which the 



universe, under initial conditions, “explodes” as a “mini-black hole” and then larger scale black 
holes, with their surrounding plasma fields, [33] evolve with the creation of matter by a continuous 
process of matter influx from the vacuum energy, which may be, in part, detected as Hawking 
radiation from black holes in the universe. It is interesting to speculate as to the role of matter 
“creation”, from geometry, and matter “destruction” into geometry, in terms of a multitude of black 
holes, and in terms of available vacuum energy. One may formulate the one as the converse of the 
other in terms of time reversal. The issue of time reversal invariance and/or, more completely, CPT 
invariance, requires consideration in this picture [4]. An active vacuum, in excited plasma states 
in the vicinity of black holes, may account, at least in part, for some of the missing mass [4,28,33].  

 

 
 

 Figure 2. Physical Variables in the Time-Evolution of a Schwarzschild Universe.  
 
 



By imposing the generalized Schwarzschild condition initially, presently, and throughout the 
evolution of the universe, which acts as boundary conditions, we have found that matter creation 
is necessary in a model that is self-consistent with Einstein's field equations (in the expansion 
phase of the universe) and the big bang model. This condition led to the little whimper closed 
cosmologies. We look now at the ashes and cinders of which A. G. Lemaitre spoke, and ask, are 
they ashes of a big bang, in which all the matter of the universe instantaneously, in 44~ 10 sec,t   
exploded, or are these the ashes of a developing, on-going exploding growth [4]? When we 
consider rotations in our Cartesian space [4], stretching or distorting the generalized metric, such 
as the outer reaches of the cosmos, we may be able to interpret this as a disruption of the 
mechanism whereby the radiation field is converted into particulate matter. One important 
experimental factor in determining closed versus open cosmologies is the present-day deuterium 
abundance. In [15] we discuss the possible reconciliation of our model with the observed 
deuterium abundance and the implied value of Hubble's constant (See Table 4 and Figure 2). 
 
 
7. Discussion  
 
The details of a unification scheme between quantum mechanics and relativity is a work in 
progress [3,4] but a start has been made based on demonstrating the common roots of the 
Hamilton-Jacobi classical mechanics, non-relativistic and relativistic quantum mechanics and the 
Field Equations. Unifying quantum mechanics and general relativity is one thing; it is quite another 
to demonstrate the “common roots” of the formalism. A relativistic quantum field theory, or a 
“quantized” gravitational theory, may relate to an aspect of a unifying theory, but more is needed 
to attain a fundamental unifying theory. However, quantized gravitational theories may shed some 
light on the path toward a fundamental relation between quantum and relativistic physics. For 
example, the problems of reconciling non-linearities in general relativistic fields and the linear 
super-position principle in quantum mechanics, are well pointed up by some of the workers in 
quantized gravitational theories [3]. B. S. De Witt [34,35] in an extensive treatise, discusses some 
of the difficulties of non-linearities of the metric tensor and the quantum superposition principle. 
Attempts have been made to develop a linear theory of the massless, spin-2 field [22]. Relating to 
the fundamental structure of the “roots” of the canonical formalism is fundamental to a unifying 
of quantum mechanics and relativity [3]. Since both quantum mechanics (primarily relating to 
micro-phenomena) and relativity (relating to macro-phenomena) are so successful in elegantly 
describing physical phenomena, a unifying aspect for these fields of physics must necessarily 
involve the interrelation of diverse aspects of reality.  
 
It also seems apparent that every aspect of reality depends on every other aspect, as expressed 
clearly by H. Stapp [36], “Every part of the universe depends on every other part”. The bootstrap 
model of elementary particles developed by G. Chew [37] is another statement of this proposition. 
A unified theory of reality which must intimately bring together quantum and relativistic 
phenomena must necessarily be complete. The concept of completeness in quantum theory is 
discussed in the classic paper by A. Einstein, B. Podolski and N. Rosen [3,38] and subsequent 
papers inspired by this work [3] and references therein.  
 
The extended dimensions of Cartesian space, which are expressible uniquely in terms of universal 
constants, are manifest in quantum mechanics and special relativistic invariants and general 



relativity, as well as thermodynamics [21], and electromagnetic theory [4]. According to B. N. 
Taylor, W. H. Parker, and D. W. Langenberg [39], the “universal constants are an important link in 
the chain of physical theory which binds all the diverse branches of physics together”. To 
paraphrase J. A. Wheeler: “spacetime is not just a passive arena for doing physics, it is the physics” 
[1] and, we might add, matter, energy, momentum, spin, etc. as in Cartesian geometry.  

In 1921, Einstein discussed a fundamental aspect of reality: “It was formerly believed that if all 
material things disappeared out of the universe, time and space would be left; according to the 
relativity theory, however, time and space disappear together with the things” [25]. In a Cartesian 
space, should any 1D physical variable vanish, then all the rest of the universe would also vanish. 
It is the interactive whole that comprises the universe.  
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