Peacocks and the Zeta distributions

Imad El ghazi

November 2021

Abstract

We prove in this short paper that the stochastic process defined by:

$$Y_t := \frac{X_{t+1}}{\mathbb{E}[X_{t+1}]}, \ t \ge a > 1,$$

is an increasing process for the convex order, where X_t a random variable taking values in \mathbb{N} with probability $\mathbb{P}(X_t = n) = \frac{n^{-t}}{\zeta(t)}$ and

$$\zeta(t) = \sum_{k=1}^{+\infty} \frac{1}{k^t}, \quad \forall t > 1.$$

1 Introduction

The notion of increasing process for the convex order, (PCOC, acronym of the french expression, *Processus Croissant pour l'Ordre Convexe*) has been deeply studied in [2]. This type of stochastic processes is quiet interesting in the financial options markets.

The main example of PCOC was introduced by Carr, Ewald and Xiao in [1]. Let $(B_s, s \ge 0)$ be a Brownian motion started from 0 and $(N_s := \exp^{B_s - \frac{s}{2}}, s \ge 0)$ then,

$$X_t := \frac{1}{t} \int_0^t N_s ds, \ t \ge 0$$

is a PCOC.

The other attractive property satisfied by the PCOCs is ulustrited by the Kellerer Theorem [3] establishing the relationship with the martingales theory.

2 Peacocks and 1-martingales

Definition 2.1. A process $(X_t, t \ge 0)$ is a peacock if the following conditions are verified:

- i) $|X_t|$ is integrable, i.e., for every $t \ge 0$, $\mathbb{E}[|X_t|] < \infty$.
- ii) For every convex \mathcal{C}^2 -function $\Psi : \mathbb{R} \longrightarrow \mathbb{R}$, such that Ψ'' has a compact support, the function $\mathbb{E}[\Psi(X_t)]$ is increasing with respect to t.

Proposition 2.1. (Proposition 1.3 [2])

- Let $(X_t, t \ge 0)$ be a real valued process satisfying the following hypotheses:
- i) the process $(X_t, t \ge 0)$ is a.s. continuous on $[0, +\infty[$ and differentiable on $]0, +\infty[$, its derivative being denoted by $\frac{\partial X_t}{\partial t}$
- ii) for every a > 0,

$$\mathbb{E}\left[\sup_{t\in[0,a]}|X_t|\right]<\infty$$

and for every 0 < a < b,

$$\mathbb{E}\left[\sup_{t\in[a,b]}\left|\frac{\partial X_t}{\partial t}\right|\right]<\infty.$$

Then, the process $(X_t, t \ge 0)$ is a peacock if and only if the two following properties hold:

- a) $\mathbb{E}[X_t]$ does not depend on $t \ge 0$,
- b) for every real c and t > 0:

$$\mathbb{E}\left[\mathbf{1}_{\{X_t \ge c\}} \frac{\partial X_t}{\partial t}\right] \ge 0.$$

Definition 2.2. A process $(X_t, t \ge 0)$ is a 1-martingale if there exists a martingale $(M_t, t \ge 0)$, not necessarily defined on the same probability space, such that for every fixed $t \ge 0$:

$$X_t \stackrel{law}{=} M_t$$

Theorem 2.1. (H.G. Kellerer [3]). The following properties are equivalent:

- 1) $(X_t, t \ge 0)$ is a peacock.
- 2) $(X_t, t \ge 0)$ is a 1-martingale.

3 Peacocks and the Zeta laws

Let $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mathbb{P}_t)$ a probability space, such that \mathbb{P}_t is the Zeta probability law of parameter t > 1 the law on \mathbb{N}^* wich assigns the mass $\frac{n^{-t}}{\zeta(t)}$ to the point n, i.e, $\mathbb{P}_t(x = n) = \frac{n^{-t}}{\zeta(t)}$ where

$$\zeta(t) = \sum_{k=1}^{+\infty} \frac{1}{k^t}$$

is the Riemann Zeta function.

Let suppose the hypothetical experience consesting of picking a number $n \in \mathbb{N}^*$ at each instant t (supposed to be strictly superior to 1), with probability $\frac{n^{-t}}{\zeta(t)}$. The resulting process will be denoted $(X_t)_{t>1}$.

Remarque 3.1. The resultats of the experience are supposed to be independent, this implies that the resulting process $(X_t)_{t>1}$ is not a martingale.

Theorem 3.1. Let $(Y_t, t \ge a)$, a > 1, be the process defined by:

$$Y_t := \frac{X_{t+1}}{\mathbb{E}\left[X_{t+1}\right]}$$

such that, $\mathbb{P}_t(X_t = n) = \frac{n^{-t}}{\zeta(t)}, n \in \mathbb{N}^*$ and $\zeta(t) = \sum_{k=1}^{+\infty} \frac{1}{k^t}$ for every t > 1. Then $(Y_t, t \ge a)$ is a peacock.

Proof. We will prove that $(Y_t, t \ge a), a > 1$, verifies the above Proposition.

Remark first that for every $t \ge a$ one has $\mathbb{E}[Y_t] = 1$ which means that $\mathbb{E}[Y_t]$ does not depend on t.

Recall that $t \longrightarrow n^{-t}$ and $t \longrightarrow \zeta(t)$ are \mathcal{C}^{∞} -continuous functions and that $\frac{1}{\zeta(t)}$ is well defined on $[a, +\infty[$ for every a > 1.

The continuity of $(Y_t, t \ge 1)$ follows from the Colmogorov criterion:

$$|Y_t - Y_s| = \left|\frac{X_{t+1}}{\mathbb{E}[X_{t+1}]} - \frac{X_{s+1}}{\mathbb{E}[X_{s+1}]}\right|$$
$$|Y_t - Y_s| \le \max(X_{t+1}, X_{s+1}) \left|\frac{1}{\mathbb{E}[X_{t+1}]} - \frac{1}{\mathbb{E}[X_{s+1}]}\right|$$
$$|Y_t - Y_s| \le \max(X_{t+1}, X_{s+1}) \left|\frac{\zeta(t+1)}{\zeta(t)} - \frac{\zeta(s+1)}{\zeta(s)}\right|$$

since $\frac{\zeta(t+1)}{\zeta(t)}$ is \mathcal{C}^{∞} then it is Lipschitien and hence there exists $K_1 > 0$ such that,

$$\frac{\zeta(t+1)}{\zeta(t)} - \frac{\zeta(s+1)}{\zeta(s)} \le K_1 |t-s|$$

let's choose $0 < \gamma < a - 1$ then $t - \gamma > 1$ and $s - \gamma > 1$ and we have,

$$|Y_t - Y_s|^{1+\gamma} \le \max(X_{t+1}, X_{s+1})^{1+\gamma} K_2 |t - s|^{1+\gamma}$$

and

$$\mathbb{E}\left[|Y_t - Y_s|^{1+\gamma}\right] \le \mathbb{E}(\max(X_{t+1}, X_{s+1})^{1+\gamma})K_2|t - s|^{1+\gamma}$$

$$\mathbb{E}(|Y_t - Y_s|^{1+\gamma}) \le \left(\frac{n^{1+\gamma}n^{-t-1}}{\zeta(t+1)} + \frac{m^{1+\gamma}m^{-s-1}}{\zeta(s+1)}\right)K_2|t-s|^{1+\gamma}$$

$$\mathbb{E}(|Y_t - Y_s|^{1+\gamma}) \le 2K_2|t - s|^{1+\gamma}$$

because $\frac{n^{1+\gamma}n^{-t-1}}{\zeta(t+1)} < 1$.

For the defferenciability of $(Y_t, t \ge 1)$ we use again the Kolmogorov Criterion. To do that we define $(\frac{\partial Y_t}{\partial t}, t \ge a)$ by,

$$\frac{\partial Y_t}{\partial t} = \lim_{\partial t \to 0} \frac{Y_{t+\partial t} - Y_t}{\partial t}$$
$$|Y_t^{'} - Y_s^{'}| \le \lim_{\partial t \to 0} \frac{1}{\partial t} |Y_{t+\partial t} - Y_t - Y_{s+\partial t} + Y_s|$$

(1)

we denote $\phi(t) = \left(\frac{\zeta(t+1)}{\zeta(t)}\right)'$ and hence

$$|Y_{t}' - Y_{s}'| \le \max(X_{t+1}, X_{s+1}) |\phi(t) - \phi(s)|$$
$$|Y_{t}' - Y_{s}'| \le \max(X_{t+1}, X_{s+1}) K_{3} |t - s|.$$

Let's choose $0 < \gamma < a - 1$ then $t - \gamma > 1$ and $s - \gamma > 1$, we have,

$$|Y_t' - Y_s'|^{1+\gamma} \le \max(X_{t+1}, X_{s+1})^{1+\gamma} K_4 |t - s|^{1+\gamma}$$

and,

$$\mathbb{E}(|Y_t' - Y_s'|^{1+\gamma}) \le \mathbb{E}(\max(X_{t+1}, X_{s+1})^{1+\gamma})K_4|t - s|^{1+\gamma}$$
$$\mathbb{E}(|Y_t' - Y_s'|^{1+\gamma}) \le (\frac{n^{1+\gamma}n^{-t-1}}{\zeta(t+1)} + \frac{m^{1+\gamma}m^{-s-1}}{\zeta(s+1)})K_4|t - s|^{1+\gamma}$$

$$\mathbb{E}(|Y_t' - Y_s'|^{1+\gamma}) \le 2K_4|t - s|^{1+\gamma}$$

because $\frac{n^{1+\gamma}n^{-t-1}}{\zeta(t+1)} < 1.$

Let
$$c = \sup_{t \in [a,b]} (Y_t)$$
, then,

$$c = \frac{m}{\mathbb{E}(X_{t_0+1})} \qquad for some \quad t_0 \in [a, b]$$

it comes that,

$$\mathbb{E}(\sup_{t \in [a,b]} (Y_t)) = \frac{m \times m^{-t_0 - 1}}{\zeta(t_0)} \le \frac{m^{-a}}{\zeta(t_a)} < +\infty$$

because $\lim_{m \longrightarrow +\infty} \mathbb{E}(X_t = m) = 0$

For
$$\mathbb{E}(\sup_{t\in[a,b]}|\frac{\partial Y_t}{\partial t}|)$$
 we have,

$$\sup_{t\in[a,b]}|\lim_{\partial t\to 0}\frac{\partial Y_t}{\partial t}| = \sup_{t\in[a,b]}|\lim_{\partial t\to 0}(\frac{Y_{t+\partial t}-Y_t}{\partial t})|$$

$$\sup_{t\in[a,b]}|\lim_{\partial t\to 0}\frac{\partial Y_t}{\partial t}| \le \sup_{t\in[a,b]}\lim_{\partial t\to 0}|(\frac{Y_{t+\partial t}-Y_t}{\partial t})|$$

$$\sup_{t\in[a,b]}|\lim_{\partial t\to 0}\frac{\partial Y_t}{\partial t}| \le \sup(X_{t+1})\phi(t)$$

$$\sup_{t\in[a,b]}|\lim_{\partial t\to 0}\frac{\partial Y_t}{\partial t}| \le \sup(X_{t+1})\max_{t\in[a,b]}\phi(t)$$

$$\sup_{t\in[a,b]}|\lim_{\partial t\to 0}\frac{\partial Y_t}{\partial t}| \le K_5\sup_{t\in[a,b]}(X_{t+1})$$

$$\mathbb{E}(\sup_{t\in[a,b]}|\frac{\partial Y_t}{\partial t}|) \le K_5 \frac{m^{-t_0}}{\zeta(t_{0+1})} < +\infty$$

because

$$\lim_{m \longrightarrow +\infty} \mathbb{E}(X_t = m) = 0$$

and therfore,

$$\mathbb{E}(\sup_{t\in[a,b]}|\lim_{\partial t\longrightarrow 0}\frac{\partial Y_t}{\partial t}|) \le K_5\mathbb{E}(\sup_{t\in[a,b]}(X_{t+1})) < +\infty.$$

Finally since $Y_t > 0$ then for every c > 0 we have,

$$\mathbb{E}\left(\frac{\partial Y_t}{\partial t}1_{Y_t \ge c}\right) = \mathbb{E}\left(\lim_{\partial t \longrightarrow 0} \frac{1}{\partial t}(Y_{t+\partial t} - Y_t)1_{Y_t \ge c}\right)$$
$$\mathbb{E}\left(\frac{\partial Y_t}{\partial t}1_{Y_t \ge c}\right) = \lim_{\partial t \longrightarrow 0} \frac{1}{\partial t}\left(1 - \sum_{n \ge c}^{\infty} \frac{n^{-t}}{\mathbb{E}\left(X_{t+1}\right)\zeta(t+1)}\right) \ge 0$$

for every $c \in \mathbb{R}$ and every $t \ge a > 1$.

Corollary 3.1. The process $(Y_t, t \ge a)$, a > 1 is a 1-martingale, i.e., there exists a martingale $(M_t, t \ge a)$, a > 1, not necessarily defined on the same probability space, such that for every fixed t:

$$Y_t \stackrel{law}{=} M_t$$

Proof. According to the above Theorem and the Kereller Theorem.

References

- Carr, P., Ewald, C.O., Xiao, Y.: On the qualitative effect of volatility and duration on price of Asian options. Finance Research Letters 5(3), 162-171 (September 2008)
- [2] Hirsch, F., Profeta, C., Roynette, B., Yor, M.: Peacocks and Associated Martingales, with Explicit Constructions. Springer-Verlag Italia (2011)

 Kellerer, H.G: Markov-Komposition und eine Anwendung auf Martingal. Math.Ann 198, 99-122(1972)