
FOUNDATIONS OF QUANTUM COMPUTING 

I. Demystifying quantum paradoxes 

 

M.SYRKIN 
FEDERAL RESERVE BANK OF NEW YORK 

 

DISCLAIMER: The views in the paper are solely of the author and do not represent the position of the 

Federal Reserve Bank of New York or the Federal Reserve System 

 
Speedy developments in Quantum Technologies and Computing  with potentially far 

reaching scientific, engineering, financial applications, etc.,  make it imperative that 

fundamentals of Quantum Technologies are well explained and understood. Meanwhile, 

paradigms of so-called quantum non-locality, wave function (WF) “collapse”, 

“Schrödinger cat” and some other historically popular misconceptions continue to stir 

controversies, feed mysteries around quantum phenomena and confuse prospective 

users. 

In this regard we argue that above misinterpretations stem essentially from classically 

minded and experimentally unverifiable perceptions, recasting and fitting the Principle 

of Superposition and key experimental details into classical terms and logic. Further, we 

revisit key components of general quantum measurement protocols – analyzers  and 

detectors – and explain in this context paradoxes of WF collapse and Schrödinger cat. 

Then to demystify and clarify the concept of entanglement in multi-component systems 

(comprised of photons, electrons, atoms and even small macro-objects) and long-

distance correlations, we remind that quantum measurements routinely reveal 

correlations mandated by conservation laws in each individual realization. Remarkably, 

this “correlation-by-initial conditions” (in addition to traditional “correlation-by-

interactions”) is by no means an exclusive quantum feature, but also has it analogies  - 

in simplified form though - in Classical Mechanics (CM). However, an appearance and 

understanding of those correlations in Quantum Mechanics (QM) is governed by the 

wave-particle duality, forgetting of which leads to endless line of paradoxes. We keep 

reiterating that QM is not a dynamical theory in the same sense the CM is – it is a 

statistical theory, as established in 1926  by Born’s postulate. That is, while QM enforces 

conservations laws and ensuing correlations in each individual outcome, it does not 

indicate how exactly a specific outcome is selected. This selection remains 

fundamentally random and represents true randomness of QM, the latter being a 

statistical paradigm with a WF standing for a complex-valued amplitude of a distribution 

function. We note in conclusion that, although a quantum logic is admittedly a challenge 

for classical imagination, mechanistically complementing quantum foundations by 

classically minded expectations trivializes true quantum effects to primitive classical 

constructions and gives rise to a mysteriously omnipresent non-locality. 

 

  

 

“…Do you really believe 



 the Moon exists only 

 when you look at it?” 

A.Einstein 

Introduction. 

Quantum Mechanics (QM) will soon celebrate its centennial jubilee and stellar 

accomplishments in the 20st century, but the wave of paradoxes and interpretations - and 

misinterpretations! -  do not show signs of subsiding. What’s more, latest developments in 

quantum computing  - and prior to that the probe of Bell’s hidden parameters theorem – 

only stimulated the interest to fundamental quantum features of superposition and 

entanglement, which, in turn, renewed the curiosity regarding the nature and underpinnings 

of quantum paradoxes, such as quantum non-locality and “spooky action at the distance” in 

the Einstein- Podolsky-Rosen (EPR) paradox, wave function (WF) collapse, Schrödinger cat 

and some others. 

While these paradoxes were discussed and well explained to the bones in the past within a 

consistent framework of QM, lots of this work has been simply either forgotten or missed to 

date. This is particular the case for intense discussions between Bohr and Einstein about the 

foundations of QM, the detailed analysis and explanation of EPR paradox via statistical 

interpretation of QM in late 1930s, 1950s and 1960s, the probe of Bell’s theorem on hidden 

parameters in QM in 1970s and 1980s, and so on. 

In addition, detailed argumentation via main caliber mathematical guns of QM appeals 

mostly to specialists in quantum physics, but is totally inaccessible to professionals in other 

fields and general public. Meanwhile, current intense studies in quantum computing will 

most likely result in the near future in steady expansion of the use of quantum computers, 

and their successful application will be substantially premised on understanding of QM 

foundations by prospective users. 

Ironically, none other than R.Feynman – one the most brilliant physicists of all times, whose 

impact on quantum theory is just impossible to overvalue – contributed to the glory of QM 

mysteriousness by once commenting: “…But I think I can safely say that nobody understands 

quantum mechanics” (R. Feynman “The character of physical law”, MIT Press, 1965).  

Despite an obvious eloquence, this figure of speech is a bit far-fetched: paraphrasing  in this 

regard L.I Mandeshtam (1939), while some questions in QM are yet to be answered, and 

lots of work still lies ahead, for some other issues clarifications can be made. 

Accordingly, in the brief notes below, we attempt to clarify the most vexing and 

“mysterious” quantum paradoxes without resorting to heavy mathematical language of QM 

and by appealing to the common sense and heuristic arguments. A few essential 

mathematical technicalities are moved to the technical appendices at the end.  

Specifically, Sec 1. gives very brief introduction to QM in comparison to Classical Mechanics 

(CM). In Sec. 2 we discuss Born’s Statistical Postulate and the Principle of Superposition (PS). 

Sec. 3 describes general Quantum Measurement techniques in the context of PS and 

explains the paradoxes of WF collapse and Schrödinger cat. Finally, Sec. 4 addresses long 



distance quantum correlations in many-body systems and demystifies the so-called 

quantum non- locality and “spooky action at the distance”.  

Finally, to broaden a prospective audience and in interests of brevity, the exposition here 

and there was made somewhat cursory. We hope though that non-specialists should be able 

to follow key points and main conclusions. Readers familiar with only very basics of 

quantum theory are encouraged to read most of the text. We intend to revisit further 

underpinnings of quantum mechanics in more detail sometime later on. 

For compactness, the following intuitive abbreviations are used for most repetitive terms: 

CM – classical mechanics, QM – quantum mechanics, PS – principle of superposition, SE –

Shrödinger equation, PA – probability amplitude, WF – wave function, EPR - Einstein- 

Podolsky-Rosen, CI – Copenhagen Interpretation, WPD – wave-particle duality. 

 

1. Basics of Quantum Mechanics vs Classical Mechanics. 

We will not use popular slogans aka “Quantum physics for dummies” and the like, but 

merely summarize some minimal facts which should help even technically non-savvy 

readers gain some comfort with quantum basics. Also, from time to time, we make 

comments for readers with some experience in quantum physics just to avoid pure 

handwaving and maintain the solid foundations. These comments though can be skipped at 

will. 

With that, in CM the motion of a classical object is fully determined by its coordinate x and 

linear momentum p (velocity): that is, given initial pair of x and p at t = 0, (Cauchi problem),  

the object moves along the unique line called trajectory, which is a time-sequence of (x,p) 

pairs. This is, essentially, a classical determinism. Stated differently, there exists one and one 

only trajectory between any x1 and x2, given initial or final velocities. The form of the 

trajectory is governed by the Newton Second law (of more comprehensively, Lagrange or 

Hamilton equations) (see Technical Apendix 1).  

In contrast, in QM x and p do not co-exist: a particle can have precise x or p, but not both at 

the same time. This is Heisenberg uncertainty principle: that is, the product of coordinate 

and momentum uncertainties ΔxΔp > ℏ/2,  hence, trajectories in QM do not exist. ℏ here 

stands for the celebrated Planck constant, which effectively separates the classical and 

quantum worlds. 

Therefore, between any two points x1 and x2, there exists not a unique trajectory, but only a 

probability (more precisely, probability amplitude, (PA)) of getting from x1 to x2 in time t. 

This is known as Feynman PA K(x1,x2,t) in the Feynman formulation of QM. (Feynman 

formulation posits, using the classical language, that between two given points x1 and x2, 

there exist infinitely many trajectories - known as Feynman paths - which all contribute to 

the total K). 

The probability itself is then |K(x1,x2,t)|2.  If we do not care about where the particle 

moved to x2 from, we can drop x1, and then K becomes Ψ(x2, t), known as 

Schrödinger wave function Ψ, meaning the PA of a particle having x around x2. Both 



K and Ψ are governed by the same Schrödinger equation (SE) in more traditional 

Schrödinger formulation of QM. 

Similar to |K|2, the probability of finding the particle around x2 is |Ψ(x2, t)|
2. And, as any 

normal probability, it meets normalization condition that the total probability of finding a 

particle anywhere is equal 1. This is the so called Born’s statistical postulate (BSP), which is a 

top jewel of the whole QM, and which interpretation we will return to later. (Further below 

we omit index 2 next to x in WFs).  

The SE and BSP imply that, while the causality in CM is individual, (that is, CM describes 

classical object motion over individual trajectory starting from initial position), QM does not 

handle single events, but rather probability of events via a quantum ensemble of events. In 

other words, the causality in QM is statistical, not individual. And this “statisticality” is not 

inflicted by our lacking of some information as in Classical Statistical Mechanics, but because 

it is the very nature of the micro-world and QM. Technically, it is manifested by the fact that 

given WF Ψ at the initial moment t = 0, the SE provides all further evolution for it for any t > 

0. This is the key pillar of the QM view of the micro-world and we’ll revisit it several times 

later. 

Readers familiar with QM basics are then invited to review the Technical Appendixes 1 and 

2.  

     

2. Born’s statistical postulate and Principle of Superposition. 

According to the initial de Broglie conjecture, WFs where deemed as some”material” waves 

associated with real particles. This had very much influenced the so called “Copenhagen 

Interpretation”(CI). When Born devised his Statistical Postulate, the WF became a strange 

hybrid of a material wave with probabilistic properties, which caused lots of troubles to CI. 

Among other things, it lead to a number of paradoxes, the most famous of which is the 

“collapse” of WF. However, over the years, it became clear, that WF is not a material wave, 

but a wave of probability, so to speak. This was among factors, that prompted Feynman to 

introduce his interpretation of Ψ as “probability amplitude”, complex-valued function, with 

square modulus |Ψ(x, t)|2 being a “normal” classical probability.  

Now, if we decompose then a WF, say, in x-space, over eigen functions in momentum p-

space, we then see, that PA in x-space is the weighted sum of PAs in p-space, and vice versa. 

What’s more, this duality applies to ANY pair of spaces, depending on the convenience of 

the problem tractability. 

This leads us to the fundamental Principle of Superposition (PS) in QM. In its simplest form it 

states that for any two solutions of Schrödinger equation Ψ1 and Ψ2, their weighted sum     

c1 Ψ1 + c2 Ψ2 is also a solution. Obviously, this is a trivial consequence of SE linearity. 

Recognizing now that the number of components is not limited, we now see that PS is 

merely a decomposition of PAs/WFs in one space over PAs/WFs in another space. And it 

echoes the similar situation in classical probability. Indeed, the classical probability 

distribution (PD) in one space can be easily converted to PD in another space given 

the relationship between independent variables and normalization condition. The 



key difference with QM here, is that in QM we operate with complex-valued PA, not 

probability itself. Considering Born’s postulate, we, therefore, can alternatively interpret PAs 

as pseudo-probability distribution (for brevity, below we typically omit pseudo), which 

brings a lot of heuristic similarity with classic probabilities, and clarity when applying PS. We 

will discuss this in more detail at the end of next section, Sec. 3. 

This now enables the concept of “ensemble”, or “quantum ensembles”(QE), coined first by 

von Neumann, and the  so called “statistical interpretation of quantum mechanics” 

advanced mostly by L.E. Ballentine, D.I. Blokhintsev, L.I. Mandeshtam, K.V. Nikolsky in late 

30s – early 40s of 20st century. 

The essence of QEs and statistical interpretation follows in the next section. 

 

3. Principle of Superposition and Quantum Measurements. 
“In the Nature, there 

happens no “collapse” as  
a real physical process” 

D.I. Blokhintsev  
In this section we introduce some heuristics helpful in connection with PS and quantum 
measurements. First of all, according to SE, micro-particles lead their daily in and out life at 
the level of WFs Ψ(x), that is, quantum amplitudes. Quite provisionally, we can call this level 
“virtual”, or “underground” level, invisible readily to the observer with macroscopic 
measuring devices. (We note in passing, that the discussion what’s real vs virtual in QM is as 
old as QM itself. In particular, the famous epigraph to this paper above by A.Einstein about 
the Moon came from the well known discussion between A. Einstein and A. Pais. J. Wheeler 
even went as far as saying “No elementary quantum phenomenon is a phenomenon until it 
is observed phenomenon”). Only occasionally, when we perform actual measurements, they 
– microparticles – step up “above the ground” to the macro-level manifested by |Ψ(x)|2. We 
emphasize here, that micro-particles lead their “virtual” life regardless and independent of 
whether we observe them by performing the measurements. It is in that sense that Einstein 
once asked A. Pais “whether he really believed that the Moon existed only when he looked 
at it…”(!). Our answer to that is, in a sense, that the world of micro-particles is as objective 
as it gets at its virtual level, regardless of our measuring intervention. The virtual world is 
merely disconnected from the real macro-world until and unless we perform 
measurements, but that by no means negates its reality. We mention here in passing that 
once we measure |Ψ(x)|2, we can also restore  Ψ(x) itself (up to an arbitrary global phase 
factor exp(ia)), but that’s calls for some non-trivial translation from |Ψ(x)|2 level to Ψ(x) 
level. 
 
With that preamble we now turn to basics of quantum measurement practices. 
We will be considering only direct measurements, when the system is readily subjected to 
the measuring action (as opposed to indirect measurements, when the system gets in touch 
with another system, and that second system is a subject of an actual measurement).  
Consider a beam of particles, say, electrons or atoms, described by some general WF Ψ(x). 
We would like now to measure p values (linear momentum) for particles in our Ψ(x) beam. 
Considering that this Ψ(x) can be expanded over eigen WFs with specific momentum p as 
Ψ(x) = Σfpψp(x), we say that the momentum of the whole Ψ(x) is undetermined, and Ψ(x) is 



in a superposition state over different momentum p states. Oftentimes though, eigen-
functions ψp(x) closely overlap and are inconvenient for immediate measurements. We can 
therefore subject the beam to diffraction grating – the latter can be thought of as some kind 
of external field – which separates ψp(x) in space. This changes Ψ(x) to Φ(x) = Σgpφp(x), but 
the relationship between ψp(x) and φp(x) is known, as well as between fp and gp . (quite often 
fp ≈ gp ). These new φp(x) are now well separated and make up independent “channels” for 
particles. If we now place detectors at the end of each channel, clicking of the detector 
would register a particle propagated through the particular p-channel. Counting clicks in 
each channel gives us |gp|2, and therefore, |fp|2. This whole arrangement is depicted in Fig. 
1 (borrowed from: D.I. Blokhintsev, Statistical ensembles in quantum mechanics/In: 
Quantum mechanics, determinism, causality, and particles, Reidel, 1976). Typical examples 
of the arrangement on Fig.1. include, but by no means are limited to, splitting the initial 
particle beam by subjecting it to scattering off a crystal or to non-uniform magnetic field (as 
in the archetypal Stern-Gerlach experiment demonstrating the effects of electron spin).  

 
 

 
 
 
On Fig.1. only three channels are displayed. ΨM is an initial beam Ψ(x), A stands for an 
analyzer, D0, D1, D2 – detectors, corresponding to eigen functions φ1(x), φ2(x), φ3(x) [Fig. 1 
assumes φi(x) = ψi(x)]. Here the stage of propagating through the channels before detector 
clicking is called an analyzing stage. It is followed then by the detector stage – detector’s 
clicking. Importantly, the stage of an analyzer A performs just a spectral decomposition of 
initial WF over eigen functions φp(x) and as such is fully reversible, because the coherency of 
φp(x) is preserved within Φ(x).  That is, we can apply another external field, essentially, 
compensating for the impact of the initial field, to restore initial WF Ψ(x). In other words, 
before being registered by detectors, all particles belong to the coherent ensemble of WF 
Φ(x), i.e all particles are still in a superposition state over p. On the contrary, detector stage 
is irreversible: the momentum of each particle is known with certainty and particles no 
longer constitute the common ensemble Φ(x). This second stage is referred to in the 
literature as a so-called “collapse” of the superposition state WF Φ(x) to the state with 
certain single p. 
If WF is interpreted as dynamic variable connected to the individual particle, then the 
“collapse” jump presents an obvious logical difficulty and paradox to CI. In contrast, in 
”Statistical Interpretation”  the WF is merely a distribution function (pseudo-distribution, 
that is) – just a statistical metric for electron beam ensemble – and there is no “collapse” of 
any dynamic variable. The change of the distribution function AFTER the detector action is 
now just an obviously simple mathematical fact, very well known in classical probability 
theory. 



Further, in relation to PS, the ”plus” sign in the PS formula is only a foot-print of the linearity 

of SE. However, it is not infrequently that particle being in the superposition state is 
interpreted as “residing” simultaneously in all superposition components. This 
interpretation runs into substantial difficulties, because now one needs to explain how this 
“simultaneity” should be understood, and, correspondingly, experimentally probed. In 
contrast, the interpretation of WF as a distribution function is free of that weakness. Indeed, 
the moment we interpret PA as a (pseudo-) distribution function, the summation in PS 
immediately becomes a law of composing partial distribution functions ψp(x) into a total 
one, Ψ(x). This interpretation has its immediate analogy in a composition rule for classic 
probability mixtures (Bean, 2001).Further, in connection with Sec. 2 and in the context of 
Fig.1 arrangement, before the detector “clicking” we do not know what the momentum p of 
the particle is. We just say, that the odds of the particle having specific p are, somewhat 
loosely speaking, proportional to appropriate PA fp, very much similar to a classic probability 
mixtures (in this context we disregard for now that PA is complex-valued). Each particle in 
the beam / ensemble brings its own contribution into forming a total distribution function 
via a build-up of spots on a photo-sensitive screen (or screen, covered by dense array of 
detectors Di), that is, the total probability distribution |Ψ(x)|2  emerges via a consecutive 
arrivals of beam particles at the screen. Importantly here, that PA proves complex-valued (it 
can be written as (P)1/2exp(iα), where P- classical probability, α – phase). That is, the true 
randomness in QM is more involved than just a 1-dimensional classical probability: at the 
“virtual”/amplitude level the traditional amplitude modulus, (P)1/2, is complemented by an 
additional parameter, phase α, to form a complex-valued pseudo-distribution function, PA =  
(P)1/2exp(iα). And to transit to macro-level we take |PA|2. It is this phase α, the hallmark of 
the coherence, which enables the phenomenon of interference. And accordingly, when 
passing a detector, particles lose their ability to interfere because the phase is destroyed by 
an irreversible act of detection. For further details on detector operations see Blokhintsev 
(1968, 1974). 
It is worth mentioning here, that historically (and conceptually!) the idea of channeling 
particles via different paths in quantum measurements was essentially implemented first in 
the celebrated Young two-slit experiment, Fig.2.(see, e.g., Feynman & Hibbs, 1965).  

   

 
Fig.2. 
 



In it the beam of particles (photons, electrons, atoms, etc.), after passing the first screen 
with two narrow slits forms – under proper conditions! - an interference intensity pattern 
on a second screen, rather then just a simple sum of intensities emanating from slits 1 and 

2, hinting at a wave nature of micro-particles. When the beam intensity is very low, the 
interference appearing on the second screen sheds a lot of light on the nature of the wave-
particle duality and this is exactly what gave R. Feynman reason to brand this experiment as 
a “heart of quantum mechanics”. 
In conclusion of this section we briefly touch the “Shrodinger cat” paradox. Say, we have 
only two channels on Fig.1, and at the end of one channel the detector harm a poor cat, and 
at the other – does not. Will then the cat be in the superposition state? Obviously, not! As 
was explained above, the superposition coherency is preserved only BEFORE detectors, not 
after. The detector “clicking” destroys the coherency and converts the initial WF into the 
incoherent mixture. This mixture is a well-known mathematical object in classical probability 
and does not bring a cat in any superposition state, as expected (Blokhintsev, 1968). 
In closing this section, we point out that our modern understanding of quantum 
measurements owes a lot to tireless efforts of D.I. Blokhintsev, whose scientific and 
pedagogical talent made his papers and books (see the references by the end of the paper) 
on foundations of QM and measurement processes an invaluable legacy for generations of 
physicists to come.  

 

4. Conservation of quantum correlations in many-body systems and “spooky action 

at the distance”. 

“There is no nonlocality 

in quantum theory; there 

are only some nonlocal 

interpretations 

 of quantum mechanics” 

C. Fuchs, D. Mermin, R.Schack 

Conservation laws, in particular, energy conservation principle, went through some difficult 

/ testing times in relation to emerging quantum physics in 1920s. In connection to certain 

difficulties of quantum radiation theory in 1924 none others than Bohr (!), the founding 

father of quantum physics, along with Kramers and Slater (another two prominent theorists 

in quantum theory) hypothesized that conservation of energy in quantum mechanics 

happens only statistically, but not in each individual event (i.e. energy is preserved only on 

average, in the limit of N -> infinity, where N is the number of micro-particles undergoing 

quantum processes). The similar tendency was also noticed in Dirac’s and Landau’s 

comments regarding beta-decay of nuclei and internal structure of stars (both Dirac and 

Landau – undisputed geniuses of theoretical physics of 20st century!). In fairness, it should 

be noted that in light of Born’s statistical postulate the very idea of statistical nature of 

energy conservation in QM - even if from somewhat superficial viewpoint – did not appear 

all too logically insane at the time. Fortunately, by joint efforts of experimentalists and 

theorists, the energy conservation prevailed by the end 1930s, and re-established itself as 

an unconditional backbone of the world the way we know it. Another confirmation of 



conservation laws came in remarkable experiments of Freedman and Clauser in 1970s 

and Aspect’s group in 1980s with correlated pairs of photons (born via radiative decay of 

doubly excited calcium atoms), aiming at probing Bell’s theory of hidden parameters in 

QM. In recent years similar experiments were repeatedly conducted for various distances 

between correlated photons, and conservation laws were invariably upheld for each and 

every photon pair. These results stimulated a popularity of the so-called non-local 

interpretation of quantum mechanics: that is, there allegedly exists an omnipresent and 

instantaneous quantum interaction between elementary particles at any distance, which 

was eloquently branded by Einstein as a “spooky action at the distance”. This persistent 

correlation at any distance was termed as “entanglement” in quantum mechanics and, 

actually, became an important tool in current experiments in quantum technology and 

quantum computers. Without delving into endless discussions of this phenomenon in a 

professional and popular literature alike, we’ll point out to the following. Entanglement is, in 

fact, by no means an exotic phenomenon in particular experiments. On the contrary, it 

routinely emerges in, say, all collision processes in atomic and nuclear physics, and in 

elementary particle physics. Every time the pair (or group of particles) emerges from the 

interaction process and propagates freely all along, its dynamic variables do not change and 

remain correlated according to conservation laws. That is, the total linear momentum, or 

angular momentum, or spin or polarization, etc. remains the same no matter how far the 

particles move from each other as long as they do not interact. This obvious fact follows 

immediately from the SE equation with zero interaction and was famously discussed in 

relation to completeness  of quantum theory in the paper of Einstein, Podolsky and Rozen in 

1936 (the so called EPR paradox of quantum mechanics). While this effect finds its 

consistent explanation in statistical interpretation of quantum mechanics (more specifically 

– via the concept of statistical ensembles of quantum mechanics), there is a pressing need 

to give a “layman / pedestrian” explanation, why on Earth, the particles remain correlated at 

any distance, i.e. what is the underlying physical reason for that, given the statistical / 

random nature of quantum experiments. The answer though lies quite on the surface. 

Indeed, the SE is the wave type of equation, that is why the initial name to QM was actually 

wave mechanics. And its “wave image” of free point-wise particle with, say, certain linear 

momentum p, is a plane wave with the same momentum, i.e exp(± ipx/ℏ). But in contrast to 

particles, which are point-wise objects, plane waves are not limited in space, they are, so to 

speak, everywhere (x extends to plus and minus infinity) and there is “no distance” between 

them, regardless whether we experiment with photons in a laboratory or with photons 

coming from distant stars. In other words, there is no distance between plane waves (and 

not only plane waves!) in SE equation of QM. Therefore, the plane waves are, loosely 

speaking, “always” next to each other and there is no problem for them “to communicate” 

to maintain a perfect correlation to meet conservation laws restrictions. More generally, 

this is a manifestation of the so-called wave-particle duality principle and complementarity 

in QM, introduced by Bohr in his discussions with Einstein. Wave-particle duality simply 

means that certain aspects of phenomena in quantum world can be explained via either 



classical, i.e. particle-like view, or wave-like view, but not both. And further similar examples 

in QM are innumerable. For our case of distant correlated photons that means that the 

correlation between photons emerges at their birth via the SE equation, i.e. via wave-like 

process, and that correlation remains the same precisely because of the wave nature. 

That’s why attempts to explain it via classical point-wise view do not work and are bound to 

fail. These photon correlations are quantum/wave correlations at their heart, and it does 

not make sense to ask for particle-like explanation. In that context, invoking the so-called 

non-locality in quantum mechanics is nothing but naïve attempt of enforcing classical logic 

to pure quantum phenomenon and unsurprisingly implies some “spooky” and strange 

causes. For mathematical details of how these heuristics translate into wave mechanics 

workings in quantum measurements, see Blokhintsev (1968).  

 

5. Some conclusions for Part I. 

Lets us summarize some key takeaways here. 

1. QM doesn’t operate with individual events aka CM does, but rather with their 

ensembles / statistical collectives. In doing so, QM does not manipulate with dynamic 

variables themselves, but rather with probability amplitudes (pseudo-probabilities) of 

these variables. 

2. Despite a statistical character of QM, correlations implied by conservation laws are 

enforced in any individual event. 

3. Principle of Superposition is the backbone of a quantum measurement process and its 

statistical interpretation. Principle of Superposition can be conveniently viewed as just a 

composition law of partial distribution into the total distribution – very much similar to 

classical probability mixtures (Bean, 2001). 

4. Long-distance correlations between non-interacting particles originate from initial 

conditions mandated by conservation laws and keep on all along via trivial workings of 

wave component of wave-particle duality. Invoking in this regard a mysterious quantum 

non-locality imitates a true quantum wave mechanism by a fictitious, and, therefore, 

redundant, classically-minded logic. 

5. Wave function collapse is an obsolete term / figure of speech for changing the statistics 

of micro-particles by a detection process and does not represent a real collapse of any 

material substance. In a similar fashion, the detection intervention resolves a paradox of  

Schrödinger cat. 

 

6. Historical tribute.  

Statistical nature of QM and measurements in QM received outstanding treatments and 

elucidation in groundbreaking works of L. Ballentine, D. Blokhintsev, D. Bohm, R. Feynman, 

L. Mandelshtam, J. von Neumann and K. Nikolsky, to name just a few. Accordingly, we 

wholeheartedly recommend their works (please, see below) and references therein for 

more detailed studies. 

 



7. Literature for further reading.  

To say that the literature on QM, its interpretations and paradoxes is enormous - is to say 

nothing. Therefore, by necessity, we limit ourselves with just a very few fundamental 

references which should help an interested reader to begin the journey into the 

“mysterious” world of QM. 

Ballentine, L.E., Quantum Mechanics: A modern development, World Scientific, 1998 

Blokhintsev, D.I., Quantum Mechanics, Reidel, 1964; The philosophy of quantum mechanics, 

Reidel, 1968, reprint - 2010; Statistical ensembles in quantum mechanics. In: Quantum 

mechanics, determinism, causality, and particles, Reidel, 1976 

Bohm, D., Quantum Mechanics, Dover, 1979 

Feynman, R.P, Hibbs, A.S., Quantum mechanics and path integrals, McGraw Hill, 1965. 

London, F., Bauer, E., The theory of observation in Quantum Mechanics,1939 / In: J.Wheeler 

and W. Zurek, Quantum Theory and Measurement,  Princeton University Press, 1982 

Mandelshtam, L.I., Lectures on Optics, Relativity Theory, and Quantum Mechanics, Moscow, 

1972 

Von Neumann, J.,   Mathematical Foundations of Quantum Mechanics, Princeton University 

Press, 1983 

Nikolsky, K.V., Quantum Processes, Moscow, 1940 

 

A useful reference in Probability Theory is: 

Bean, M., Probability: The Science of Uncertainty, Brooks and Cole, 2001 
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Techncal Appendix 1 . Newton and Shrödinger equations.  

Newton Second law and initial conditions  

ma = F or m d2x(t)/dt2 = ∂U/∂x, x(0) = x0, and p(0)= p0 

 

Shrödinger equation (SE) for both Ψ and K functions and initial conditions 

iℏ ∂Ψ(x,t)/∂t = HΨ(x,t) or iℏ ∂K(x1,x2,t)|/∂t = H K(x1,x2,t), where H – total energy of 

the system, and Ψ(x,0) = Ψ0(x),  

 

Normalization condition 

∫|Ψ(x, t)|2dx = 1 

 

Technical Appendix 2. Hilbert space of Quantum Mechanics. 



WFs can be taken as a function of not necessarily coordinate x, but any other 

“coordinate” q, such as linear momentum p, angular momentum M, etc. All these 

Ψ(q) stand for WF in different representations, e.g. momentum representation, 

angular representation and so on. Further, following von Neumann suggestion, Ψ(q) 

can be considered as projections of vector Ψ onto Hilbert orts q. In Dirac notations, 

vector Ψ is written as <Ψ|, and projection components  <Ψ|q> give Ψ(q). (In the 

extant literature, and quite inconsistently, Ψ(q) is sometimes written as  <Ψ(q)|, 

which should not lead to confusion though). 

If q is not continuous, but discrete variable, such as spin, etc., then Ψ(q)  becomes 

Ψi, and the normalization condition then reads  Σ|Ψi|
2 =1. 

In QM dynamic variables are not just regular algebraic variables, but operators. (E.g. 

in coordinate representation, x is still x, but p is d/dx, M is d/dφ, energy E = p2/2m is 

(2m)-1d2/dx2, and so on). Each of these operators C has its own so called “eigen” 

functions ψi such that Cψi = ci ψi. These functions form “complete set”, so that any 

function Ψ(q) can be decomposed as a weighted sum of these functions. So, each 

operator provides its own space for projecting space vector Ψ and weights 

appearing in the decomposition of the WF in one space make up for the WF in the 

other. For example, the coordinate WF Ψ(x) can be decomposed over eigen 

functions of the momentum ψp(x), that is  Ψ(x) = ∫c(p) ψp(x)dx, and, therefore, c(p) 

becomes a WF Ψ(p) in momentum space. And vice versa, since Ψ(p)  = ∫ c(x) ψx
*(p) 

dp, where * stands for a complex conjugation, then c(x) becomes WF Ψ(x) in 

coordinate space and so on. According to Born’s probabilistic postulate, all these 

Ψ(x), Ψ(p) , etc. are probability amplitudes – PAs -  in their respective spaces. All that 

prerequisite should facilitate an understanding of Born’s statistical postulate and 

Principle of the Superposition (PS). 

 


