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In this Part II we focus on a few key elements of quantum mechanics essential for 

understanding of quantum technologies and computing. 

We begin with a subtle but important similarity between classical and quantum 

mechanics which is typically overlooked in favor of an apparent differences. Further, it is 

reminded that classical motion can be obtained via averaging over quantum 

distributions / wave functions and, conversely, quantum distributions can be recast as a 

superposition of virtual classical paths. Relatedly, we emphasize the importance of the 

case intermediate between classical and quantum mechanics – that is, quasi-classical 

mechanics. The above background facilitates additional insights and heuristics into the 

mechanisms of widely acclaimed long distance correlations in quantum mechanics and 

origins of the coherency in quantum ensembles in the context of wave-particle duality. 

 

 

 

“…Nothing is more repellent 

 to normal human beings than  

 the clinical succession of  

of definitions, axioms, and theorems  

generated by the labors 

 of pure mathematicians.” 

J.M. Ziman  

Introduction 

In this Part II we continue (Part I “Foundations of Quantum computinf. I. Demystifying 

quantum paradoxes”) an honorary attempt to dissolve the haze of mystery around certain 

facets of Quantum Mechanics randomness and speak about it in a “normal layman” 

language. There is a caveat though: any classical / heuristic model for a truly quantum event 

is by necessity bound to some sort of surrogating and should be taken as such. Therefore, a 

prudent grain of caution is always recommended to avoid improper oversimplifications or 

even vulgarizations.  

Accordingly, in Sec.1 we explore some subtle and often underappreciated similarity 

between Classical Mechanics (CM) and Quantum Mechanics (QM) in contrast to well 



acclaimed differences. Sec.2 discusses to what extent CM can be expressed in QM terms and 

vice versa, i.e. Ehrenfest equations and Feynman path integrals. In Sec.3 we consider 

classically minded prototypes for long-distance correlations in QM. In Sec. 4. we discuss the 

notion of wave functions and their interpretations.  And, finally, in relation to wave-particle 

duality, Sec.5 ponders possible mechanisms behind formation of quantum ensembles, in 

particular, in the context of emerging coherent patterns in experiments with low-intensity 

beams. 

 

Two final comments are in order: most of formal technical arguments and details in support 

for the heuristics in the paper are omitted to broaden its accessibility for technically non-

savvy readers.  For the same reason the list of references is not included: an interested 

reader should consult any more or less comprehensive text on quantum mechanics. 

As in Part I, for compactness, the following intuitive abbreviations are used for most 

repetitive terms: CM – classical mechanics, QM – quantum mechanics, PS – principle of 

superposition, SE –Shrödinger equation, PA – probability amplitude, WF – wave function, 

EPR - Einstein- Podolsky-Rosen, CI – Copenhagen Interpretation, WPD – wave-particle 

duality.  

 

 

1. Quantum vs Classical Mechanics probabilities 

As is well known (and pointed out in part I of “Foundations”), while in CM the motion takes 

place via paths (called trajectories) fully specified by an initial position and momentum x1 

and p1, in QM trajectories do not exist simply because the position and momentum cannot 

be specified simultaneously (Heisenberg uncertainty principle). That is, given initial x1 in QM, 

the future particle locations are not known with certainty, but only probabilistically. And 

here comes a subtle similarity between CM and QM which is widely underappreciated. 

Indeed, if we specify only x1, leaving p1 arbitrary, then even in CM the future paths are 

undefined. What’s more, even if we specify both initial and final x1 and x2, keeping initial p1 

or final p2 arbitrary, then there would still have existed a whole bunch of trajectories 

connecting x1 and x2. A trivial example from elementary physics: projectile motion in an 

uniform gravitational field, i.e. the motion of a shell fired at some angle to horizon. In other 

words, in that respect CM and QM are quite similar. However, once we begin to squeeze the 

range of possible initial p1 or final p2 momenta, i.e. when uncertainties Δp1 or Δp2 reduce – 

and this is where the similarity begins to break – so does the spectrum of classically 

available paths, either emanating from x1 or connecting x1 to x2, so that in the limit of Δp1 or 

Δp2 → 0 we obtain a uniquely defined classical trajectory. Such a refinement is not at all 

possible in QM even conceptually, because of the uncertainty principle, and thus prohibiting 

trajectories in QM. We pointed out to this parallelism because it proves helpful for 

constructing classically inspired heuristics to seemingly mysterious / puzzling 

quantum phenomena. 

 



Historical aside: to our knowledge, one of the first indications to that subtlety was made as 

early as in 1933/1934 by prof. Yu.B. Rumer in his “Introduction to Quantum Mechanics”, 

Moscow, 1935. Once at that, we note in passing that the exposition of QM vs CM in this 

book is refreshingly clear and concise, yet comprehensive – as opposed to many formidable 

texts written later - echoing the same of the all time quantum masterpiece “Principles of 

Quantum Mechanics” by P. Dirac. We wholeheartedly recommend both jewels to all 

interested readers. 

     

2. Ehrenfest equations and Feynman paths. 

Given the CM-QM similarity discussed in Sec.1, question arises to what extent it is possible, 

if at all, to view CM motion as averaged over QM distributions, and vice versa, QM in terms 

of the CM trajectories. 

First of all, an averaging of the Shrödinger equation (SE) over a spatial coordinates leads to 

the equivalent Ehrenfest equation, which reads as the modified Newton second law ma = F 

+ Quantum corrections (ψ), where “Quantum corrections” is a cumulative notation for 

additional terms, arising from quantum effects, and ψ is the wave function of a system / 

particle. In other words, this equation can be alternatively viewed as averaging over 

quantum states spaced around some “mean” trajectory. Further, under normal conditions 

Quantum Corrections term is comparable with F in the Right Hand Side (RHS) and, as 

expected, the standard Newton equation does not apply. However, when ℏ reduces the 

Quantum corrections term reduces commensurately and totally vanish in the limit of ℏ →0, 

recovering thereby the pure classical Newton equation ma = F, or m d2x(t)/dt2 = ∂U/∂x. In 

other words, in the quasi-classical limit ℏ →0, a classical motion is contributed by few 

quantum states tightly packed around the particle center of mass.   

 

The construction of the opposite view, QM in terms of CM trajectories, follows from the 

R.Feynman milestone result: namely, Feynman showed that the quantum motion can be 

rendered, in a sense, as an interference of classical trajectories. Specifically, the probability 

amplitude of getting, say, from x1 to x2, which normally stems from SE, can be alternatively, 

but equivalently, obtained by summing amplitudes along all classical paths from x1 to x2.  

More precisely, if for each and every imaginable trajectory connecting x1 and x2 – and 

trajectories need not necessarily be real “physical” trajectories – calculate an ordinary 

classical action Sk, then the sum Σexp[(i/ℏ)Sk(x1, x2)] over all trajectories (k is the 

summation index) gives a quantum amplitude K(x1,x2,t), which otherwise would come as a 

solution to SE. Without delving into this any further, we point out only three key points. 

First, Feynman path sum (or integral) became a standard technical tool in the modern 

Quantum Field Theory (QFT). Second, similar to Ehrenfest equations, as ℏ → 0, i.e. in a 

quasi-classical situation, all exponents in the sum wildly oscillate and effectively cancel each 

other, except for those corresponding to paths in the neighborhood of classic paths (where 

S’k ≈ 0 – stationary points of Sk). That is, in the classical limit, quantum amplitudes are 

dominated by classical paths and their vicinity, as expected. In other words, QM is possible 



to construct from CM trajectories, and, the other way around, CM motion naturally arises in 

the ℏ →0 limit of QM. Last, but not the least, a quantum motion can be perceived, at least 

heuristically, as happening over the web of classical “virtual” trajectories. Clearly, a 

transparency and heuristic appeal of Feynman path integral is rather irresistible. 

 

To bottomline, the transition CM ←→ QM looks as follows. As we move from CM to QM, a 

classical trajectory splits into a tight bundle of paths which continue to diverge as ℏ grows. 

Conversely, when ℏ reduces, quantum / Feynman paths coalesce around classical trajectory, 

and eventually fully collapse on it in the limit ℏ = 0. In the intermediate region – traditionally 

known as quasi-classical – where the system is already not classical, but not yet fully 

quantum, quantum amplitudes (and probabilities) follow directly from classical actions 

obtained along classical trajectories (see, for instance, R. Feynman, A. Hibbs, “Quantum 

mechanics and path integrals”, McGrawhill, 1965). 

 

3. Some general heuristics on long – distance correlations. 
In Part I, we touched base on long-distance correlations - resulting from conservation laws - 
as a true wave phenomenon via a well reputable concept of wave-particle duality. We then 
emphasized, that even though SE is a statistical equation, the conservation laws hold in 
quantum mechanics not statistically, but – surprisingly in some sense – in every individual 
outcome: we can dub this as a “detailed” conservation, rather than statistical one. Here, 
we’ll offer additional qualitative arguments that this detailed conservation is not surprising, 
but is, in fact, what to be naturally expected from the two way CM ←→ QM heuristics (Sec. 
2).    
Intending for a sort of classically minded prototype for quantum long-distance correlations, 
consider first a shell at rest exploding into two equal pieces. At any time - and distance! - 
after the explosion the total momentum remains 0, i.e. the momenta (angular momenta, 
spins, etc.) of each piece are equal and opposite, as long as there are no external actions. 
We can even imagine a sequence of random explosions, producing every time a directionally 
random distribution of fragments, but as long as they are pair-wise balanced, the 
conservation still holds for all random realizations in every possible direction. Therefore, if 
we view quantum amplitudes as a virtual superposition of classical events (in a sense of 
classical imitation of quantum ensemble) - loosely speaking, a la Feynman paths 
superposition and not necessarily in a coordinate space, but in some suitable representation 
- we can expect a detailed translation of classical conservation to the quantum world. 
Obviously, this classical heuristics is only a surrogate imitation of a true quantum reality, but 
it helps understand that consistency and a smooth transition between classical and 
quantum cases obviates the need for an artificial quantum non-locality.   
 
Conversely, consider now a classical motion -  in light of the Ehrenfest equation – via linearly 
weighting some tight quantum states. Since the conservation clearly holds for a classical 
motion, the quantum Ehrenfest averages should do the same. In turn, these averages are 
made up linearly from quantum states, independent of each other – hence, the 
conservation should hold individually for each quantum “event” contributing to classical 
averages. 



In the region intermediate between CM and QM – called quasi-classical – both mechanics 
overlap and coexist so that quantum amplitudes (wave functions) are directly related to 
classical trajectories. The importance of the quasi-classical mechanics extends way beyond 
fertile heuristic analogies and technical relationships between CM and QM – it serves for 
their mutual cross-validation. By way of example: in the above classical model of randomly 
distributed fragments the long-distance correlation of debris in every possible direction 
follows immediately, while from the quantum view the randomness in quantum 
measurements historically contributed to a confusion and even to the so called “quantum 
non-local” interpretation. However, once we recall the quasi-classical relationships between 
classical trajectories and quantum amplitudes, the connection of wave functions in any 
representation to classically balanced outcomes becomes transparent, and so does the 
conservation in any random realization in QM. 
 

4.  Interpretation of WFs and their superposition. 

According to the initial de Broglie conjecture, WFs were deemed as some ”material” waves 

associated with real particles. This had very much influenced the so called “Copenhagen 

Interpretation”(CI). When M.Born devised his Statistical Postulate, the WF became a strange 

hybrid of a material wave with probabilistic properties, which caused lots of troubles to CI. 

Among other things, it led to number of paradoxes, the most famous of which is the 

“collapse” of WF. However, over the years, it became clear, that WF is not a material wave, 

but a wave of probability, so to speak. This was among factors, that prompted Feynman to 

introduce his interpretation of Ψ as “probability amplitude”, complex-valued function, with 

square modulus |Ψ(x, t)|2 being a “normal” classical probability. In more precise terms, the 

gradual build-up of the interference picture in low-intensity beam experiments in 

conjunction with Born’s statistical postulate lends a direct support to a view at wave 

function as a distribution function amplitude.  

From that angle, the superposition principle represents merely  a composition law of 
distribution functions, corresponding to individual eigen states. Therefore, in a 
superposition state, a dynamic variable assumes various values, each occurring with 
frequency generally proportional to the amplitude of corresponding eigen state in the 
superposition (more precisely – proportional to modulus square of wave function 
amplitude). In other words, under this view the measuring device does not need to make a 
decision of choosing among available superposing components, but rather each sample of 
the system / each ensemble member arrives at the measuring device in quite a specific 
virtual state. Rephrasing this slightly, a superposition state is a set of eigen states, each 
occurring commensurately to its amplitude in the superposition. We emphasize the word 
“virtual” above: while we do not know how exactly quantum randomness “assigns” specific 
values of a dynamic variable to each sample of the system, technically, as long as we 
operate with this “assignment” at the amplitude level (which is nothing but ordinary QM 
calculations), the results will be correct and consistent. To reiterate: because we are unable 
to observe virtual events at the amplitude level, the term “assignment” should not be taken 
literally, as if it were implying  some traditionally measurable process. Rather, it stands as a 
vivid picturing of a gradual build-up process of a distribution / wave function similarly to, 
say, Feynman virtual paths making up an exact transition amplitude.  That is, this 
interpretation pretends to no more than conveniently portray virtual events in an amplitude 



world, and as such is fundamentally different from the real default mechanism, discussed by 
Furry in 1936 (W. Furry,”Note on the Quantum-Mechanical Theory of measurement” Phys. 
Rev, v.49, p.395,1936), as well as from the general view of “naïve realism”. 
 
And further, since a wave function can be routinely transformed between any pair of 
representations, this ”assignment” is deemed happening in every desirable representation 
which can be revealed at the measurement stage by properly tuning the equipment.  
It feels quite important to avoid potential misunderstandings by commenting as follows. 
The key error facilitating a nonlocal interpretation roots in an incorrect view of a 
superposition state and shifting a conceptual focus from the very system to the measuring 
device. Namely, what is typically assumed is that a superposition state is a sort of 
“synthetic” state with the system being somehow in all components SIMULTANEOUSLY, and 
it is the measuring device job to “trigger” the transition to a specific component. But that’s 
what is precisely incorrect! According to an understanding of WF as a distribution, 
superposition stands for a set of potentialities (usually, orthogonal) occurring alternately - 
not simultaneously! - on only one at a time basis per each ensemble member,  and what 
remains for the measuring device is only to register it. 
 
In more formal words, a superposition state is a set of potentialities each complying with 
conservation laws and occurring proportionally to its amplitude in a superposition, i.e., the 
WF is a distribution function in a virtual space of amplitudes. To our knowledge, one of the 
first – and brilliantly intuitive and appealing – arguments in support of this fundamental 
consideration were elaborated as early as in 1932(!) by J. I. Frenkel (see J.Frenkel, Wave 
Mechanics: Elementary Theory, §17, Oxford U. Press, 2nd edition, 1936).  

 

5.  Genesis and evolution of the wave-particle duality. 
So far, the exposition in this note has been resting on a firm ground of well-established facts 
and accepted views. In this section in reviewing the genesis and evolution of the wave-
particle duality (WPD), we outline a hypothetically possible future development of WPD. 
First of all, what is invariably observed in all quantum interference experiments with low 
intensity beams – be it a diffraction on the edge, or on the pinhole or on two narrow slits (in 
the Young paradigmatic scheme) – is a gradual emergence of a coherent interference 
pattern on the screen despite the fact, that beam particles are clearly consecutive and 
independent. And the standard explanation of this striking effect has been traditionally 
resting on the concept of wave-particle duality (WPD). 
 
 Historically, WPD outgrew from 1) the de Broglie hypothesis associating each micro-particle 
with the corresponding wave, and 2) experiments, demonstrating diffraction effects in 
scattering of photons, electrons, etc., i.e., all micro-particles. Conceptually, 1) and 2) were 
solidified in the Copenhagen Interpretation (CI) of WF as a metric of an individual particle, 
and since then WPD is generally understood as that all aspects of phenomena in quantum 
world can be explained either via classical, i.e., particle-like view, or wave-like view, but not 
both. To many, this construct appeared, and still does, as quite a formal, if not somewhat 
artificial, combination of two incompatibles, but one way or the other, for want of any 
better alternative it became a main pillar of QM vs CM philosophy. In 1927, Eddington even 
dubbed this hypothetical hybrid as “wavicle”. With time, however, it became clear, 
especially in the context of the Born statistical postulate, that point 1) above is not quite 



correct (and CI along with it), and that WFs describe not individual particles, but rather their 
full congregations – the so-called quantum ensembles. 
Independently, but relatedly, with the development of QED at the end 1940s, there began 
shaping up an interest in what’s behind the wave facet of WPD. That was stimulated by a  
realization that vacuum is not merely an empty space, but rather a special medium, exerting 
subtle, but experimentally detectable footprint on quantum systems / micro-particles (e.g., 
Lamb shift, electron-positron pair formation, etc.). As a result, from then on there began 
numerous attempts to construct QM as a random motion in fluctuating vacuum fields. 
Various implementations of this idea would make a way too long list of related works, so we 
site just a few with references therein1.  
 
Combining both lines of thoughts, we come to realize, that the apparent diffractive behavior 

of micro-particles, or, more generally, the wave facet of WPD, might result from a tight 

coupling between quantum vacuum and micro-particles. Coming out of it is an 

“interference” pattern, which we have accustomed to take as a “true” interference – as if 

micro-particles were indeed some real waves or, at least, possessing wave properties – and 

what constitutes a wave facet of WPD. At will, extending Feynman ideas of rendering 

probabilities by means of “virtual” trajectories, one can trace the invisible vacuum hand 

behind the “interference” a bit more quantitatively by invoking the Feynman path integral 

representation. Namely, each amplitude participating in forming a total probability 

amplitude can be portrayed as a sum over all virtual paths. In turn, each path can be viewed 

as furnishing the action minimum for every realization of vacuum fluctuating potential, and, 

therefore, recasting an interference in terms of vacuum fields. Notably, the same logic 

applies when connecting vacuum fluctuations with Bohm’s quantum potential in his pilot-

wave picture. Incidentally, Feynman’s formulation of QM is the only successful attempt to 

date that boils down the “wave” appearance of quantum amplitudes to interplay of classical 

trajectories.  

   

To recap the hypothesis: the quantum vacuum acts as a huge fluctuating, but stationary and 

common for all ensemble particles bath, which is what becomes the key source of their 

apparent wave-like  – and coherent – behavior. That is, a diffractive appearance is nothing 

but a “mirage”, masquerading the behind-the-scenes-impact of vacuum fluctuations, or, 

roughly speaking, a mere vacuum impact in disguise. It is instructive in this regard to make a 

citation from Yu. B. Rumer “Introduction to wave mechanics”, 1935 (!): “…There does not 

exist any analogy between the motion of a single particle and a wave. Meanwhile, quite 

oftentimes one speaks – being incautious – about the wave nature of a single electron, 

while, in fact, it should be spoken about the wave nature of the whole beam of particles”. 

 

                                                           
1
 A.A. Sokolov (Introduction to Quantum Electrodynamics, Moscow, 1958), M. Roncadelli (Random path quantization, In: Path 

integrals from mev to MeV, Tutzing’92, Proceeding of the 4th Int. Conference), L. Pena, A. Cetto, A. Valdes-Hernandes (The zero-point 

field and the emergence of the quantum, Int. J. Mod. Phys. E, Vol. 23, No. 9, 2014), D.A. Slavnov (The wave-particle duality, Physics 

of Particles and Nuclei, Springer, 2015), among many others. 



To summarize: needless to say, despite an undeniable appeal of the heuristic picture above 

and numerous efforts in this regard, it has not been implemented so far in any convincing 

and experimentally supported manner. It is only the future work that will show to what 

extent the outlined ideas come true, but until then the WPD will retain its status of the key 

quantum philosophy concept.  

 

6. Concluding takeaways for Part II. 

1. Along with a well acclaimed difference between QM and CM, there exists yet a subtle 

and often underappreciated mutual similarity helping better understand the transition 

between them.     

2. In the region intermediate between CM and QM – known as quasi-classical – both 

mechanics apply and quantum probabilities directly follow from classical mechanics.  

3. The long-distance correlations between non-interacting particles in QM is the same 

manifestation of the conservation laws as in CM and, loosely speaking, can be 

heuristically pictured as such. 

4. It is possible that the formation of quantum ensembles is facilitated via an impact of 

quantum vacuum.  

 

7. Overarching afterword. 

QM is a particular statistical phenomenology with the starting point postulating a state 

vector, playing the role of a complex distribution function (WF) in a quantum ensemble of 

individual  events for any desirable representation (e.g. coordinate / momentum / angular 

momentum/ etc.). Also, at any point in time, by definition, all elementary individual events, 

and, therefore, entire distribution functions / WFs, are consistent with conservation laws. 

Any attempt to explain / derive conservation laws in the WF build-up process with a like-WF 

arguments, effectuates a vicious circle logic and inevitably leads to paradoxes, particular, 

the quantum non-locality paradox. 
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