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Abstract

Starting with a different action and following a different procedure
than the construction of strings with dynamical tensions described by
Guendelman [1], a variational procedure of our action leads to a coupled
nonlinear system of D + 4 partial differential equations for the D string
coordinates Xµ and the quartet of scalar fields ϕ1, ϕ2, φ, T , including the
dilaton φ(σ) and the tension T (σ) field. Trivial solutions to this system
of complicated equations lead to a constant tension and to the standard
string equations of motion. One of the most relevant features of our find-
ings is that the Weyl invariance of the traditional Polyakov string is traded
for the invariance under area-preserving diffeomorphisms. The final sec-
tion is devoted to the physics of maximal proper forces (acceleration),
minimal length within the context of Born’s Reciprocal Relativity theory
[6] and to the Rindler world sheet description of accelerated open and
closed strings from a very different approach and perspective than the
one undertaken by [7].

Keywords : Strings; Gravity; Rindler Spacetimes; Dynamical Tension; Born
Reciprocal Relativity.

PACS : 04.50.Kd; 11.10.Kk; 14.80.-j

1 Introduction

Guendelman [1] (and references therein) over the years developed the modified
measure formalism which allowed him, among other things, to show that the
string tension does not have to be put in by hand, but it can be dynamically
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generated. The string tension appears, but as an additional dynamical degree
of freedom . Recently, Guendelman [1] has shown that the string tension is
not universal, but rather each string generates its own string tension, with its
own different value. He also defined a new Tension scalar background field
which can change locally the value of the string tension along the world sheets
of the strings. When there are many strings with different string tensions this
Tension field can be determined from the requirement of world sheet conformal
invariance. For two types of string tensions, and depending on the relative sign
of the tensions, he obtained non singular cosmologies and warp space scenarios
and also scenarios where the Hagedorn temperature is avoided in the early
universe or in regions of warped spacetime where the string tensions become
very big.

In this first part of this work we shall use a very different action and follow a
very different procedure than in [1]. A variational procedure of our action leads
to a coupled nonlinear system of D + 4 partial differential equations for the
D string coordinates Xµ and the quartet of scalar fields ϕ1, ϕ2, φ, T , including
the dilaton φ(σ) and the tension T (σ) field. Trivial solutions to this system
of complicated equations lead to a constant tension and to the standard string
equations of motion of the Nambu-Goto string in the orthonormal gauge, which
are the same as the equations of motion of the Polyakov string in the conformal
gauge γab = eφ(σ)ηab.

One of the most relevant features of our findings is that the Weyl invari-
ance of the traditional Polyakov string is traded for the invariance under area-
preserving diffeomorphisms, which very recently has been an extensive area of re-
search in Celestial Conformal Field Theories (CCFTs) which are based in intro-
ducing conformal correlation functions living on the celestial sphere and which
capture the soft graviton and gluon scattering amplitudes (infrared physics) in
asymptotically flat spacetimes (null infinity). It was found that the algebra
w1+∞ plays a fundamental role [5]. Earlier work showing the relevance of w∞
algebras in Quantum Gravity can be found in [4]. To our knowledge, the first
person to realize how the w∞ algebra emerges from a dimensional reduction
mechanism of pure gravity to two dimensions was Yoon [3].

We will show that the current formulation of string theory based on the
Polyakov action is just a very special case of a more complex action involving
a dynamical tension field and which is part of the modified measure formalism.
The final section is devoted to the physics of maximal proper forces (accelera-
tion), minimal length within the context of Born’s Reciprocal Relativity theory
[6] and to the Rindler world sheet description of accelerated open and closed
strings from a very different approach and perspective than the one undertaken
by [7].
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2 Modified String Actions, a Dynamical Ten-
sion, and Composite Worldsheet Vector Fields

Let us begin with the modified string action

S = −
∫

d2σ Φ(ϕ1, ϕ2)

(
1

2
γab ∂aX

µ ∂bX
ν gµν −

1

2To
√
|γ|

Φ(ϕ1, ϕ2)

)
(1)

where To is a constant tension parameter; γab is an auxiliary world sheet metric;
|γ| ≡ |det(γab)|, and Xµ(σ1, σ2) are the string coordinates. We adopt the c = 1
units.

The measure field density Φ(ϕ1, ϕ2) in eq-(1) is a function of two dimen-
sionless worldsheet scalars ϕi(σ1, σ2), i = 1, 2, and is defined in terms of the
Poisson bracket {ϕ1, ϕ2} taken with respect to the worldsheet coordinates. It
is a mathematical curiosity that the Jacobian {ϕ1, ϕ2} can also be rewritten in
terms of the field strength Fab associated with a composite Abelian world sheet
vector field defined in terms of the scalars Ac = εijϕ

i∂cϕ
j as follows

Fcd = ∂cAd − ∂dAc ⇒ εcdFcd = Φ(ϕ1, ϕ2) = εij ε
cd ∂cϕ

i ∂dϕ
j (2)

The effective tension in (1) is no longer a constant but instead is a scalar
field defined as the ratio of two scalar densities

T (σ1, σ2) ≡ Φ(ϕ1, ϕ2)√
|γ|

(3)

The tension field defined by eq-(3) is given in terms of the Jacobian {ϕ1, ϕ2}
which describes the area-measure which in general is considered to be a positive
quantity. The

√
|γ|| in the denominator is chosen with the positive sign. A

negative tension would then correspond to having worldsheet locations with a
negative area-measure. If one wishes to avoid regions with a negative area-
measure then one should take the absolute values of the Jacobian |{ϕ1, ϕ2}|
ruling out negative tension values. When one performs a change of coordinates
in multi-dimensional integrals one must take the absolute values of the Jacobian,
meaning that one has to choose the correct sign in those regions where the
Jacobian is negative. In other words, one must break the domain of integration
into different regions and choose the appropriate sign in the Jacobian to ensure
positivity of the measure in all of those regions. A trivial example is |x| = x for
x > 0; but |x| = −x for x < 0.

A dynamical tension field T ∼ (ls)
−2 is correlated to a dynamical (effective)

string length ls. The gravitational constant G in 3 + 1-dim is given in terms
of the string coupling gs and the string length ls by G = (gsls)

2. Therefore
one would expect a dynamical G, not unlike it occurs in the Renormalization
Group program. Nevertheless, since the string coupling gs is determined in
terms of the background dilaton field, in curved backgrounds one could envision
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the possibility that both gs and ls vary in such a way as to leave their product
(G) invariant. However, in general, one would expect to have a dynamical G. 1

The above action differs from the one in [1]

S = −
∫

d2σ Φ(ϕ1, ϕ2)

(
1

2
γab ∂aX

µ ∂bX
ν gµν −

1

2
√
|γ|

εabFab

)
(4)

in the definition of the field strength Fab = ∂aAb − ∂bAa given in terms of an
auxiliary Abelian (non-composite) gauge field Aa 2. This will be a key difference
between this work and that of [1].

It is known that the Polyakov p-brane actions admit a world volume cosmo-
logical constant except in the string case p = 1

Sp = −Tp
2

∫
dp+1σ

√
|γ|

(
γab ∂aX

µ ∂bX
ν gµν − (p− 1)

)
(5)

because the world sheet cosmological constant vanishes in the string case Λp=1 =
1
2 (p− 1)Tp=1 = 0 when p = 1. This finding results from an inconsistency in the
field equations if a cosmological constant is introduced in the string case [2].

One of the key differences between the actions in eqs-(1,5) is that the tension
in (3) is no longer constant, and as a result, the modified string action (1) admits
a non-vanishing extra term of the form

Φ(ϕ1, ϕ2)

2 To
√
|γ|

Φ(ϕ1, ϕ2) =
1

2

T 2(σ1, σ2)

To

√
|γ| (6)

Therefore, one can see that the second term in eq-(6) will now play an analogous
role of a variable world-sheet cosmological “constant” associated with the modi-
fied string action (1) when one replaces the ordinary measure

√
|γ| for Φ(ϕ1, ϕ2)

and introduces a variable effective string tension.
A variation of the action (1) with respect to the scalar fields ϕi, i = 1, 2

yields

εcd (∂dϕ
i) ∂c

(
1

2
γab(∂aX

µ)(∂bX
ν)gµν −

Φ(ϕ1, ϕ2)

To
√
|γ|

)
= 0, i = 1, 2 (7)

A trivial solution to eq-(7) would be to set the terms inside the parenthesis of
(7) to a constant but we shall not follow this path and instead look for nontrivial
solutions as follows. After defining

F (σ1, σ2) ≡ 1

2
γab(∂aX

µ)(∂bX
ν)gµν −

Φ(ϕ1, ϕ2)

To
√
|γ|

(8)

1We thank the referee for bringing to our attention the negative tension case and the
possibility of a dynamical gravitational coupling

2A dimensionful parameter that was set to unity needs to be introduced in the εabFab term
to match units
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Eq-(7) can be rewritten in terms of Poisson brackets {, } as

{ϕ1, F (σ1, σ2)} = 0, {ϕ2, F (σ1, σ2)} = 0 (9)

A variation of the action (1) with respect to γab yields the stress energy
tensor

Tab = (∂aX
µ) (∂bX

ν) gµν −
1

2To
γab

Φ(ϕ1, ϕ2)√
|γ|

= 0 (10)

Taking the trace of the stress energy tensor yields

γabTab = γab (∂aX
µ) (∂bX

ν) gµν −
Φ(ϕ1, ϕ2)

To
√
|γ|

= 0 (11)

and from eqs-(8,11) one can infer that

F (σ1, σ2) =
1

2
γab(∂aX

µ)(∂bX
ν)gµν −

Φ(ϕ1, ϕ2)

To
√
|γ|

= −1

2
γab(∂aX

µ)(∂bX
ν)gµν =

−1

2

Φ(ϕ1, ϕ2)

To
√
|γ|

(12)

In order to proceed further we shall make the following ansatz relating the
the auxiliary metric γab, and the induced metric hab on the world sheet resulting
from the embedding, as follows

hab ≡ (∂aX
µ)(∂bX

ν)gµν = λ(σ1, σ2) γab ⇒ γab =
hab

λ(σ1, σ2)
(13)

where λ(σ1, σ2) is a judicious scaling function to be determined. Therefore,
from eqs-(12,13) one arrives at F (σ1, σ2) = −λ(σ1, σ2), and the ratio of the
tension scalar field T to the constant tension parameter To becomes

T (σ1, σ2)

To
=

Φ(ϕ1, ϕ2)

To
√
|γ|

=
2 {ϕ1, ϕ2}
To
√
|γ|

= 2 λ(σ1, σ2) = −2 F (σ1, σ2) (14)

And one finds that the measure field can be rewritten in terms of the string
embedding coordinates as

Φ(ϕ1, ϕ2) = 2 {ϕ1, ϕ2} = 2 To

√
|det (∂cXµ) (∂dXν) gµν | =

2 To
√
|det hcd| = 2 To

√
|h| (15)

Finally, from eqs-(14,15) one obtains the following relations

{ϕ1, ϕ2} =
T (σ)

√
|γ|

2
=

T (σ)
√
|h|

2 λ(σ)
= To

√
|h| (16)
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The reparametrization invariance of the action (1) allows to choose a world-
sheet coordinate system and rewrite the metric in the form γab = eφ(σ)ηab ⇒√
|γ| = eφ(σ) (if there are no global topological obstructions), since every metric

in 2D is conformally flat, and the first two terms of (16) become

{ϕ1, ϕ2} =
T (σ) eφ(σ)

√
|det(ηab)|

2
=

T (σ) eφ(σ)

2
(17)

after choosing the conformal gauge 3

In the same fashion that the Polyakov string still has a residual symmetry
(after choosing the conformal gauge γab = eφ(σ)ηab) provided by the so-called
conformal reparametrizations associated with the Virasoro algebra which pre-
serve the conformal gauge, we have now the area-preserving diffeomorphisms
(diffs) : {σ̃1, σ̃2}σa = 1, as the residual symmetry which leave eq-(17) invariant.

The area-preserving diffs transformations are defined by

σ̃1 = f1(σ1, σ2); σ̃2 = f2(σ1, σ2); {σ̃1, σ̃2}σi = 1 (18)

Because ϕi, T, φ are scalars one has

T (σa) = T̃ (σ̃a), ϕ̃i(σ̃a) = ϕi(σa), eφ(σ) = eφ̃(σ̃) (19)

since the square root of a determinant is a scalar density of unit weight one has

√
|det(ηab)| = 1 →

√
|det(ηab)|

(
{σ̃1, σ̃2}σa

)−1
=
√
|det(ηab)| = 1 (20)

Consequently, eq-(17) remains invariant under area-preserving diffs

{ϕ1, ϕ2}σa =
T (σ) eφ(σ)

2
= {ϕ̃1, ϕ̃2}σ̃a =

T̃ (σ̃) eφ̃(σ̃)

2
(21)

due to the invariance of the Poisson brackets under area-preserving diffs

{ϕ1, ϕ2}σa = {ϕ1, ϕ2}σ̃a {σ̃1, σ̃2}σa = {ϕ1, ϕ2}σ̃a = {ϕ̃1, ϕ̃2}σ̃a (22)

A variation of the action (1) with respect to the string coordinates Xµ leads to
the equations of motions of the string

1

Φ
∂a(Φ γab ∂bX

µ) + γab ∂aX
ν ∂bX

ρ Γµνρ = 0, Φ 6= 0 (22)

where Γµνρ is the affine connection of the background metric gµν(X). One can
compare the string equations of motion eq-(22) with the ones obtained from the
Polyakov string action [2]

1√
|γ|
∂a(
√
|γ| γab ∂bXµ) + γab ∂aX

ν ∂bX
ρ Γµνρ = 0 (23)

3Note that at first sight eq-(17) does not seem correct because the left-hand side is a scalar
density, while the second term in right-hand side is a scalar. The reason is that the value of

the density factor is unity
√

|det(ηab)| = 1
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the only difference is in the replacement Φ = 2{ϕ1, ϕ2} →
√
|γ|.

After using the expression for the measure Φ given by eq-(17), the string
equations of motion (22) simplify even further for strings moving in flat Minkowski
target spacetime backgrounds gµν = ηµν = diag(−1,+1,+1, . . . ,+1),Γµνρ = 0,

∂a(
√
|γ| T γab ∂bX

µ ) = ∂a( T ηab ∂bX
µ ) =

− ∂σ1(T ∂σ1Xµ) + ∂σ2(T ∂σ2Xµ) = 0, µ = 0, 1, 2. . . . , D − 1 (30a)

Eq-(30a) is a direct result of choosing the conformal gauge for the auxiliary
world sheet metric γab = eφηab, γ

ab = e−φηab ⇒
√
|γ| T γab = Tηab; ηab =

diag(−1,+1). Dividing the first term of (30a) by
√
|γ| 6= 0 it gives

1√
|γ|

∂a(
√
|γ| T γab ∂bXµ ) =

T√
|γ|

∂a(
√
|γ| γab ∂bXµ ) + γab (∂aT ) (∂bX

µ) = 0

(30b)
Because T,Xµ are world-sheet scalars, ∂aT, ∂bX

µ are world-sheet vectors so the
third term of (30b) is a scalar. The second term of (30b) Tγab∇a∇bXµ given
by T times the D’Alambertian is a scalar. Therefore, eq-(30b) is fully invariant
under reparametrizations but eq-(30a) is only invariant under area-prerserving
diffs since it differs from (30b) by a scalar density factor

√
|γ| 6= 0.

We are not finish yet. The Jacobi identities among the triplet of scalars
ϕ1, ϕ2, T , in conjunction with eq-(17) and the following equations, stemming
directly from eq-(9),

{ϕ1 , T (σ1, σ2)} = 0, {ϕ2 , T (σ1, σ2)} = 0 (31)

requires introducing the additional equation involving the dilaton φ(σ)

{T (σ1, σ2), T (σ1, σ2) eφ(σ
1,σ2)} = 0 ⇒ {T (σ1, σ2), eφ(σ

1,σ2)} = 0 (32)

To sum up, collecting eqs-(17,30,31,32) we arrive at a coupled nonlinear
system of D + 4 partial differential equations for the D string coordinates Xµ

and the quartet of scalars ϕ1, ϕ2, φ, T . It is interesting that besides the original
two auxiliary scalars ϕi, i = 1, 2 defining the measure scalar density field one
ends up adding a dilaton φ and the tension scalar field T .

One may note that the system of complicated eqs-(17,30,31,32) can be easily
solved when ϕ1 = κσ1;ϕ2 = κσ2, or ϕ1 = κσ2;ϕ2 = −κσ1, both solutions lead
to T = 2κ2 = 2To = constant, and φ(σ) = 0, λ(σ) = 1. In this very simple case,
eqs-(30) turn out to be

− ∂2σ1Xµ + ∂2σ2Xµ = 0, µ = 0, 1, 2, . . . , D − 1 (33)

and are equivalent to the usual equations of motion of a Nambu-Goto string in
the orthonormal gauge, and which are also the same as the equations of motion
of the Polyakov string in the conformal gauge γab = eφ(σ)ηab.
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One also finds in this simple case that when φ(σ) = 0;λ(σ) = 1; γab =
eφηab → ηab, that the induced metric hab in eq-(13) becomes

hab ≡ (∂aX
µ) (∂bX

ν) ηµν = ηab ⇒

h12 = h21 = (∂1X
µ) (∂2Xµ) = 0

h11 = (∂1X
µ) (∂1Xµ) = − 1; h22 = (∂2X

µ) (∂2Xµ) = 1 (34)

Eqs-(34) are indeed compatible with the vanishing of the stress energy tensor Tab
of the Polyakov string in Minkowski backgrounds resulting from reparametriza-
tion invariance

T12 = T21 = (∂1X
µ) (∂2Xµ) = 0

T11 = T22 =
1

2
( (∂1X

µ) (∂1Xµ) + (∂2X
µ) (∂2Xµ) ) = 0 (35)

The general solution of the wave equation (33) is a sum of right-movers and
left-movers

Xµ = Xµ
R(σ1 − σ2) + Xµ

L(σ1 + σ2) (36)

To find the explicit form of Xµ
R, X

µ
L one should require Xµ to be real-valued

and satisfying the quadratic constraints (35), and obeying suitable boundary
conditions for closed and open strings [2]. The problem is solved by performing
a Fourier mode expansion as shown in [2].

Another trivial solution is to set directly the tension to a constant T = 2To ⇒
λ(σ) = 1 so that eqs-(31,32) are trivially obeyed. The measure 2{ϕ1, ϕ2} =
2Toe

φ is then provided entirely in terms of the dilaton, and the string equations
of motion reduce to the standard ones (33). In the most general case it is desir-
able to find non-trivial solutions to eqs-(17,30,31,32) leading to a non-constant
measure Φ = 2{ϕ1, ϕ2}, a non-constant tension T (σ) and a non-constant dilaton
field φ(σ) 4. Because this is a very difficult task due to the coupled and non-
linear nature of the partial differential equations eqs-(17,30,31,32), it is beyond
the scope of this work to find non-trivial solutions.

It is important to emphasize that one cannot set a priori T to a constant in
eqs-(1,6). What has been done is, firstly, to perform a variation of the action
(1) with respect to all the fields, and only afterwards, search for solutions to
the equations of motion. And only then, one has found constant solutions for
T = 2To in a very special case. It is meaningless to try to vary a constant
T = 2To from the beginning. The underlying reason why the measure (the
tension) is dynamical is because the term (6) in the action (1) is quadratic in
the field strength associated with the composite gauge field : εabFabεcdF

cd, with
Aa = εijϕ

i∂aϕ
j . This term is what generates dynamics to the scalars ϕi (to the

measure), and which in turn, generates dynamics to the tension field. This is
another key difference between this work and [1].

4In many of our equations we used the short-hand notation σ = σa = σ1, σ2 for convenience
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The zero and infinite tensions are two interesting cases to explore. An inter-
esting double-scaling limit is when T → 0, φ → ∞, or T → ∞, φ → −∞, such
that the measure remains finite and non-zero. If the tension scalar T (σ1, σ2) = 0
vanishes at certain locations on the world sheet, the measure also vanishes (it
is degenerate) at those locations if φ does not diverge. Also, having a divergent
determinant |det(γab)| = e2φ → ∞ at certain locations is a signal of putative
singularities on the world sheet.

There are many projects worth mentioning, like to generalize this construc-
tion to p-branes and to explore the role of a dynamical tension with the run-
ning of the world-volume cosmological “constant”. The p-brane extension of
the action (1) requires to replace Poisson brackets for Nambu-Poisson brackets
{ϕ1, ϕ2, ϕ3, . . . , ϕp+1} involving p + 1 scalars ϕi, i = 1, 2, . . . , p + 1. We have
shown that the current formulation of string theory based on the Polyakov action
is just a very special case of a more complex action (1) involving a dynamical
tension field and which is part of the modified measure formalism. Guendelman
[1] already found many cosmological applications. The most general and non-
trivial solutions to eqs-(17,30,31,32) remain to be found in addition to pursuing
the quantization program.

3 Maximal acceleration and Rindler Worldsheets

The Rindler wedge in 2D Minkowski space is comprised of an infinite family
of hyperbolas associated with the world lines of uniformly accelerated particles
and parametrized by ξ with −∞ ≤ ξ ≤ +∞ representing the spatial coordinate,
and −∞ ≤ η ≤ +∞ representing the temporal one. The asymptotes (of the
hyperbolas) associated with outgoing and incoming null lines are described ξ =
−∞; η = ±∞, respectively. The latter hyperbolic trajectories in 2D Minkowski
spacetime that are described by the Rindler coordinates are given by

t =
eaξ

a
sinh(aη), x =

eaξ

a
cosh(aη), 0 < a <∞ (37)

(ds)2 = (dt)2 − (dx)2 = e2aξ
(

(dη)2 − (dξ)2
)

(38)

Because the Rindler metric is conformally flat it obeys
√
|γ|γab = ηab, and

one can explicitly verify that the hyperbolic trajectories (37) are solutions to
the D’Alambert equation in two dimensions

∂2t

∂η2
− ∂2t

∂ξ2
= 0,

∂2x

∂η2
− ∂2x

∂ξ2
= 0 (39)

One can also verify by simple inspection that the expressions (37) obey the
quadratic constraints (35) of the Polyakov string in 2D Minkowski spacetime.
Namely, one can interpret the above solutions as the coordinates t(η, ξ), x(η, ξ)
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of the two-dim world sheet of a string embedded in a two-dim Minkowski space-
time, where η, ξ are the corresponding temporal and spatial world sheet param-
eters.

Physically, the hyperbolic trajectories (37) parametrizing the right side of
the Rindler wedge describe an infinitely large open string stretched along the
positive axis and comprised of a continuum of point-masses, with each one of
them experiencing a continuum of different proper accelerations, and whose val-
ues g = g(ξ) depend on their ξ-locations along the string. The left side of the
Rindler wedge is just the parity and time reversals of (37) . The proper accel-
eration associated with each point mass at ξ is g(ξ) = ae−aξ and its associated
hyperbola obeys x2 − t2 = 1

g2(ξ) . a is a fixed acceleration parameter and must

not be confused with the proper acceleration g(ξ).
This open string scenario is space-filling : the open string fills-in the Rindler

wedge and for this reason one may label it as a “Rindler” string which sweeps a
“Rindler” worldsheet. This scenario must not be confused with the one involving
accelerating worldsheets of [7] (open strings observed in inertial and non-inertial
frames of reference) nor with a static open string whose worldsheet is just a
rectangular strip in 2D Minkowski spacetime.

Let us choose next the hyperbolic trajectory corresponding to a given point
mass located at a given fixed value of ξ = ξo = constant, so that dξ = 0, and
from the Rindler interval (38) one finds g(ξo) = ae−aξo ⇒ e−aξods = dη. Thus,
the proper force squared acting on the point mass located at the location ξo is
given by

F2 =
dpµ

ds

dpµ
ds

=
dpµ

dη

dpµ
dη

(
dη

ds
)2 = − (maeaξo)2 (e−aξo)2 = − m2a2 (40)

The phase-space interval (dω)2 corresponding to the cotangent of the 2D Rindler
spacetime is [6]

(dω)2 = dxµdxµ +
dpµdpµ

b2 = (ds)2

(
1 +

dpµ

ds
dpµ
ds

b2

)
=

(ds)2
(

1 +
F2

F2
max

)
, (ds)2 ≡ dxµdxµ (41)

where the Born constant b is postulated to be the maximal proper force b =
Fmax and needs to be introduced in (41) to match units. Inserting the values
of (40) into the phase space interval (41) it becomes

dω2 = (ds)2 (1 − m2a2

F2
max

) = (ds)2 (1 − m2g2e2aξo

F2
max

) (42)

The bound on the maximal proper force requires ma ≤ Fmax. The phase space
interval is null dω2 = 0, in particular when

m 6= 0, a 6=∞, ma = Fmax, (ds)2 6= 0 (43)
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Note that in the double-scaling limit m→ 0 , a→∞ and such that the product
ma = Fmax = b equals the Born maximal proper force, one also has a null
phase space interval dω2 = 0. And this case differs from the massless particle
case m = 0, (ds)2 = 0 leading directly to dω2 = 0.

From the definition of the proper acceleration g = ae−aξo one infers that an
infinite value of g = ∞ is consistent with a = finite if, and only if, ξo = −∞.
When g = ∞, the Rindler path corresponds to the null line trajectory ds2 = 0
and the hyperbolas degenerate into the asymptotes which coincide with the null
paths of the massless particles (photons). Whereas, an infinite value of g = ∞
is consistent with a =∞ if, and only if, ξo ≤ 0. If ξo > 0 then g → 0 as a→∞
due to the negative exponential argument. .

If there is a Born bound in the proper force given by b, then a massive particle
must also have a bound to the maximal value of its acceleration parameter
a = amax, and so would be the value of its proper acceleration g = ae−aξo ,
except in the limiting special case when ξo = −∞. But this latter limiting
value is associated with the null path trajectory (hyperbolas degenerate into
the asymptotes) corresponding to a massless particle, thus contradicting the
assumption that the particle was massive. Therefore, in order to reconcile this
discrepancy one must have that ξo 6= −∞, and such that the values of ξ are
confined to the region −∞ < ξ ≤ ∞, implying that there must be a lower value
to the throat size (a minimal length) of the Rindler hyperbolas given by

ρmin =
eamaxξo

amax
=

1

gmax
> 0, −∞ < ξo ≤ 0, amax 6=∞, c = 1 (44)

and consequently there must be a stretched Rindler horizon.
The whole discussion involving eqs-(40-44) relates to the study of strings

moving in target backgrounds associated with the cotangent bundle of space-
time (phase space). A curved-phase space requires the use of Finsler geometry.
We only discussed the simple case of flat phase space and introduced the Born
parameter b representing a maximal proper force, which in turn, leads to a
maximal proper acceleration, a minimal length (minimal throat size), and con-
sequently to a stretched Rindler horizon. Note that this finding occurs both in
open and closed strings. The key point of eqs-(42,43) was to show that a null
interval in phase space (dω)2 = 0, does not necessarily mean that one has a null
interval in spacetime (ds)2 = 0. For this reason we found in eqs-(43,44) that
the acceleration cannot be infinite.

We believe that the above interpretation of the stretched Rindler horizon in
terms of a maximal proper force and strings propagating in phase spaces might
be very relevant to the picture of Susskind (and collaborators) of free strings
falling towards a black hole horizon, and to the black hole/string transition
which occurs when the black hole entropy matches the entropy of a gas of hot
open strings living in the stretched horizon. Since a black hole is the ultimate
“accelerator”, the transverse size of the strings grow very fast as they fall while
experiencing a long string phase and diffusing all over the horizon at a distance
of the order of the string length ls, and leading to the notion of a stretched
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horizon (a membrane). The authors in [7] discussed this work of Susskind et
al and remarked that there are some issues to be resolved, since their BMS3

algebra is only generated when the string completely hits the horizon and which
corresponds to the strict infinite acceleration limit.

So far we have discussed the open string. One can envision an accelerated
closed string as an expanding loop (circle) in the x − y plane whose radius
increases in size with a uniform acceleration. In this case each one of the con-
tinuum of point masses comprising the closed string has the same proper ac-
celeration and which is chosen to be given by g(ξ) = ae−aξ. The initial loop
radius is 1

g(ξ) such that the world-sheet corresponding to this radially expanding

motion of the loop in a 3D Minkowski spacetime background has the shape of

a hyperboloid, and whose throat size is 1
g(ξ) = eaξ

a . As one varies the values of

the ξ parameter, the throat size (which coincides with the initial radius size),
varies as well.

These expanding accelerated radial motions of the loops can be visualized
by a family of hyperboloids (of varying throat sizes) which can be described in
terms of the Rindler temporal and spatial parameters η, ξ, and the additional
angular coordinate θ of the circles of radii r(η, ξ), as follows

x =
eaξ

a
cosh(aη) cos(θ), y =

eaξ

a
cosh(aη) sin(θ),

t =
eaξ

a
sinh(aη), g(ξ) ≡ a e−aξ (45)

such that x2+y2−t2 = r2−t2 = 1
g2(ξ) is consistent with the algebraic equation of

a one-parameter family of hyperboloids in three dimensions parametrized by ξ.
The radius of the loop increases in size according to r = r(η, ξ) = 1

g(ξ)cosh(aη).

To sum up, the (x, y, t) target space coordinates displayed in eq-(45) describe
a one-parameter family of hyperboloids (parametrized by ξ) associated with the
worldsheets swept by a one-parameter family of closed strings (parametrized
by ξ). θ, η are the worldsheet spatial and temporal coordinates of the closed
string and ξ is the parameter which labels each member of the family of closed
strings. The throat size of each hyperboloid coincides with the initial radius
size of each closed string. As their radius begin to grow the worldsheets swept
by each closed string begin to wrap their corresponding hyperboloids. This
scenario must not be confused with the one of accelerating worldsheets in [7] (of
closed strings observed in inertial and non-inertial frames of reference) nor with
a static closed string whose worldsheet is just the lateral surface of a cylinder-like
surface in 3D Minkowski spacetime.

We saw earlier for the Rindler hyperbolic 2D trajectories that g =∞ corre-
spond to null line trajectories : the hyperbolas degenerate into the asymptotes
which coincide with the null paths of massless particles (photons). Hence the
string analog is a tensionless closed string whose all points experience an infi-
nite proper acceleration, while sweeping a null surface (a light-cone).

Hence, the above family member of hyperboloids degenerates into a light-
cone (zero throat size hyperbolas) when g(ξ) = ∞ ⇒ ξ = −∞. Physically
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this latter picture belongs to the case where a closed tensionless string (circle,
loop) has shrunk to a point located at the origin of the 3D spacetime, and upon
experiencing an infinite radial acceleration along all directions in the x−y plane
it will begin to expand radially outwards and sweep the world-sheet given by the
forward (future) light-cone. The past light-cone is described by a closed string
(loop) of infinite radius size at η = −∞ that shrinks to zero size at η = 0.

This idea can be generalized to expanding spherical membranes, and p-
branes as well, leading to higher dimensional hyperboloids of topology Sp ×R.
The braneworlds model is based on the idea that our 4D universe is a 3-brane
whose 3 + 1-dim world volume is embedded in higher dimensions. Hence, an
accelerated expanding 3-dim spherical bubble can model the accelerated expan-
sion of our Universe and which is described by de-Sitter space whose topology
is S3 × R. Namely, the 4-dim world volume swept by the spherical 3-brane
(whose radius increases exponentially) describes a 4-dim hyperboloid embedded
in 5-dim. Hence the accelerated expanding bubbles can model the accelerated
exponential expansion of our Universe which is described by de Sitter space.

The authors [7] continued to study their tensionless limit of string theory
that has recently been formulated in terms of world-sheet Rindler physics. They
considered closed strings moving in background Rindler spacetimes and showed
that strings probing the near-horizon region of a generic non-extremal black hole
become tensionless thereby linking a spacetime Carroll limit to a world-sheet
Carroll limit. Then, considering strings in d-dimensional Rindler spacetime they
found a Rindler structure induced on the world-sheet. Among other findings,
they showed that the Bondi-Metzner-Sachs (BMS) or the Conformal Carroll
algebra emerges from the closed string Virasoro algebra as the horizon is hit.
Crucial in their findings was to start with the ILST action for tensionless
strings [8]

SISLT =

∫
d2σ V a V b (∂aX

µ) (∂bX
ν) gµν (46)

where V a are vector densities. In view of our results in this work involving
a dynamical tension field and our description of accelerated open and closed
strings within the framework of Rindler worldsheets it is warranted to explore
further the connections to the work of [7]. About the Carrollian worldsheets (c =
0) and null tensions in [7], a direct reading of eq-(3) reveals that a null tension
coresponds to having worldsheet locations of zero area-measure {ϕ1, ϕ2} = 0,
or to the case when the determinant of the auxiliary wordsheet metric γab is
infinite, which in turn, implies that the inverse worldsheet metric γab becomes
degenerate. The latter case has been studied by the authors in [7] which required
the use of the ILST action (46). In this work we begin with a different action (1)
and emphasized the key role of the area-preserving diffs symmetry that leaves
the Poisson brackets {ϕ1, ϕ2} and the action (1) invariant. The contraction
operation described by the authors in [7] involves a scaling of the Tension and a
scaling of the wordsheet temporal coordinate only which is not area-preserving.
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