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Abstract. This article reports the development of an e�cient, and robust full potential equation (FPE) solver
for transonic �ow problems, which is based on the algebraic multigrid (AMG) method. AMG method solves algebraic
systems based on multigrid principles but in a way that it is independent on the problem's geometry. The mathematical
di�culties of the problem are associated with the fact that the governing equation changes its type from elliptic
(subsonic �ow) to hyperbolic (supersonic �ow). The �ow solver is based of the body-�tted structured grid approach
in complex geometries. We demonstrate the AMG performance on various model problems with di�erent �ow speed
from subsonic to transonic conditions. The computational method was demonstrated to be capable of predicting the
shock formation and achieving residual reduction of roughly an order of magnitude per cycle, both for elliptic and
hyperbolic problems.

1. Introduction. A need for e�cient and accurate solvers for compressible �ow equations
exists in many areas of engineering and science. A necessity to answer this need is what keeps moti-
vating the development of such solvers for several decades starting from the beginning of computer
age. Research on potential �ow was conducted throughout the 1970s and into the early 1980s. By
the beginning of 1970s. One of the major early breakthroughs in this development was the work by
Murman and Cole on numerical solution of the small disturbances equation for transonic �ow [1].
The key achievement of the work was the realization that since the governing equation changes its
type from elliptic to hyperbolic where the �ow reaches supersonic speeds, this should be re�ected in
the discretization of the equation. Their paper laid the ground work for the years that follows. It
seems, however, that this direction was abandoned while still being in its infancy following another
groundbreaking work of Jameson Schmidt and Turkel [2], in which a method for solving the Euler
equations was devised. This methodology was generalized further to Naiver-Stokes equations, turbu-
lent �ows, etc., and became the de-facto standard accepted by the aerospace industries in the most
of the world until this day. However, in order to facilitate further progress, especially in improving
its e�ciency, Brandt [3] recommended to use the idea of factorization approach. This idea was
successfully realized in the past for the incompressible high Reynolds number �ow equations [4, 5],
but the progress toward applying it to the compressible �ow was rather slow and the success was
very limited, considering several di�culties. One such di�culty is that the standard discretization
schemes in multidimensions introduce non-physical coupling between the di�erent co-factors of the
system. This di�culty is addressed by the emerging class of the so called factorizable methods [6].
With this respect, the task of constructing an e�cient FPE solver attains a great importance, since
such a solver can be used not only by itself, but becomes an integral part of the overall methodology
for solving the �ow equations based upon the factorisable discretization.

One of the �rst multilevel methods toward solving partial di�erential equations fast and e�-
ciently is the multigrid method. This method is attractive since large scale sparse algebraic systems
of equations can be solved in nearly optimal scaling. There are two multigrid approaches: geometric
and algebraic. In 1964, Fedorenko [7] introduced the �rst instance of a class of algorithms that
would come to be known as multigrid methods [8, 9]. Since then, other mathematicians extended
Fedorenko's idea to general elliptic boundary value problems with variable coe�cients; see e.g., [10].
However, the full e�ciency of the multigrid approach was realized after the works of Brandt [11, 12].
He also made these methods applicable to nonlinear problems by introducing the Full Approxima-
tion Scheme (FAS) [12]. Another achievement in the formulation of multigrid methods was the
Full Multigrid (FMG) scheme [12, 13], based on the combination of nested iteration techniques and
multigrid methods.

In geometric multigrid methods the coarse-grids are uniformly coarsened or semi-coarsened, thus
the freedom in the selection of the coarse-grids is limited. The grids hierarchy is constructed based
on the grid geometry information rather than properties of the di�erence operator. In addition, the
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de�nition of smoothness of the error involves grid geometry. These geometric dependency limits
the problems it can be used to solve. Furthermore, geometric multigrid are in general not robust
with respect to the operator coe�cients. For problems where algebraic multigrid an irregular com-
plex grids are involved (Anisotropies which are a result either the grid or the equation itself) the
implementation of the geometric multigrid is de�nitely practically impossible. In the 1980s AMG
methods were developed [14, 15, 16, 17] to deal with these problems by extending the main ideas of
geometric multigrid methods to an algebraic setting. AMG is a method for solving algebraic sys-
tems based on multigrid principles with no explicit knowledge of the problem geometry. AMG uses
the matrix's properties to construct the operators involved in the algorithm. The AMG framework
usually uses a simple pointwise relaxation method whose role is to smooth (in the algebraic sense)
the error and then attempts to correct the algebraically smooth error that remains after relaxation
by a coarse-level correction.

The purpose of this work is to develop a structured FPE solver which is based on the AMG
method. The practical goal of this is twofold: First, to develop an important building block for the
factorizable methodology. Second, to develop a stand-alone �optimally� e�cient FPE solver. The
�ow solver is to be capable to deal with �ow ranging from subsonic to transonic conditions. Such
a solver can be a useful tool for engineers during the design process where multiple computations
need to be performed as small changes to the geometry are made. The paper is organized as follows:
Background on the classical AMG method is given in Section 2. The transonic �ow problem is
introduced in Section 3. Numerical calculations for body-�tted structured grids are presented in
Section 4 and convergence results for various �ow speeds are given.

2. Classical AMG � concept and description. We address the reader to [16, 18, 19] for
a detailed description of the AMG algorithm, while in this paper we shall only brie�y review the
algorithm and emphasizing its aspects. In this paper we assume the reader to have some basic
knowledge of the �traditional� geometric multigrid. He should be familiar with smoothing and
coarse-grid correction process, and with the recursive de�nition of multigrid cycles. We limit our
discussion to the basic principles of the AMG method. We shall give here a brief description of the
classical AMG in the spirit of [16] followed by a description of the solution process. Regarding more
detailed information on geometric and algebraic multigrid, we refer to [20, 21] and the extensive list
of references given therein.

Consider a certain boundary-value problem for a scalar PDE in domain Ω. Its discretization
will result in a linear algebra problem of the form Au = f , where A is an n× n matrix with entries
aij with i = 1, ..., n, j = 1, ..., n, u = {uj} is the vector of unknowns, b = {bj} is the forcing term
vector and n is the number of points in the computational grid covering the domain.

In geometric multigrid the de�nition of smoothness of the error involves grid geometry. The
absence of grids in AMG renders this de�nition meaningless. Therefore, the concept of smoothness
has to be generalized to some meaningful measurable quantity which can be computed based on
the discrete operator only. A common de�nition of the algebraic smoothness is based on the fact
that a simple pointwise relaxation scheme, like symmetric Gauss-Siedel (SGS), damps e�ectively
high oscillatory modes of the error only. Consequently, the coarse-grid correction must deal with
the remaining slow components. The characterization of such slow components ,e, is: Ae ' 0.

2.1. Coarsening process. In the context of an algebraic multigrid we are going to deal at
each level with a linear system of equations

Amum = fm, (2.1)

where m is the level index. The goal is to split variables into two groups: those remaining on the
coarse-level (C) and those that can be �represented� by the coarse-points and, therefore, may not
be included into the coarse-level (belong to F \ C). The coarsening process is derived based on the
strong and weak connections between unknowns, which essentially measure the relative size of the
o�-diagonal entries. Connections between neighboring variables considered strong if the size of the
corresponding matrix entry exceeds a certain threshold, relative to the maximum entry of the row.
This threshold value is very important for constructing a good coarse-grid. According to [16] a point
i is said to be strongly connected to point j if
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−ami,j ≥ εmax (−amik) . (2.2)

The threshold value ε is kept �xed for most applications, with a typical value of 0.25. It was
found that for the problems considered here this approach can lead to an inadequate coarsening
and interpolation processes and hence lead to poor convergence. Therefore, a dynamic threshold
approach was devised, and for further details we refer the reader to [20].

2.1.1. Restriction and interpolation operators. Having constructed the coarse-levels, we
need to devise the restriction (residual transfer) and prolongation (correction interpolation opera-
tors). According to the classical AMG approach (see [16] for details) one can design the prolongation
operator Im+1

m , while the restriction operator is taken to be the transposed of the prolongation

Imm+1 =
(
Im+1
m

)T
. (2.3)

For the purpose of this work, however, this procedure had to be modi�ed so that the prolongation
operator is devised directly according to certain rules (see [20]).

2.1.2. Restriction and coarse-level operators. In the standard approach, suggested by
Ruge and Stueben [16], the restriction operator is de�ned as the transpose of the interpolation,
Imm+1, I

m+1
m . Then the coarse-level operator is de�ned by the Galerkin type algorithm,

Am+1 = Im+1
m AmImm+1. (2.4)

This is the simplest way to construct the restriction and coarse-level operators. However it is known
(see, for instance [22]) that it may lead to poor convergence, when the matrix Am is not an M-matrix,
which is normally the case for the problems considered in this work. Therefore, some alternatives
had to be considered (see [20]).

2.1.3. Solution phase. The solution phase of the algorithm relies on the resulting operators
to perform an iterative solution process (AMG cycles) until a desired level of accuracy is reached.
An AMG cycle can be described in the following as consisting of the following stages:

1. Pre-smoothing by a relaxation method like Jacobi or Gauss-Seidel
2. Performing restriction of the problem, i.e., transferring residuals to the coarser-level.
3. Solution on the coarse-level (by recursion).
4. Performing prolongation, i.e., interpolating the solution correction to the �ner level.
5. Post-smoothing, again, by a certain relaxation method.

2.1.4. Smoothing. Usually, the relaxation used as an ingredient of an AMG algorithm is a
pointwise one. One of the central contributions of our approach is developing a stable pointwise
direction-independent relaxation for the entire range of the �ow speed, from low Mach number �ow
up until transonic and supersonic regimes. This development was a prerequisite for considering
application of AMG to the transonic �ow problem. For further details we refer the reader to [20].

2.1.5. Measuring the algorithm e�ciency. The computational complexity concept is in-
tended to measure an algorithms requirements for computer resources: computer storage (memory),
and CPU time. There are three types of complexity measure that are commonly considered: con-
vergence rate, grid complexity, and operator complexity.

Convergence factor: the rate in which the residual is decreased between consecutive V-cycles.
This parameter gives an indication of how many iterations are needed in order reduce the residual
to a su�cient level.

Grid complexity: is the total number of elements in the coarse-levels divided by the number
of elements in the �ne level. Let nkΩ denote the number of degrees of freedom on level k and nkL the
number of nonzero entries in the level k and operator Ak. Therefore, the grid complexity is given
by

CΩ =
∑m
k=1 n

k
Ω

n1
Ω

. (2.5)
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The grid complexity provides a direct measure for the storage required for the solution and right
hand side vectors and it is a useful tool to compare di�erent coarsening strategies. In geometric
multigrid, if coarse-grids are constructed by halving the number of points in each dimension, the
grid complexities for one, two, and three dimensions are 2, 4/3 and 8/7, respectively [18].

Operator complexity: is de�ned as the sum of the number of nonzero matrix elements in
all the coarse-levels, divided by the number of the nonzero matrix elements in the �ne-level. It is
de�ned as follows:

CL =
∑m
k=1 n

k
L

n1
L

. (2.6)

The amount of work required by the relaxation and residual computations is directly proportional to
the number of the nonzeros in the coarse-levels. Therefore, small values of the operator complexity
that increase linearly with the problem's resolution signi�es a linear complexity operator.

3. The FPE discretization � general idea. Transonic �ow can be described by the FPE
which is derived from the Euler equations by assuming that the �ow is inviscid, isentropic, and
irrotational. This potential �ow will be treated in the conservation form:

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0, (3.1)

where u and v are the velocity components in the Cartesian coordinates x and y, respectively,
and ρ is the density. The velocity components are the gradient of the potential φ,

u =
∂φ

∂x
, v =

∂φ

∂y
. (3.2)

The density ρ is computed from the isentropic formula:

ρ

ρ∞
=
(

1 +
γ − 1

2
(
V 2
∞ − φ2

x − φ2
y

)) 1
γ−1

, (3.3)

where γ is the ratio of speci�c heats and V∞ is the free-stream velocity and ρ∞ is the free-stream
density. The relation between the local speed of sound a and the �ow speed is de�ned by Bernoulli's
equation:

a =
(
a2
∞ −

γ − 1
2

(
V 2
∞ − φ2

x − φ2
y

))
. (3.4)

The discretization of the FPE in the conservation form is based on the same rational which was
applied in the quasi-linear case, and for this purpose we address the reader to our previous work
[20, 21] for a detailed description. In this section we shall only brie�y review the general idea of the
discretization.

The strategy of discretizing the FPE in the conservation form is based on the rotated di�erence
approach introduced by Jameson [23] and was developed for the quasi-linear form. However, this
approach is not implemented directly. Instead, it is accomplished indirectly by following the same
rational. We start from from the FPE in the quasi-linear form that can be formulated as,

∇2φ−M2 ∂
2

∂s2
φ = 0. (3.5)

Let us look at both terms. Note that when the Mach number is close to zero (incompressible �ow)
the second term can be neglected and we are left with Laplacian ∇2φ which is discretized by a
central di�erencing, according to [20]. As the Mach number is increased, the second term which
describes the second derivative in the streamwise direction, actually determines the �dynamics� of
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the �ow. Thus, in the discretization of the FPE in the conservation form we would like to apply the
same rationale. Expanding the FPE and collecting the Laplacian terms, (3.5) can be formulated as,

ρ∇2φ+
(
φx

∂

∂x
+ φy

∂

∂y

)
ρ = 0, (3.6)

where the density ρ is given in (3.3). Note that (3.5) and (3.6) have a similar structure. The density
parameter ρ plays two roles. In the �rst term it serves as a coe�cient. In the second term it serves
as an unknown variable. As one can see, the second term in the above both equations are identical.
Therefore, the same rationale applied in the quasi-linear case can be applied to the conservation
form. The description of the discretization technique is as follows: For the �rst term ∇2φ the �uxes
are computed by a central discretization independent on the �ow direction and speed. The dynamic
of the �ow is re�ected in the second term which is discretized in such a way that the results is a
�wide� approximation in the streamwise direction.

4. Applications and performance. Several two dimensional �ow calculations have been
performed to test the performance of the AMG method implemented on the FPE under body-
�tted structured grid con�gurations. Two dimensional solutions for the following problems will be
presented: a channel with a circular bump, a circular cylinder with and without circulation, and
�ow through a convergent-divergent nozzle. The discrete approximation to the FPE in the subsonic
�ow regime is second order accurate in space and the supersonic region is �rst order accurate. We
consider several measures of the e�ciency of the algorithm. Our focus in the numerical experiments
is on reducing the residual by at least ten orders of magnitude. This residual reduction measures the
asymptotic convergence rate of the resulting cycle. A lower values requires fewer iterations in the
solution phase. For each V-cycle Cf denotes the convergence factor, i.e., residual reduction by each
V-cycle. The grid complexity and operator complexity are denoted by CΩ and CL, respectively.

The following default settings were used throughout the calculations, unless explicitly stated
otherwise: The coarsening process including the construction of restriction operator is done according
to Algorithm 2, described in [20] for all the problems that follow. The second-pass process was
applied only for the �ne-level in order to satisfy the interpolation requirements. Strong connectivity
is de�ned by a �xed threshold ε = 0.25. The dynamic threshold was applied only where the �xed
threshold fails. By default we use a symmetric Gauss�Seidel relaxation, two pre and two post
smoothing steps being the default. The type of interpolation used is the one described in [20].
Coarsening is terminated as the number of points at the coarsest level drops below 1% of the total
number of points on the �nest level.

4.1. A channel with a bump.

4.1.1. Problem de�nition and boundary conditions. The height of the channel is L and
length 3L. Along the bottom wall there is a circular arc of length L and thickness 0.1L. An H-grid
is constructed, based on the algorithm of Blazek [24], using 96 cells in x-direction and 32 cells in the
y-direction, as presented in Figure 4.1. A constant velocity (and Mach number) as inlet and outlet
�ow conditions were imposed. At the top and bottom, a solid wall boundary condition was applied.
A uniform free-stream V∞ was imposed as an initial condition.

Figure 4.1: Mesh 96× 32 used for the channel �ow test case.
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4.1.2. Qualitative results. The Mach number isolines and color maps are shown in Figure
4.2. The problems were solved for the following Mach numbers: 0.01, 0.25, 0.5, and 0.64. One isoline
has been drawn on the color map every 0.013 ranging from 0.0 to 0.65. It is clear that within the
low Mach number range, the solution does not greatly depends on the Mach number and the Mach
isolines are practically identical. When M∞ is increased, the compressibility e�ects become more
dominant and for an incident velocity of M∞ = 0.64 a supersonic region terminated by a shock
(see Figure 4.2(d) appears above the bump. The pressure coe�cient for the four cases described
above is presented in Figure 4.3. The shock jump is clearly visible in the pressure distribution when
M∞ = 0.64.

(a) (b)

(c) (d)

Figure 4.2: Mach number isolines computed on the (96× 32) mesh for the following free-stream
Mach numbers: a) M∞ = 0.01, b) M∞ = 0.25, c) M∞ = 0.5, d) M∞ = 0.64. Observe the shock
appearing at M∞ = 0.64.

Figure 4.3: The pressure coe�cient Cp calculated at the bottom wall forM∞ = 0.01−0.64. Observe
the shock appearing at M∞ = 0.64.

4.1.3. AMG performance. The �rst coarse-level for each case described above is sketched in
Figure 4.4. The case ofM∞ = 0.01 is characterized by a pracically incompressible �ow which results
in nearly an isotropic equation. So, we would expect that the coarse-points would be distributed
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uniformly at the entire �ow �eld. However, as can be seen in Figure 4.4(a) this is not the case,
while the reason for that is the irregularity (anisotropy) of the grid which is clearly re�ected in
the coarsening pattern. The coarsening algorithm is strongly in�uenced by the grid's stretching
in the x and y directions, adjacent to the bump. For example, the coarsening pattern above the
bump is nearly isotropic since the cell's aspect ratio is nearly unity, so the irregularity of the grid is
not signi�cant at this area. In addition, the discrete operator in this case relies upon a nine-point
stencil which results in an �aggressive coarsening� (similar coarsening pattern can be obtained by
solving the Poisson equation with a nine-point stencil). However, as we move further away from
the bump in the y-direction the grid's aspect ratio is increased since the cells are stretched in the
x-direction. Consequently, a given change in the derivatives along the x-direction would in�uence
the new solution stronger than the same change in the derivative along the y-direction. The problem
shows strong dependence in the x-direction, and little or no strong dependence in the y-direction.
The same process occurs in both sides of the bump, where the grid is coarsened in the y-direction
� the direction of strong connections. This coarsening pattern for the rest of the �ow conditions is
essentially the same, accept forM∞ = 0.64 where a slight disturbance of the regular coarsening above
the bump, where the anisotropy is largest, appears. It is important to mention here that a dynamic
threshold was applied for this speci�c problem while in the rest subsonic cases a �xed threshold of
ε = 0.25 results in good performance in terms of complexities and convergence properties.

(a) (b)

(c) (d)

Figure 4.4: The �nest and �rst coarse-level for �ow through a channel with a bump. The mesh size
is (96× 32). The problem was solved with various Mach numbers: a.) M∞ = 0.01, b.) M∞ = 0.2,
c.) M∞ = 0.5, d.) M∞ = 0.64. The blue point corresponds to F -point (�ne level) while the red
point corresponds to C-point (coarse-level).

The convergence rate is shown in Table 4.1 for each V-cycle, in four di�erent cases of M∞.
Note that for the �rst three cases and for all the grid sizes, the convergence factor is bounded well
below 0.1. The residual norm decreased by relatively the same factor with each V-cycle. This
continues until it levels o� after about ten V-cycles near 10−13, where round-o� error is of the
order of the residual norm itself. Due to the mathematical nature of the potential equation, the
free-stream Mach number has a large impact on the convergence rate. When the Mach number is
increased, so does the upwind bias of the discretization, a decrease in the convergence rate occurres.
In addition, the e�ect of the nonlinearity and the existence of shock waves manifest themselves in
the convergence properties forM∞ = 0.64, where the �rst three cycles are slow to converge and then
the residual reduction is stabilized on 0.1 for the remaining 7 V-cycles. It is rather clear that this
slow convergence is only caused by the strong nonlinearity and the presence of a discontinuity. It
takes 2−3 �waste� cycles before the critical error components are su�ciently reduced by relaxations
and the convergence becomes faster.
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One possible way to improve the convergence rate at the beginning of the solution phase is by
improving the initial condition. This can be achieved by the full multigrid (FMG) approach [8, 18].
The convergence of nonlinear iterations depends even more critically (compared to subsonic �ow
for instance) on a good initial condition. Typically, the better the initial condition used on the
�ne-level, the less signi�cant is the e�ect of nonlinearity on the convergence and the more e�ective
the �ne-level solver will be. The FMG approach was implemented in this problem for subsonic and
supersonic �ow as well. For subsonic �ow it worked pretty good, the interpolation Imm+1A

m+1 is
generally accurate enough to be treated by the �ne-level relaxation. However, for supersonic �ow,
where strong nonlinearity exist the success is very limited. It is very important to mention that
although the �rst three cycles are slow to converge, in the remaining V-cycles the convergence rate
is lower than 0.1 without any local smoothing sweeps around the shock waves. To illustrate the
residual reduction graphically, Figure 4.5 presents the convergence history of the residual (L2-norm)
versus the iterations number, for the four cases described above. We observe that for subsonic cases,
M∞ = 0.1− 0.5 we need less than 10 V-cycles to reduce the L2-norm of the residual by 10 orders of
magnitude. As for the transonic case of M∞ = 0.64, the convergence is somewhat slower here while
about 12 cycles are required to reduce the residual by 10 orders of magnitude.

Table 4.1: Convergence factor Cf , grid complexity CΩ, and operator complexity CL for four cases
of Mach numbers.

complexities M∞ = 0.01 M∞ = 0.2 M∞ = 0.5 M∞ = 0.64

Cf 0.03 0.04 0.04 0.10

CΩ 1.58 1.60 1.72 2.06

CL 2.15 2.25 3.24 3.56

Figure 4.5: Convergence history of the discrete L2-norm of the residual for various cases of Mach
numbers.

As already mentioned, compared to isotropic problems, complexity is generally higher for
anisotropic problems. The complexities can increase further for problems as discussed here where
anisotropies are not aligned with the grid. Table 4.1 presents the grid and operator complexity for
four test cases of Mach number. In the case of M∞ = 0.01 the grid complexity is 1.58. As the
Mach number is increased the problem becomes strongly anisotropic and it results in an increased
grid complexity. This is an expected behavior of the AMG algorithm since the memory (size of
coarse-levels) requirement for strongly anisotropic problem is higher than that for isotropic problem.
The reason is that AMG is essentially performs one-dimensional coarsening in the direction of the

8



strong connections. Therefore, when M∞ = 0.64 a large �pocket� of supersonic �ow is obtained
above the bump which is terminated by a shock wave. In this region, the anisotropy is largest, and
the grid complexity is CΩ = 2.06.

The operator complexity is above 2 for the four cases of Mach number. The operator complexity
re�ects the cost of one relaxation sweep on all the levels. So, consider the case of M∞ = 0.01, a
V (2, 2) cycle of AMG costs about 9.16 WUs (2.29WU on the descent and the ascent). The operator
complexity increases slightly with the Mach number. It is clear that the operator complexity a�ects
the number of operations per cycle and hence small operator complexity leads to law cycle times. Two
possible reasons for the increased operator complexity are the average stencil size and the coarsening
process. The average stencil size is the average number of coe�cients per row. For simplicity, let
us look at the �ne-level. When M∞ � 1, the stencil size of the matrix A∗ is large, although,
the matrix Ã is diagonally dominant with ai,j ≈ 1 but the weights of the entries o�-diagonal are
de�nitely nonzero (it is zero forM∞ = 0). As the Mach number increases so does the average stencil
of A∗. It is possible to get very large stencil sizes on coarser levels (as will be discussed in Table 4.7).
Large stencil size can lead to large operator complexity since various processes such as coarsening,
interpolation and relaxation, require that neighbors of neighbors are visited which results in a growth
in the number of operations per cycle. The second reason for the increased operator complexity is
the relatively large number of points on the coarse-levels. Furthermore, the second-pass process, can
also contribute to the relatively high complexities since F -points are replaced by C-points in order
to satisfy the interpolation requirements.

A grid dependence study has been conducted to verify the independence behavior of the AMG
algorithm on the grid resolution; two more grid levels have been used with (24× 8) and (48× 16)
points. It is very important to mention that our main interest here is to verify the robustness of the
code rather than achieving the highest possible e�ciency. Therefore, at each resolution, the AMG
components (for instance, dynamic threshold or second-pass process) were ��xed�, that is, they were
not locally adjusted to particular requirements of a given case. The complexities are depicted in
Table 4.2. It can be clearly seen that the algorithm is scalable and does not depend on the problem
size (the convergence factor is nearly constant for all the grids considered).

Table 4.2: The table shows the results of the AMG V-cycles applied to the �ow through a nozzle.
The second norm of the residual ‖Rm‖2 after each V-cycle and the convergence factor Cf are detailed
for two di�erent mesh sizes 25× 9 and 49× 17.

M∞ = 0.01 M∞ = 0.2 M∞ = 0.5 M∞ = 0.64

grid size → 25× 9 49× 17 25× 9 49× 17 25× 9 49× 17 25× 9 49× 17

Cf 0.03 0.04 0.04 0.04 0.06 0.07 0.03 0.06

CΩ 1.62 1.58 1.61 1.60 1.70 1.75 2.03 2.02

CL 1.87 2.04 1.88 2.12 2.49 3.03 2.81 3.11

4.2. Flow around a circular cylinder.

4.2.1. Problem de�nition and boundary condition. We now consider a 2D cylinder placed
in a uniform subsonic �ow. The grid is sketched Figure 4.6 and its generation is straightforward
in polar coordinates, formed by circles and radial lines. The outer boundary should be located far
enough from the solid body in order to ensure that its in�uence is negligible, since we apply free
undisturbed �ow conditions on this boundary. In regions of strong �ow variations (strong gradients)
of the �ow variables, near the cylinder wall, the grid is re�ned.
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(a) (b)

Figure 4.6: An O-type mesh used for the circular cylinder �ow test case. a.) Extended mesh. b.)
Close-up of the mesh around the cylinder.

The ξ-line is in the azimuthal direction and η-axis is in the radial direction. The boundary
conditions imposed are as follows:

• The far�eld boundary (ξ = max) is �ve times radius lengths away from the cylinder, where
the in�ow and out�ow boundary conditions were applied. A uniform �ow (Neumann condi-
tion) is imposed in the x-direction at the inlet and outlet regions of the domain. In practice,
this condition was attained by projecting the velocity vector normal to the cell's face.

• A solid wall boundary condition is imposed on the cylinder's surface. The normal velocity
is zero since no mass penetrates the solid body.

• At j = 1 and j = jmax, along the cut, a coordinate cut boundary condition was applied.
This is a line composed of grid points with di�erent computational indices but the same
physical location. The grid is folded such that it touches itself. The cut boundary condition
is implemented by using ghost cells. The situation is sketched in Figure 4.7. The ghost cells
coincide location-wise with the grid cells on the opposite side of the cut. Hence the values of
the potential in the ghost cells are obtained directly from the opposite cells. All the �uxes
across the faces of the boundary cell are evaluated exactly like in the interior �eld. The cut
boundary is implemented by generating a complete control volume at the cut . Using the
ghost cells (Numbers 0 and 1 in Figure 4.7), the �uxes were calculated in the same way as
inside the domain. The value of the �rst ghost cell (number 1) is obtained directly from cell
number 4. The value of the second ghost cell (number 0) is obtained from cell number 3.

Figure 4.7: Coordinate cut boundary condition. Ghost cells are numbered as 0, 1, (Jmax + 1) and
(Jmax + 2).
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4.2.2. Qualitative results. The problem was solved for an inlet Mach number values ranging
from 0.1 up to 0.41, and the results are presented in Figure 4.8. There are two stagnation points
(u ≈ v ≈ 0) at x = ±a, y = 0, at front and back of the cylinder. Within the low Mach number
range, the solution does not greatly depends on the Mach number and practically it is similar to the
incompressible �ow. When the Mach number is increased the compressibility e�ect becomes more
signi�cant and for an inlet Mach number of 0.41, a sonic speed was reached on the top and bottom
of the cylinder surface (symmetric), followed by a supersonic region terminated by a shock wave.

(a) (b)

(c) (d)

Figure 4.8: Distribution of velocity as computed on the (28× 120) mesh, for an incident Mach
number of: a.) M∞ = 0.1, b.) M∞ = 0.2, c.) M∞ = 0.3, d.) M∞ = 0.41. Observe the shock
appearing at the top an bottom surfaces (case d).

The pressure distribution in a given �ow pattern is of primary practical importance. A knowledge
of the pressure distribution is necessary for the calculation of the forces and moments produced by
the �uid on the solid boundaries. The pressure distribution at the cylinder surface can be found
from Bernoulli's equation, p+ 1

2ρV
2 = const. The pressure coe�cient is de�ned as:

Cp =
p− p∞
1
2ρU

2
∞
, (4.1)

where p∞ represents the pressure at the far�eld, and p is the pressure on the surface of the circular
cylinder. The pressure coe�cient distribution on the surface of the cylinder is plotted in Figure 4.9.
Since Cp is symmetric about x = 0 and y = 0, there is no net force on the cylinder. Note that the
pressure on most of the surface is less than p∞ and the minimum value of Cp on the surface is -3 at
θ = π/2.

11



(a)

Figure 4.9: Surface pressure distribution along a circular cylinder with an incident Mach number
ranging from M∞ = 0.01 to M∞ = 0.41, using the (28× 120) mesh.

4.2.3. AMG performance. The �rst coarse-level for each case described above is sketched in
Figure 4.10. It is important to mention that for all the subsonic cases described above, M∞ ≤ 0.5,
a �xed threshold of ε = 0.25 was applied, since much better results were observed, especially in
terms of grid and operator complexity. However, the situation is vastly di�erent in the transonic
case, M∞ = 0.41, where a dynamic threshold was applied in order to achieve convergence. Although
this fast convergence is achieved at the expense of an increased complexities (as is presented in
Table 4.3), the alternative of a �xed threshold in this speci�c case results in divergence. This point
emphasizes the robustness of the improved coarsening process in the AMG algorithm. When an
incompressible �ow is addressed, the operator is nearly isotropic � a nine-point stencil. Therefore,
as expected, the points which construct the coarse-level are distributed uniformly, as can be seen in
Figure 4.10(a). This type of coarsening is typical for nine-point stencils with all connections being
strong, yielding grid complexity of ∼ 1.6. If a dynamic threshold is applied for this problem it would
result in less �aggressive� coarsening, and the complexities would deteriorate slightly. However, we
use the dynamic threshold where we really need it.

As the velocity is increased the equation becomes anisotropic, and this uniform coarsening
structure holds until the �ow reaches supersonic speeds. This extreme anisotropy is characterized by
strong connection in the azimuthal direction (µ - axis). There is a slight deviation from the uniform
coarsening in the upper and lower parts of the cylinder, where the anisotropy of the problem is most
signi�cant. However, the coarsening pattern is essentially the same.
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(a) (b)

(c) (d)

Figure 4.10: The �nest and �rst coarse-level for mesh size (28× 120). The red color corresponds to
the C-point and the blue color corresponds to F -point. The �ve �ow conditions are as follows: a.)
M∞ = 0.1, b.) M∞ = 0.2, c.) M∞ = 0.3, d.) M∞ = 0.41.

The residual reduction is sketched in Figure 4.11. Both the Mach contours and the convergence
history are an evidence of the fact that the AMG solves the problem to the level of discretization
on each grid. In the �rst three cases of M∞ = 0.01, M∞ = 0.1 and M∞ = 0.2, the setup phase
was performed, followed by 12 V-cycles. The convergence factors are bounded independent on the
problem size. Solving the problem on reduced resolutions maintains the structure of the �ne-scale
problem and the convergence factor remains bounded independent on the problem size. In the case
of M∞ = 0.3, where the compressibility became signi�cant, the results were obtained by repeating
the setup phase six times while applying two V-cycles between each update. It results in a total of
12 V-cycles until the residual decreased to the desired level of ~10−10. The transonic case proved to
be a more di�cult test for the algorithm. The convergence rate in the �rst three cycles deteriorated
slightly due to the strong nonlinearity. Although the �rst three cycles are relatively slow to converge,
in the remaining V-cycles the convergence rate is lower than 0.1.

The convergence histories for the �ve cases are depicted in Figure 4.11. The e�ect of the Mach
number on the AMG performance is clearly shown. The case of M∞ = 0.41 results in a supersonic
�ow regime which is terminated by a shock wave. Convergence is somewhat slower here. It requires
nearly 12 V-cycles to decrease the L2-norm of the residual to a level of 10−10, which is twice the
number of cycles required in the case of M∞ = 0.01.

The grid complexity and operator complexity are also presented in Table 4.3. It is clear that
when the �ow is subsonic the complexities are bounded. In the case of M∞ = 0.41 the grid and
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operator complexity are high, relative to our above requirements, while the reasons for the increased
complexities are similar to those stated in the previous problem (channel with a bump). A possible
way to improve the complexities is by aggressive coarsening. This approach was implemented but, as
expected, the convergence became considerably slower (above 0.3). Aggressive coarsening not only,
causes the smoothing to be less e�ective but also the interpolationto be signi�cantly less accurate.

Figure 4.11: Convergence histories.

Table 4.3: Convergence factor Cf , grid complexity CΩ, and operator complexity CL for four cases
of Mach number.

complexities M∞ = 0.01 M∞ = 0.1 M∞ = 0.2 M∞ = 0.3 M∞ = 0.41

Cf 0.06 0.06 0.04 0.06 0.07

CΩ 1.31 1.33 1.33 1.33 1.98

CL 1.82 1.867 2.26 2.18 3.09

This problem was solved for two more grids 14 × 60 and 7 × 30, and the results are presented
in Table 4.4. The convergence factors and complexities are bounded independent on the problem
size. The grid complexity and operator complexity for grid 7 × 30 are CΩ = 1.72 and CL = 2.13,
respectively, and for the case of 14× 60, the complexities are CΩ = 1.31 and CL = 1.72.

Table 4.4: The table shows the results of the AMG V-cycles applied to the �ow around a circular
cylinder. The second norm of the residual after each V-cycle ‖Rm‖2, convergence factor Cf , grid
complexity CΩ, and operator complexity CL are presented for grid sizes 7× 30 and 14× 60.

M∞ = 0.2 M∞ = 0.41

grid size → 7× 30 14× 60 7× 30 14× 60

Cf 0.03 0.04 0.04 0.07

CΩ 1.72 1.31 1.88 2.02

CL 2.13 1.72 2.45 2.92

4.3. Flow around a circular cylinder with circulation.
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4.3.1. Boundary conditions. Flow around a rotating circular cylinder is equivalent to the
combination of �ow past a cylinder and a vortex. Two aspects have drawn attention from researchers
with respect to �ow past a rotating cylinder. The �rst aspect is that the rotation action is able to
suppress the separation of the boundary layer around the cylinder. The second aspect is the lift
generated on the cylinder by the surrounding �uid, also known as Magnus e�ect [25, 26].

Exactly as the case of Γ = 0, there is an outer boundary where an in�ow and out�ow are applied.
The circulation around the cylinder is applied by using the cut, emanating from the body to the
far�eld, where a jump in the potential is imposed. Thus, the cut can be interpreted as a periodic
boundary with circulation, and it is de�ned as follows:

φi,0 = φi,jmax + Γ,
φi,−1 = φi,jmax−1 + Γ,
φi,jmax+1 = φi,1 − Γ,
φi,jmax+2 = φi,2 − Γ.

(4.2)

The results are presented for the �ne-level which includes 3360 grid points. The algorithm was
tested by several �ow conditions as follows:

1. M∞ = 0, Γ = 0.01
2. M∞ = 0.1, Γ = 0.01
3. M∞ = 0.1, Γ = 0.05
4. M∞ = 0.1, Γ = 0.1
5. M∞ = 0.4, Γ = 0.1

The �rst step was to validate the problem setup, the choice of the boundary conditions, and the mesh
attributes. It is accomplished by imposing a circulation Γ = 0.01 with zero free-stream (M∞ = 0,
case 1). The positive sign of the circulation, imposes a �ow in the clockwise direction. The Mach
isolines for this case are plotted in Figure 4.12. Since a zero free-stream is applied, the Mach contours
are symmetric around the cylinder. The problem solved for an inlet Mach number values ranging
from 0.01 up to 0.4, and the results are presented in Figure 4.13. Only the fourth case results in a
supersonic �ow regime. Notice that the stagnation point lies above the cylinder, in the region where
the direction of the free-stream opposes the circulation. As the �ow's speed at the surface of the
cylinder increases, the region of close isolines around the cylinder extends far from the wall and, as
a consequence the stagnation point moves upward.

Figure 4.12: Flow over a cylinder having a circulation of Γ = 0.01. Contours are spaced for equal
increments of 10−5.
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(a) (b)

(c) (d)

Figure 4.13: Distribution of velocity as computed on the (28× 120) mesh, for the following �ow
characteristics: a.) M∞ = 0.1, Γ = 0.01, b.)M∞ = 0.1, Γ = 0.05, C.)M∞ = 0.1, Γ = 0.1, D.)
M∞ = 0.4, Γ = 0.1. Observe the shock appearing at M∞ = 0.41.

It was veri�ed in these simulations that the velocity becomes close to the free-stream velocity
along the outer boundary of the domain. The pressure coe�cient Cp distribution on the surface
of the cylinder is plotted in Figure 4.14. It is clear that when the �ow is subsonic at the entire
domain there is no signi�cant di�erence in the Cp pro�les. From Figure 4.14 we can see the pressure
di�erence between the lower and the upper part of the cylinder. This is the lift generated on the
cylinder by the surrounding �uid, also known as Magnus e�ect [26]. It is clear that the lift is
increased with the free-stream velocity. As the �ow becomes supersonic on the upper part of the
cylinder's surface, a shock wave appears, and it is seen in the sharp decrease of Cp.
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(a) (b)

(c) (d)

Figure 4.14: The distribution of pressure coe�cient by using (28× 120)mesh. The cases are as
follows: a.) M∞ = 0.1, Γ = 0.01, b.)M∞ = 0.1, Γ = 0.05, C.)M∞ = 0.1, Γ = 0.1, D.) M∞ = 0.4,
Γ = 0.1.

4.3.2. AMG performance. The �rst coarse-level for each case described above is sketched in
Figure 4.15. When the �ow is subsonic, M∞ < 0.5, it is characterized by a nearly isotropic operator
and the C-points which construct the coarse-level are distributed uniformly, as can be seen in Figure
4.15(a). As the free-stream becomes supersonic, as mentioned above, there is a slight disturbance of
the uniform coarsening pattern where the anisotropy of the operator is largest (see Figure 4.15(e)).
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(a) (b)

(c) (d)

(e)

Figure 4.15: The �nest and �rst coarse-level. The red color corresponds to the C-points while the
blue color corresponds to the F -points. The mesh size is (28× 120). The �ve �ow conditions are as
follows: a.) case 1, b.) case 2, c.) case 3, d.) case 4, e.) case 5.

The convergence of the method is summarized in Table 4.5 for the �ve cases in consideration.
Using the standard L2-norm we see that after 12 cycles, the residual reached 10−15 and the AMG
converge rapidly for the cylinder with circulation as for the previous model problem, where we
saw a convergence rate lower than an order of magnitude for all the cases that introduced before.
The fastest cycle, M∞ = 0.1 and Γ = 0.05, needs 11 steps to reduce the residual by ten orders of
magnitude. In cases 1−4 no updates of the matrix A∗and the restriction and interpolation operators
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where needed. In case 5, the nonlinearity is dominant which required to execute the setup phase six
times with two V-cycles in between. It results in an overall of 12 V-cycles to reach convergence.

The complexities for these �ve cases are presented in Table 4.5. The operator complexity is
below 2 for cases 1− 4 where the �ow is subsonic in the entire �eld. Case number 5 is characterized
by a transonic �ow on the upper part of the cylinder and the grid and operator complexities were
increased to 1.97 and 3.0, respectively.

Table 4.5: Convergence factor Cf , grid complexity CΩ and operator complexity CL for �ve cases of
Mach number and circulation magnitude.

complexities case 1 case 2 case 3 case 4 case 5

Cf 0.04 0.07 0.07 0.07 0.09

CΩ 1.31 1.31 1.31 1.31 1.97

CL 1.82 1.82 1.82 1.82 3.016

4.4. Nozzle.

4.4.1. Problem de�nition and boundary condition. The rocket engine nozzle has three
functions: to produce thrust, to conduct the exhaust gases back to the free-stream and to set the
mass �ow rate through the engine. The nozzle has a rectangular section. It is constructed of a �at
bottom wall and a converging-diverging channel with a maximum angle of 30◦ at the top wall. The
convergent part follows a curved contour while the contour of the divergent part is a straight line.
The ratio of the inlet area to the throat area is Ain

Athroat
= 1.4114 and the ratio of the exit area and

the throat area is Aout
Athroat

= 1.5. Figure 4.16 is the mesh used for the calculation. The mesh size is
96× 48 and it is clustered close to upper and lower walls vertically and in the throat horizontally ,
with a stretching factor of 1.1.

Figure 4.16: Mesh used for the converging-diverging nozzle �ow test case.

The following boundary conditions were speci�ed:

• A subsonic �ow at the inlet and the same mass �ow rate at the outlet, in the x-direction.
• Solid-wall boundary condition at the top and bottom walls.

4.4.2. Qualitative results. When the inlet velocity is not high enough to induce sonic �ow
in the throat, the �ow in the nozzle is subsonic throughout. While for a subsonic inlet velocity of
M∞ = 0.092 the area ratio exactly equals the critical ratio Ain/A∗. The �ow in the throat becomes
sonic and a normal shock can be observed in the diverging section as can be seen in Figure 4.17.
A strong pressure gradient is present in the case of M∞ = 0.092, where a shock is obtained at the
diverging section of the nozzle.

19



(a) (b)

(c) (d)

Figure 4.17: Distribution of velocity as computed on the (80× 50) mesh, for the following velocities:
a) M∞ = 0.01, b) M∞ = 0.04, c) M∞ = 0.08, d) M∞ = 0.092.

4.4.3. AMG performance. The �rst coarse-level for each case described above is sketched
in Figure 4.18. A dynamic threshold was applied for all the following cases since a much stable
performance were obtained, in terms of convergence properties, mainly in the transonic case of
M∞ = 0.092. Several observations are in order here. First, the coarsening pattern is not so intuitive
for this speci�c problem since we would expect a uniform distribution of the coarse points at the inlet
area, rather than a one-dimensional coarsening in the y-direction, at least forM∞ = 0.01, where the
equation is isotropic. A possible reason is the stretching of the grid cells in the x-direction which
contributes to the strong connections in the y-direction, and thus, the AMG coarsening algorithm
automatically coarsen in the direction of the strong connectivity. The one-dimensional coarsening
pattern at the throat is exactly what we would expect to obtain, where the anisotropy is largest.

Figure 4.18: The �nest and the �rst coarse-level for mesh size of (80× 50). The red color corresponds
to the C-point and the blue color corresponds to F -point. This coarsening pattern was obtained for
M∞ = 0.01. The same coarsening pattern was obtained also for various �ow conditions as follows:
M∞ = 0.04, M∞ = 0.08 and M∞ = 0.092.

The residual norm decreased rapidly for 10 to 12 V-cycles. We observe that each cycle exhibits
a very stable convergence behavior with an asymptotic convergence rate of less than an order of
magnitude. In the �rst case of M∞ = 0.01, the setup phase was implemented only once, followed
by 12 V-cycles. The case of M∞ = 0.04, where the compressibility became signi�cant, the results
were obtained by repeating the setup phase 4 times while applying three V-cycles between each
update. It results in a total of 12 V-cycles until the residual decreased to the desired level of ~10−10.
In the last two cases of M∞ = 0.08 and M∞ = 0.092 a more frequent updates of the matrices
A, Ã, and the restriction and interpolation operators were needed in order to achieve e�cient and
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stable performance. In these cases, the setup phase was repeated six times while each update was
followed by two V-cycles. It is important to note that the convergence rate in the �rst 2-3 cycles is
not deteriorating signi�cantly, compared to the previous problems, mainly due to a relatively good
initial condition.

The grid complexity and operator complexity are also presented in Table 4.6. It is clear that the
complexities are reasonable and bounded for all the �ow velocities. In the case of M∞ = 0.01 the
second-pass process is applied for all the coarse-levels and it is well re�ected in the grid complexity
which is slightly increased to CΩ = 1.98.

The convergence histories for the �ve cases are depicted in Figure 4.19. The e�ect of the Mach
number on the AMG performance is clearly shown. The case of M∞ = 0.092 results in a supersonic
�ow regime which is terminated by a shock wave. The convergence is somewhat slower here. It
requires nearly twice the number of V-cycles (10) to decrease the L2-norm of the residual to a level
of 10−12, compared to the case of M∞ = 0.01. This slow convergence is mainly due to the 2− 3 �rst
�waste� cycles (slow to converge due to strong nonlinearity) until the convergence is stabilized.

Figure 4.19: Convergence histories.

Table 4.6: Convergence factor Cf , grid complexity CΩ, and operator complexity CL for four cases
of Mach number.

complexities M∞ = 0.01 M∞ = 0.04 M∞ = 0.08 M∞ = 0.092

Cf 0.05 0.05 0.05 0.05

CΩ 1.98 1.92 1.90 1.93

CL 2.47 2.47 2.52 2.46

This problem was solved for two more cases of mesh size consist of 40× 25 and 20× 12 points.
Both the L2-norm of the residual and the convergence factor for two di�erent cases of M∞ = 0.01
andM∞ = 0.092 are presented in Table 4.7. Observe, that the di�erence in size of the above meshes
hardly in�uence the convergence properties. As is already mentioned before, the computational work
is determined by the operator complexity and the convergence factor. Only if both are bounded as
a function of the problem size, we have an acceptable robust algorithm. In this case we can see that
the complexities CL and CΩ are indeed independent of the grid size.

Let us examine the coarsening statistics. Table 4.7 presents the number of rows and the number
of nonzeros for two cases of M∞ = 0.01 and M∞ = 0.092. The case of M∞ = 0.01 was solved with
seven levels (includes the �ne-level) while the case of M∞ = 0.092 was solved with four levels only.
In the later case the coarsest level consists of a relatively large number of points, while the reason for
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this is already pointed out before. The coarsening is not so aggressive and is similar for both cases.
The �rst coarse-level is exactly half the number of points on the �ne-level while this reduction ratio
of grid points for the rest coarse-levels is approximately preserved. It is interesting to note here that
although the stencil on the coarse-levels becomes larger, for both cases, subsequent coarsening does
mot become become more aggressive. For both cases (M∞ = 0.092 and M∞ = 0.01) it happens
simply because the dynamic threshold which tends to produce slightly larger coarse-levels. In case of
M∞ = 0.01 we can observe the additional e�ect of the second-pass process applied to all the coarse-
levels. These two processes together contribute to the increase in grid and operator complexities but
also to gain very e�cient convergence properties.

Table 4.7: The table shows the results of the AMG V-cycles applied to the �ow through a nozzle.
The second norm of the residual after each V-cycle ‖Rm‖2 and the convergence factor Cf are detailed
for two di�erent mesh sizes.

M∞ = 0.01 M∞ = 0.092

grid size → 20× 12 40× 24 20× 12 40× 24

Cf 0.09 0.10 0.08 0.07

CΩ 1.90 1.91 1.75 1.85

CL 2.03 2.28 2.09 2.38

Table 4.8: Results of the AMG V-cycles applied to the �ow through the nozzle in various Mach
numbers.

Number of rows Number of non-zeros Average entries per row

Level M∞ = 0.01 M∞ = 0.092 M∞ = 0.01 M∞ = 0.092 M∞ = 0.01 M∞ = 0.092

Am 4000 4000 69424 69424 17.3 17.3

Am+1 2000 2000 37023 44173 18.5 22

Am+2 968 983 26865 27449 27.7 27.9

Am+3 449 504 17971 19374 40 38.4

Am+4 205 268 8541 10661 41.6 39.7

Am+5 91 � 3219 � 35.3 �

5. Conclusions. The FPE is useful for design and analysis of airfoil, wings, di�users etc..
Computations are usually much less rersource-consuming than those solving the Euler or Navier-
Stokes equations. The FPE can be used for transonic �ows, where a lot of design issues are of
interest. Therefore, an e�cient FPE solver can be of a substantial practical value. This work is
concerning with developing such a solver. Transonic �ow problem is a rather complex one from the
computational point of view. One of the main di�culties is the fact that the di�erential operator
changes its type between elliptic for subsonic �ow regime and hyperbolic (with respect to the �ow
direction) in the supersonic �ow regime. Another (sub-)di�culty is that the subsonic �ow regime
itself presents two extremities (and all the possible cases in between): nearly isotropic operator for
the �ow speed case and highly anisotropic operator for a nearly sonic �ow speed. While the standard
AMG algorithm can treat the latter di�culty.

The objective of this work was to develop a highly e�cient solver for the FPE which would
be able to compute transonic external and internal �ows attaining a (nearly) linear computational
complexity. The key innovation of this work is the solver's e�ciency and also in the fact that it
was be achieved by means of adapting and applying the AMG approach to solving the problem.
A 2D body-�tted structured grid solver which is based on the AMG method, was developed. To
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take advantage of structured grid, the �ow solver can deal with complex geometries in di�erent
resolutions. Several two dimensional �ow calculations have been performed to test the performance
of the AMG method under di�erent �ow conditions. The computational method was demonstrated
to be capable of predicting the shock formation and achieving residual reduction of less than an

order of magnitude per cycle, independent on the problem size.
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