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Abstract

We construct a non-relativistic limit of eleven and ten-dimensional supergravity theories from the point
of view of the fundamental symmetries, the higher-dimensional effective action, and the equations of
motion. This fundamental limit can only be realized in a supersymmetric way provided we impose
by hand a set of geometric constraints, invariant under all the symmetries of the non-relativistic the-
ory, that define a so-called Dilatation-invariant Superstring Newton-Cartan geometry and Membrane
Newton-Cartan expansion. In order to obtain a finite fundamental limit, the field strength of the
eleven-dimensional four-form is required to obey a transverse self-duality constraint, ultimately due to
the presence of the Chern-Simons term in eleven dimensions. The present research consider a non-
relativistic fundamental limit of the bosonic sector of eleven-dimensional supergravity, leading to a
theory based on a Covariant Membrane Newton-Cartan Supergeometry. We further show that the
Membrane Newton-Cartan theory can be embedded in the U-duality symmetric formulation of excep-
tional field theory, demonstrating that it shares the same exceptional Lie algebraic symmetries as the
relativistic supergravity, and providing an alternative derivation of the extra Poisson equation.
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1 Introduction
There has been a growing interest in exploring Newtonian supergravity theories due to their use in
strongly coupled membrane systems and relativistic effective field theories. The construction of New-
tonian gravity, describing the physical gravitational force at non-relativistic level, requires to consider
the so-called Newton-Cartan geometry. Such geometrical framework is necessary to covariantize the
Poisson equation of Newtonian gravity. Nevertheless, a principle action for Newtonian gravity was
recently presented which has required to extend the Bargmann algebra by including three additional
generators. Subsequently, a three-dimensional Chern-Simons (CS) action has been constructed in the
current literature which is invariant under a central extension of the symmetry group that leaves the
recently constructed Newtonian gravity action invariant. The novel symmetry has been denoted as
extended Newtonian algebra and can be recovered by means of a contraction of a bi-metric model
being the sum of Einstein gravity in the Lorentzian and Euclidean signatures. Interestingly, the mat-
ter coupling of the extended Newtonian gravity theory admits backgrounds with non-trivial curvature
whenever matter is present, similarly to the matter-coupled extended Bargmann gravity. The introduc-
tion of a cosmological constant in non-relativistic gravity theories is done considering the Newton-Hooke
symmetry. However, an extension of the extended Newton-Hooke algebra is needed to include a cosmo-
logical constant to the extended Newtonian gravity theory. The novel symmetry is denoted as exotic
Newtonian algebra and can be seen as an enhanced Bargmann-Newton-Hooke algebra. Both extended
and exotic Newtonian gravity theories can be recovered as the non-relativistic limit of the coadjoint
Poincaré ⊕ u (1)2 and coadjoint AdS ⊕ u (1)2 gravity theories. Supersymmetric extensions of three-
dimensional non-relativistic gravity models have been recently approached and subsequently studied
in supergravity. In particular, a CS action based on the supersymmetric extension of the extended
Newtonian algebra has been presented. Although a cosmological constant has been accommodated in
a non-relativistic supergravity theory through the extended Newton-Hooke superalgebra, the possible
supersymmetric extensions of the exotic Newtonian gravity remain unexplored. Unlike bosonic non-
relativistic gravity, the construction of an action based on a non-relativistic superalgebra is non-trivial
and requires the introduction of additional bosonic generators. Furthermore, the non-relativistic limit
is often ambiguous when supercharges are present. One way to circumvent this difficulty is through
the expansion method based on Maurer-Cartan forms and semigroups, which have proved to be useful
to obtain known and new non-relativistic supergravity theories from relativistic ones. We considered
exotic branes as a particular class of non-geometric solutions that can be described within ExFT. Here
we consider a rather different class of backgrounds, namely non-Riemannian backgrounds. Whereas the
solutions in the previous section were characterised by either a lack of a global geometric description,
owing to requiring duality transformations to patch correctly, or a lack of a local geometric descrip-
tion, due to a dependence of coordinates outside of the physical spacetime, the solutions we consider
here are exotic in that they do not admit even local descriptions in terms of an invertible Riemannian
metric. The definition is rather broad and includes various singular limits of the metric that obstruct
its inversion. The key to describing such backgrounds is realising that fact that the generalised metric
can remain regular in such backgrounds, even if the spacetime metric becomes singular, due to the
presence of the off-diagonal terms in the generalised metric that can compensate for it. This fact was
already appreciated where it appeared in the context of the doubled sigma model. Their work was then
extended to a full characterisation of the possible backgrounds that one can obtain in DFT by solving
the O(D, D) constraints on the generalised metric in generality n terms of the conventional supergravity
description, exotic branes generate backgrounds with non-trivial monodromies. This means that they
are not globally well defined solutions in supergravity and one needs to view the supergravity as being
embedded in a larger theory where the duality group is used to patch together solutions via duality
transformations. One may consider the approach as one which allows us to generate backgrounds of
exotic branes. The exotic duality of a single brane was suggested from the viewpoint of the string
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duality groups and their representations. This was also analyzed in by virtue of the E11 supergravity
technique. Furthermore, in the framework of other extended supergravity such as β-supergravity and
its extended version, the exotic duality was further investigated. In this work, we would like to confirm
the validity of the exotic duality from the viewpoint of the supersymmetry projection rules, and apply
it to new brane configurations that involve multiple non-parallel exotic branes. They are also called
the higher Kaluza-Klein branes, since the quadratic dependence on the radii in the isometry directions
is similar to the case of the Kaluza-Klein monopole, KK5= 51

2 . For the special case of p = 7, we
frequently denote it by NS7 instead of 73 . The duality relation between the standard branes and the
exotic branes is summarized in Superstring theory contains various extended objects such as funda-
mental strings, solitonic five-branes, and Dp-branes. These objects are known to couple to the standard
background fields; the B-field or the Ramond-Ramond fields. If we consider a compactification on a
seven-torus, T 7

3···9, there arise additional objects, called exotic branes. The exotic branes can exist only
in the presence of compact isometry directions, just like the Kaluza-Klein monopoles, and have the
tension proportional to gαs with α = −2,−3,−4. Among them, a 52

2-brane, which has two isometry
directions, has been well-studied recently. Since the 52

2 background has a non-vanishing (magnetic)
Q-flux, we can identify the 52

2-brane as an object that magnetically couples to a bi-vector field βij

whose derivative gives the Q-flux. This can be shown more explicitly by writing down the worldvolume
effective action of the 52

2-brane. In this paper, assuming the existence of some isometry directions,
we construct effective actions for various mixed-symmetry tensors that couple to exotic branes. We
consider the cases of the exotic 52

2-brane, the 16
4-brane, and the Dp7−p-brane, and argue that these

exotic branes are the magnetic sources of the non-geometric fluxes associated with polyvectors βij,
βi1···i6 , and γi1···i7−p , respectively. As it is well-known, an exotic-brane background written in terms
of the usual background fields is not single-valued and has a U -duality monodromy. However, with a
suitable redefinition of the background fields, the U -duality monodromy of the exotic-brane background
simply becomes a gauge transformation associated with a shift in a polyvector (which corresponds to
a natural extension of the β-transformation known in the generalized geometry). This kind of field
redefinition and the rewriting of the action in terms of the new background fields are the main tasks
of this paper. In spite of the presence of a symmetric structure between the exotic branes and the
usual branes, little is known about the exotic branes, the background fields which couple to the exotic
branes have not been studied in detail, other than the case of the 52

2-brane. There exists an SL(2,Z)
duality group under which the standard branes of n = 0, 1 are mapped to the exotic branes of n = 4, 3
and vice versa, and the solitonic branes of n = 2 are mapped to other solitonic branes. This duality
group is a subgroup of the U-duality group in each dimension. This is referred to as the exotic duality.
Even though the U-duality group in a certain spacetime dimension is different from that of a different

Figure 1: A family of exotic branes and the duality web.
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dimension, any exotic duality is described by SL(2,Z). This duality is illustrated in
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The main research interest in this article is to identify the background fields which couple to the
exotic branes and to write down the effective supergravity action for the background fields. For the
52

2-brane, the relevant background field is a bi-vector βij which is a function of the standard NS-NS
fields. The effective theory for the β-field has been constructed in a series of works and is called the
β-supergravity. On the other hand, for the Dp7−p-brane, the relevant background field is expected to
be a (7− p)-vector γi1···i7−p whose derivative is called the non-geometric P -flux, where the γ-fields are
introduced in the study of the exceptional generalized geometry, where the relation between mixed-
symmetry tensors and exotic branes is discussed, the effective D52-brane action is written down and
the D52-brane is found to couple to a bi-vector γij magnetically, and where a possible relation between
the polyvectors γ and exotic branes is discussed. However, the definition of the γ-fields and the
effective action for the γ-fields are still not fully understood. Our results and those obtained could
be extended to other relativistic superalgebras. Indeed, it seems that the S(4)

E semigroup allows to
obtain the respective Newtonian version of a relativistic (super)algebra. In particular, the procedure
used here could be useful in presence of supersymmetry, where the study of the non-relativistic limit is
highly non-trivial. It is interesting to notice that the exotic Newtonian superalgebra can alternatively
be recovered by expanding the enhanced Nappi-Witten superalgebra. Although both methods are
based on the semigroup expansion method, they present subtle differences which could lead to diverse
extensions of our results. Indeed, to obtain diverse Newtonian superalgebras from an enhanced Nappi-
Witten (super)algebra, we need to consider diverse semigroups. On the other hand, the derivation of
various Newtonian (super)algebras by expanding a relativistic superalgebra requires to consider different
original algebras without modifying the semigroup. We first exhibit the supersymmetry projection rules
on the standard branes in type II superstring theories and M-theory. Following the rules, we introduce
the superstring dualities acting on the supersymmetry parameters. Using the superstring dualities,
we write down the rules on various exotic branes. To avoid complications, we do not write down the
concrete derivation of each exotic brane in this section. Next, we apply the supersymmetry projection
rules to certain brane configurations derived from an F-string ending on a D3-brane. Analogous to
the superstring dualities on the mass formulae of branes, we do not seriously consider their global
structures.
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2 Generalised Metrics, Projectors and the Extremal E8(8) Vacua

2.1 Generalised metrics and diffeomorphisms

The local symmetries of general relativity, double field theory and exceptional field theory can all
be treated in same manner, by defining (generalised) diffeomorphisms associated to a group G. For
general relativity, this group is G = GL(d), for DFT, it is G = O(d, d), and for ExFT, it is Ed(d).
We work with coordinates (Xµ, Y M), where µ = 1, . . . , n and Y M transform in what we call the R1

representation ofG. In DFT and ExFT, we will call theXµ coordinates “external” and the Y M “internal”
or “extended”, mimicking the language we would use if we reduced to an n-dimensional theory (however
no compactification is assumed or needed to formulate these theories). The R1 representation is the
d-dimensional fundamental of GL(d) in the case of general relativity, the 2d-dimensional fundamental
in the case of O(d, d), and for Ed(d) the representations are listed with the rule is that R1 is the
representation whose highest weight is the fundamental weight associated to the rightmost node on the
Dynkin diagram.

We define diffeomorphisms associated to the transformation of the coordinates δYM = −ΛM in
terms of a Lie derivative acting on vectors δΛV

M = LΛV
M by

LΛV
M = ΛN∂NV

M − αPadjMKNL∂NΛLV K + λ∂KΛKVM , (2.1)

where PadjMKNL denotes the projector from R1 ⊗ R̄1 onto the adjoint representation, α is a constant
which depends on the group under consideration and λ denotes the weight of VM. It is often useful to
expand the projector to obtain an equivalent form of the generalised Lie derivative:

LΛV
M = ΛN∂NV

M − V N∂NΛM + YMNKL∂NΛKV L + (λ + ω)∂KΛKVM , (2.2)

which makes apparent how the structure differs from the ordinary Lie derivative (which is given by the
first two terms). The modification involves the so-called Y -tensor, which is constructed out of group
invariants (for instance, for O(d, d), YMNKL = ηMNηKL), and also a constant ω which can be thought
of as an intrinsic weight. When G = GL(d), clearly YMNKL = 0 and ω = 0.

We could define the ordinary Lie derivative involving two ten-dimensional generalised vectors, but
this would give a GL(10) Lie derivative and not capture the symmetries we want. Instead, let’s think
about the group SL(5). This has the totally antisymmetric invariants εMNPQK and εMNPQK. A
generalised Lie derivative which preserves these invariants is defined by

LΛW
M =

1

2
ΛPQ∂PQW

M −WP∂PQΛMQ +
1

5
∂PQΛPQWM , (2.3)

acting on a field WM carrying a single five-dimensional index. The factor of 1/2 in the first term is
inserted to prevent overcounting. Using the Leibniz rule, this implies on a second generalised vector
VMN we have:

LΛV
MN =

1

2
ΛPQ∂PQV

MN − 1

2
V PQ∂PQΛMN

+
1

8
εMNPQT εKLRST ∂PQΛKLV RS − 1

5
∂PQΛPQVMN ,

(2.4)

or in terms of a single 10-dimensional index M ≡ [MN ], letting V M ≡ VMN , ΛM ≡ ΛMN , we can
write

LΛV
M = ΛN∂NV

M − V N∂NΛM + Y MN
PQ∂NΛPV Q − 1

5
∂NΛNV M . (2.5)

letting Y MN
PQ ≡ εMNKεPQK. The final term with the 1

5
coefficient is a consequence of choosing to

define an SL(5) rather than GL(5) Lie derivative. In practice it is convenient to eliminate this from
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many expressions by declaring all generalised vectors to have weight +1
5
(note this means ∂M has weight

−1
5
).
The consistency of the theory, in particular closure of the algebra generated by generalised Lie

derivatives, again requires a section condition, which this time takes the form:

εMNPQK∂MN∂PQΨ = 0 , εMNPQK∂MNΨ∂PQΨ′ = 0 , (2.6)

where again Ψ,Ψ′ stand for any quantities in the theory.
The solution of this constraint which returns us to the d-dimensional theory is ∂̃ij = 0. Again,

though the requirement ∂̃ij = 0 appears to be of the same nature as the Kaluza-Klein truncation
condition, this is really a more stringent condition.

The geometry of general relativity is, of course, described by a metric. Similarly the generalised, or
“extended”, geometry of DFT/ExFT will be described by a generalised metric. We define this to be a
symmetric matrix,MMN , which is an element of G and so preserves the appropriate invariant tensors.
The generalised Lie derivative of the generalised metric follows from (2.1) or (2.2) using the Leibniz
property. It takes the form:

δΛMMN = ΛP∂PMMN + 2αPMN
KL∂KΛPMLP , (2.7)

in which the following projector appears:

PMN
KL =

1

α

(
δ

(K
M δ

L)
N − ωMMNMKL −MMQY

Q(K
RNML)R

)
, (2.8)

or in terms of the adjoint projector,

PMN
KL =MMQPadjQN (K

RML)R . (2.9)

Note that as the Y -tensor, or equivalently the adjoint projector, is a group invariant it is preserved by
the simultaneous action ofM andM−1 on all four indices, which can be used to check that PMN

KL

is actually symmetric in both its upper and lower pairs of indices. We can think of equation (2.7) as
expressing the variation of the generalised metric, in terms of a parameter ∂(KΛPML)P , which is then
projected from the symmetric tensor product of R1 with itself into the space in whichMMN lives by
means of PMN

KL. Generically,MMN is in fact valued in a coset G/H.
We can calculate the trace of the projector to compute the number of independent components of

the generalised metric, i.e. the dimension of the coset G/H in which it lives. In general, we find:

PMN
MN =

1

2α

(
dimR1(dimR1 + 1− 2ω)− Y MN

MN −MMNY
MN

PQMPQ
)
. (2.10)

Evidently, in general relativity we have α = 1, and the terms in (2.8) involving ω and the Y -tensor do
not appear. Hence we find PMN

MN = 1
2
d(d+ 1) which is the number of independent components of a

symmetric matrix and also the dimension of the coset GL(d)/SO(d).
In DFT and ExFT the situation is rather more interesting. Part of the trace (2.10) is independent

of the generalised metric and follows from representation theory as the Y-tensor can be related to the
projector onto the R2 representation. For d = 4 to d = 6 it is directly proportional to this projector,
and we find that its trace is Y MN

MN = 2(d − 1)dimR2. For d = 7, an additional term appears
in the Y-tensor involving the antisymmetric invariant of E7(7) (i.e. a projector onto also the trivial
representation) and in this case Y MN

MN = 2(d − 1)dimR2 − dimR1/2. For d = 8, the situation
changes again and the trace does not have quite such a simple expression.

The crucial information about the coset then appears in the very final term in (2.10), which we
may single out and define as

r ≡ 1

2α
MMNY

MN
KLMKL . (2.11)
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One finds, as summarised, that for all groups except E8(8) the trace of the projector gives exactly the
dimension of the usual G/H coset minus r. For E8(8) we obtain the dimension of E8(8)/SO(16) plus 2/15
minus r. It follows that non-zero r, if possible, generically corresponds to parametrisations in which
there are fewer independent components of the generalised metric, signalling a coset G/H of lower
dimension. Information about H can be introduced in the form of a generalised vielbein, EMA, with a
flat index A transforming under H. The generalised metric is then givenMMN = EM

AEN
BHAB, with

the flat metric HAB which is left invariant by local H transformations. Using the group properties of
the generalised vielbein (it must preserve the Y-tensor), it is then possible to explicitly evaluate r, as
we will see below for E8(8) in section 2.2.

We can write the action most compactly by introducing a ten-by-ten representation of the gener-
alised metric

MMN ≡MMM′,NN ′ = 2mM[NmN ′]M′ . (2.12)

The parametrisation ofMMN resulting is

MMN = |g|
1
5

(
gik + 1

2
CimnCk

mn 1
2
Ci

mnεklmn
1
2
Ck

mnεijmn 2|g|gi[kgl]j

)
, (2.13)

where indices on the three-form are raised using gij.
This is the direct generalisation of the O(d, d) generalised metric. UsingMMN and ∆, we can then

search for a quantity quadratic in derivatives which is a scalar under generalised diffeomorphisms (up
to terms vanishing by the section condition). The result leads to the action

S =

∫
d10X e−2∆

( 1

12
MMN∂MMKL∂NMKL −

1

2
MMN∂MMKL∂KMLN

+
24

7

(
∂MMMN∂N∆−MMN∂M∆∂N∆ +MMN∂M∂N∆

)
− ∂M∂NMMN

)
.

(2.14)

However, this does not rule out the possibility of finding alternative parametrisations of the gen-
eralised metric which correspond to new cosets G/H of lower dimension. Indeed, this underlies the
non-Riemannian parametrisations of [35], which we will review from the perspective of the projector
PMN

KL in section 4, and will appear below in an interesting context for the E8(8) ExFT.
Let us now discuss the dynamics of the generalised metric. Its equations of motion follow from the

ExFT action, which is constructed using the requirement of invariance under the local symmetries of
ExFT. These include not only generalised diffeomorphisms but also external diffeomorphisms associated
to transformations of the coordinates Xµ, and various generalised gauge transformations of gauge fields
that also appear in the theory. The projector then plays a vital role in the equations of motion for
the generalised metric. (Here we are thinking only of the bosonic part of the action: if we include
fermions then we will have to use a projector onto the variation of the generalised vielbein. We will
comment more on this later.) In fact, it was in this context that the projector was first written down
where it was obtained for the groups SL(5) and SO(5, 5) by explicitly varying known parametrisations
of the generalised metric. When one varies the action with respect to MMN , one naively obtains an
expression of the form

δS =

∫
δMMNKMN , KMN ≡

δS

δMMN
(2.15)

but the true equations of motion are
PMN

KLKKL = 0 . (2.16)

The reason for this is that one must insist that the variations of the generalised metric δMMN are still
compatible with G and so we impose this by a projector. In the standard formulation of ExFT, the
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actions do not explicitly impose this and so one needs to include these projectors by hand though it is
equivalent to just calculating the variations of the action subject to G-compatibility.

Now, recalling that the projector depends on MMN , we might consider whether it is possible to
find a generalised metric such that the projector vanishes:

PMN
KL = 0 , (2.17)

meaning the equations of motion (2.16) are trivially obeyed. This is evidently a very special possibility.
It corresponds to changing the structure of the theory such that the coset is G/G. Furthermore, as
any variation of the generalised metric must be projected, δMMN = PMN

KLδMKL, there can be no
fluctuations about such a background.

For O(d, d), the “maximally non-Riemannian” background HMN = ηMN is of this type [35]. This
background is invariant under O(d, d), i.e. it corresponds to a symmetric invariant tensor of the group.
This characterisation is easy to search for in ExFT, where the symmetric product of R1 with itself does
not contain the trivial representation for any Ed(d) except for d = 8. For E8(8) we have R1 = 248, which
is the adjoint representation and there is an obvious symmetric quadratic invariant given by the Killing
form. We will now discuss this ExFT and what one can say about the non-Riemannian background
where the generalised metric is proportional to the Killing form.

2.2 The E8(8) ExFT and its topological phase

Generalised Diffeomorphisms and the Action

The E8(8) ExFT [44] is based on an extended geometry parametrised by 248 coordinates Y M valued
therefore in the adjoint of E8(8). Denoting its generators as TM , we define structure constants fMN

K

with the convention [TM , TN ] = −fMN
KT

K , and the Killing form by

κMN ≡ 1

60
Tr(TMTN) =

1

60
fMP

Qf
NQ

P . (2.18)

We freely raise and lower all indices using κMN and its inverse κMN .
The generalised Lie derivative of an adjoint vector of weight λ is explicitly given by

LΛV
M = ΛK∂KV

M − 60(P248)MK
N
L∂NΛLV K + λ(V )∂NΛNV M (2.19)

in which we have used the projector onto the adjoint representation (P248)MK
N
L defined by

(P248)MK
N
L =

1

60
fMKPf

PN
L. (2.20)

Alternatively, one can write the part of this transformation involving ΛM in the form (2.2) involving
the Y-tensor, given here by

Y MN
KL = −fMLPf

PN
K + 2δ

(M
K δ

N)
L . (2.21)

A special feature of the E8(8) ExFT is that it includes additional gauge transformations which appear
alongside the conventional generalised Lie derivative. Under this extra gauge symmetry, generalised
vectors transform as

δΣV
M = −ΣLf

LM
NV

N , (2.22)

where the gauge parameter ΣM is not an arbitrary covector but is constrained as part of the section
condition of the E8(8) ExFT. This section condition applies to any two quantities FM , F ′M which are
said to be “covariantly constrained” meaning that they vanish when their tensor product is projected
into the 1⊕ 248⊕ 3875 ⊂ 248⊗ 248, i.e.

κMNFM ⊗ F ′N = 0 , fMNKFN ⊗ F ′K = 0 , (P3875)KLMNFK ⊗ F ′L = 0 . (2.23)
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These quantities include derivatives, ∂M , as usual, the gauge parameters ΣM , and a number of other
gauge parameters and field [44].

This section condition guarantees closure of the algebra of the combined action of generalised
diffeomorphisms and constrained ΣM transformations, which we denote by

L(Λ,Σ) ≡ LΛ + δΣ . (2.24)

The inclusion of the ΣM transformations is in fact necessary for closure: the algebra based on the
ordinary generalised Lie derivative (2.19) alone cannot be made to close on its own. The underlying
physical reason for the extra gauge transformation (2.22) is the appearance of dual graviton degrees of
freedom in the generalised metric of the E8(8) ExFT. For further details on these subtleties, we refer
the reader to the original paper [44] or the recent review.

We proceed to discuss the field content of the theory. This consists of the generalised metric,MMN ,
an external metric, gµν , and a pair of gauge fields (AµM ,BµM), with BµMcovariantly constrained as
in (2.23). These gauge fields have field strengths (FµνM ,GµνM) whose precise forms can be found in
[44]. All these fields depend on the three-dimensional coordinates Xµ as well as the 248-dimensional
coordinates Y M , subject to the section condition. The gauge field AµM can be thought of as serving
as a gauge field for generalised diffeomorphisms while BµM is a gauge field for the constrained ΣM

transformations. We define an improved derivative Dµ ≡ ∂µ − L(Aµ,Bµ) which is used in place of ∂µ.
The action for the E8(8) ExFT is constructed in [44] and is given by

S =

∫
d3xd248Y

√
|g|

(
R̂[g] +

1

240
gµνDµMMNDνMMN − V (M, g) +

1√
|g|
LCS

)
(2.25)

where R̂[g] is the usual Ricci scalar for the metric gµν , except constructed in terms of Dµ instead of ∂µ.
The two terms at the end are:

V (M, g) = − 1

240
MMN∂MMKL∂NMKL +

1

2
MMN∂MMKL∂LMNK

+
1

7200
fNQPf

MS
RMPK∂MMQKMRL∂NMSL

− 1

2
∂M ln|g|∂NMMN − 1

4
MMN (∂M ln|g|∂N ln|g|+∂Mgµν∂Ngµν) ,

(2.26)

which is usually referred to as the “potential”, taking the point of view of the external three-dimensional
space, and the Chern-Simons term:

SCS ∼
∫

Σ4

d4x

∫
d248Y

(
FM ∧ GM −

1

2
fMN

KFM ∧ ∂KGN
)

(2.27)

written here in a manifestly gauge invariant form using the usual construction of an auxiliary space Σ4

whose boundary ∂Σ4 is the physical three-dimensional space, and where ∧ denotes the usual product
with respect to the external indices, µ, ν, . . . .

Generalised metric and projector

Conventionally, we view the generalised metric as being an element of E8(8)/H, with H = SO(16), and
then this coset is parametrised in terms of a spacetime metric and p-form fields. Instead, following the
intuition from the DFT approach of [35] where the generalised metric was defined as a symmetric two
index object obeying the O(d, d) compatibility condition, we will define the E8(8) generalised metric by
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the properties that are needed in [44] to ensure the invariance of the action (2.25). Thus we define the
E8(8) generalised metric to be the symmetric two index object that obeys the constraints:

MMKMNLMPQf
KLQ = −fMNP , MMKκ

KLMLN = κMN . (2.28)

One can check that the conventional coset parametrisation ofMMK obeys these constraints but new
results will follow from a solution to these constraints that does not obey the coset parametrisation. The
full generalised Lie derivative (including the additional transformations involving ΣM) of the generalised
metric takes the form

L(Λ,Σ)MMN = ΛP∂PMMN + 2 · 60PMN
KL

(
∂KΛP +

1

60
fQPKΣQ

)
MPL , (2.29)

with the projector given simply by

PMN
KL =

1

60
MMQf

Q
NPf

P (K
RML)R . (2.30)

The trace is
PMN

MN =
1

2

(
κMNMMN + 248

)
. (2.31)

Now, for the usual E8(8)/SO(16) coset, we introduce a generalised vielbein EMA such that

EM
A ≡ (EM

A, EM
IJ) , κMNEM

AEN
B = δAB , κMNEM

IJEN
KL = −2δI[KδL]J , (2.32)

where A is a spinor index corresponding to the 128 of SO(16), and I the 16-dimensional vector rep-
resentation, with EM

IJ = −EMJI in the 120 of SO(16). The generalised metric is then given by
MMN = EM

AEN
BδAB + 1

2
EM

IJEN
KLδIKδJL and it follows from the defining properties of the vielbein

that κMNMMN = 128− 120 = 8. Thus we find PMN
MN = 128 as expected.

Now we can consider whether there are alternative parametrisations ofMMN such that PMN
MN 6=

128. Remarkably, we can immediately write down a choice ofMMN such that PMN
KL vanishes iden-

tically, given by
MMN = −κMN . (2.33)

This is easily checked to be compatible with the defining constraints (2.28) forMMN (no other multiple
of the Killing form is). The projector then vanishes as fP (KL) = 0.

Restricting to the “topological phase”

Now let us consider what this implies for the equations of motion. On general grounds, as we have
explained, the equations of motion ofMMN itself will be of the form PMN

KLKKL = 0, where KMN is
the result of varying the action with respect toMMN . As the projector vanishes forMMN = −κMN ,
the equations of motion are trivially obeyed.

Now consider the variation of the other fields in the action. For instance, the equation of motion of
the external metric is:

0 = R̂µν −
1

2
gµν

(
R̂[g] +

1

240
gρσDρMMNDσMMN − V (M, g)

)
+

1

240
DµMMNDνMMN +

1

2

√
|g|
−1
gµν∂M

(√
|g|(∂NMMN +MMN∂N ln|g|)

)
− 1

2

√
|g|
−1
∂M(

√
|g|MMN)∂Ngµν −

1

2
MMNgµρ∂Mg

ρσ∂Ngσν −
1

2
MMN∂M∂Ngµν .

(2.34)
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Here R̂µν is defined to be the result of varying R̂[g] with respect to gµν . Now, whenMMN = −κMN all
terms involving the generalised metric vanish identically, either because DµκMN = 0 (as the generalised
Lie derivative appearing in the definition of Dµ preserves the Killing form) or because of the section
condition κMN∂M ⊗ ∂N = 0. Similarly, the equations of motion of the gauge fields AµM , BµM will
involveMMN only in the form of (derivatives of) DµMMN , and so the contribution of the generalised
metric to these equations of motion also vanishes identically.

We can conclude that the equations of motion for (gµν ,AµM ,BµM) whenMMN = −κMN are those
that are obtained from the truncation of the ExFT action obtained by settingMMN = −κMN within
the action, i.e. in this background the dynamics of the resulting fields are governed by:

S =

∫
d3x d248Y

√
|g|R̂[g] +

∫
Σ4

d4x d248Y

(
FM ∧ GM −

1

2
fMN

KFM ∧ ∂KGN
)
. (2.35)

Let us make a short comment about the fermions of the E8(8) ExFT. We would expect that after
truncating the generalised metric degrees of freedom that we should also truncate out the internal
fermions. At this point the supersymmetry of the non-Riemannian background is a little mysterious
since usually in ExFT the fermions should transform in a representation of H. What this means
when H = E8(8) is uncertain but what is apparent is that one cannot just naively insert the condition
MMN = −κMN into the generalised Killing spinor equations. The realisation of fermions in the non-
Riemannian background has yet to be determined. Note that the variation of the action with respect to
the generalised vielbein, EMA, requires a projector to ensure that δEMA is not arbitrary. Evidently this
projector will depend explicitly on the precise form of H (whereas the projector PMN

KL acting on vari-
ations of the generalised metric only knew about H implicitly, through the termMMNY

MN
KLMKL)

and so must be constructed on a case-by-case basis when starting from a particular non-Riemannian
parametrisation ofMMN .

A related technical comment is to note that setting MMN = −κMN is consistent with the invari-
ance of the ExFT action under external diffeomorphisms with parameter ξµ(X, Y ), which includes a
generalised metric dependent transformation of AµM , namely

δξAµM ⊃MMNgµν∂Nξ
ν . (2.36)

Normally, this requires cross-cancellation between the scalar potential and the other parts of the action.
If this vanishes, V (M = −κ, g) = 0, then one might be concerned whether the action is still invariant.
However, when one inspects the calculation in [44] of the variation of the action under these transfor-
mations, one finds that all possible terms that could spoil invariance vanish by the section condition
on settingMMN = −κMN .

3 Gauge Invariance of the Pseudo-Lagrangian
We now show that the E11 exceptional field theory pseudo-Lagrangian given is gauge-invariant. For this
we calculate the variation of each term in the pseudo-Lagrangian under generalised diffeomorphisms
and then demonstrate that the combination of these variations vanishes. As always in these checks in
exceptional field theory it is sufficient to show that the non-covariant gauge variation ∆ξ vanishes up to
total derivatives. Our proof proceeds in two steps. In order to underline the necessity of including the
fields ζM , we first consider the pseudo-Lagrangian for ζM = 0 and computes its non-covariant gauge
variation. As we shall see there are already many cancellations but some terms are left over. Then we
shall show that these terms are exactly cancelled by the ζM -dependent terms.

3.1 Gauge variation at ζ = 0

As explained above, we compute first the non-covariant gauge variation of all the pieces of L at ζM = 0.
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First potential term

The first potential term, does not depend on ζM and we can immediately calculate the full non-covariant
gauge variation. A standard exceptional field theory calculation involving the definition of the current
JM

α and the section constraint gives the first step

∆ξ

[
Lpot1

]
=

[
− TβRQMMN + Tβ

M
P δ

N
QMPR + fβαγT

γM
PT

αR
QMNP

]
∂M∂Rξ

QJN
β

=MCPα̂CQβT
α̂R

SMQMMPN∂M∂Rξ
SJN

β − 2∂[M

(
∂N ]∂P ξ

MMNP
)
. (3.1)

In the second step we have used the identity and simplified the terms with a single representation
matrix Tβ and a single inverseMMN into a total derivative.

It is worthwhile to remark that the E11-representation with index has as lowest component R(Λ3).
When decomposing E11 with respect to GL(11− n)× En the first time this representation enters the
scalar sector is for E8 which is in agreement with the fact that this is the first time the potential term
is not gauge-invariant and also the first time ancillary transformations are needed. We shall show next
how the failure of gauge-invariance of the first potential term involving the index is accounted for by
the second potential term.

Second potential term

The second potential term does not depend on ζM either. Calculating the full non-covariant gauge
transformation yields

∆ξ

[
Lpot2

]
= −MCPα̂CQβ̂M

QMMPNT α̂RS

(
∂M∂Rξ

S +MRUMST∂M∂T ξ
U
)
JN

β̂

−MCPα̃CQβ̂M
QMMPNΠα̃

RSMTR∂M∂T ξ
SJN

β̂

= −MCPα̂CQβT
α̂R

SMQMMPN∂M∂Rξ
SJN

β

−MIJC
IM

α̃C
JN

β̂Πα̃
QPMQR∂M∂Rξ

PJN
β̂ , (3.2)

where we have first written out the non-covariant variation ∆ξJM
α̂. In the next step we have distributed

the parenthesis on the first line and used the identity to cancel the second contribution(
MCPα̂T

α̂R
SMPNMSTMRU

)
CQβ̂M

QM∂M∂T ξ
UJN

β̂

=
(
ηCQα̂T

α̂P
R η

QMηRNηPS
)
CT β̂M

TU∂U∂Nξ
SJM

β̂ = 0 , (3.3)

where we split the β̂ index on the first contribution and used the identities to remove the χNβ̃ compo-
nent.

The first term we obtain in (3.1) cancels precisely the contribution from the first potential term. This
cancelation is the same one that ensures the invariance of the potential for any finite-dimensional simply
laced groups. Consistently, the identity that was used in this cancelation is proved using a construction
that generalises to the Kac–Moody algebra e11. Here, we obtain the combined non-covariant gauge
variation

∆ξ

[
Lpot1+ Lpot2

]
= −MIJC

IM
α̃C

JN
β̂Πα̃

QPMQR∂M∂Rξ
PJN

β̂ − 2∂[M

(
∂N ]∂P ξ

MMNP
)
. (3.4)

Thus, compared to present results where no Πα̃
MN appears, the combination for E11 is not gauge-

invariant and we shall invoke an additional ingredient to arrive at a gauge-invariant pseudo-Lagrangian.
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Kinetic term at ζ = 0

In order to determine the non-covariant gauge variation of the kinetic term we break it up into the
parts that contain the constrained fields ζM (before variation) and those that do not, beginning with
the latter:

∆ξ

[
Lkin|ζ=0

]
=

1

2
MIJ

(
CJM

α̂T
α̂S

QMSPMQR + CJM
α̃Πα̃

QPMQR
)
CIN

β̂JN
β̂∂M∂Rξ

P (3.5)

where we have used the identity to cancel the term in T α̂NP∂M∂Nξ
P from the non-covariant gauge

variations.

Topological term at ζ = 0

We first compute the non-covariant gauge transformation at ζM = 0. An important first observation
is that the total derivative Πα̃

MN∂MχN
α̃ is not invariant under its non-covariant gauge transformation

up to a total derivative. To compute ∆ξ = δξ − Lξ of Πα̃
MN∂MχN

α̃ we need to determine the Lie
derivative of the combined object ∂MχNα̃ which is given by

Lξ(∂MχNα̃) = ξP∂P (∂MχN
α̃) + ∂Mξ

P∂PχN
α̃ + ∂Nξ

P∂MχP
α̃

− TαPQ∂P ξQ(Tαα̃β̃∂MχN
β̃ +Kαα̃

β∂MJN
β) . (3.6)

This not a total derivative. Therefore the non-covariant gauge variation is

∆ξ

[
Πα̃

MN∂MχN
α̃
]

= Πα̃
MN
[
∂M(δξχ

α̃
N)− Lξ(∂MχNα̃)

]
= Πα̃

MN

[
− TαRPTαα̃β̃∂M∂Rξ

PχN
β̃

+
(
− TαRPKα

α̃
β − TβUQT α̃QSMUPMSR + T α̃UQTβ

Q
SMUPMSR

+ Πα̃
QPTβ

Q
SMSR

)
∂M∂Rξ

PJN
β

]
(3.7)

where we used the section constraint on LξχMα̃. The three last terms come from ∂M(∆ξχ
α̃
N) and

therefore do combine into a total derivative, but it will be convenient to distribute the derivative as
above.

The remaining terms in ΘMN
α̃ just pick up their non-covariant variations. We organise the calcu-

lation by looking first at all terms varying into χ and then at terms varying into the current J . The
sum of terms varying into χ give

∆ξ

[
Ltop|ζ=0

]∣∣∣
χ∂2ξ

=
1

2
Πα̃

MN

[
− 2Tα

R
PT

αα̃
β̃∂M∂Rξ

PχN
β̃

+ Tαα̃β̃Tα
R
P∂M∂Rξ

Pχβ̃N + Tαα̃β̃Tα
S
QMSPMQR∂M∂Rξ

PχN
β̃

]
= −Πα̃

U [MTαN ]
UTα

S
QMSPMQR∂M∂Rξ

PχN
α̃ , (3.8)

where we used the identity on all terms and the fact that the first two vanish using the section constraint.
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The terms whose non-covariant gauge variation contains a current J are

∆ξ

[
Ltop|ζ=0

]∣∣∣
J∂2ξ

=
1

2
Πα̃

MN

[
− 2TαRPKα

α̃
β − 2Tβ

U
QT

α̃Q
SMUPMSR + 2T α̃UQTβ

Q
SMUPMSR

+ 2Πα̃
QPTβ

Q
SMSR − Tβα̃β̃T

β̃R
P − Tβα̃β̃T

β̃S
QMSPMQR − Tβα̃β̃Πβ̃

QPMQR

+ 2K[α
α̃
β]

(
TαRP + TαSQMSPMQR

)]
∂M∂Rξ

PJN
β

=
1

2
Πα̃

MN

[
− 2K(α

α̃
β)T

αR
P − Tβα̃β̃T

β̃R
P + (2K(α

α̃
β)T

αS
Q + Tβ

α̃
β̃T

β̃S
Q)MSPMQR

− 2Tβ
S

(QΠα̃
P )SMQR

]
∂M∂Rξ

PJN
β , (3.9)

= −1

2
ΩIJC

IM
α̂C

JN
βT

α̂S
QMSPMQR∂M∂Rξ

PJN
β − Πα̃

MNTβ
S

(QΠα̃
P )SMQR∂M∂Rξ

PJN
β ,

where in the first step we have used the commutation relation, in the last step we have used the
identities to write the first line in terms of the C-tensors and combined the α and α̃ components into
an α̂ index.

Combined non-covariant gauge variation at ζ = 0

Collecting all the terms from above we therefore find

∆ξ

[
L|ζ=0

]
+ 2∂[M

(
∂N ]∂P ξ

MMNP
)

(3.10)

=
1

2
MIJC

JN
β̂

(
CIM

α̂T
α̂S

QMSPMQR − CIM
α̃Πα̃

QPMQR
)
∂M∂Rξ

PJN
β̂

− Πα̃
U [MTαN ]

UTα
S
QMSPMQR∂M∂Rξ

PχN
α̃

− 1

2
ΩIJC

IM
α̂C

JN
βT

α̂S
QMSPMQR∂M∂Rξ

PJN
β − Πα̃

MNTβ
S

(QΠα̃
P )SMQR∂M∂Rξ

PJN
β

where the first line combines (3.5) and (3.4) while the remaining lines come from the variation of the
topological term given in (3.8) and (3.9).

So far we have avoided using any identity that mixes and L(Λ10)⊕L(Λ4). The only equation that
does this is the master identity and we shall apply it now to the first line above. Continuing from (3.10)
we then obtain

∆ξ

[
L|ζ=0

]
+ 2∂[M

(
∂N ]∂P ξ

MMPN
)

=
1

2
ΩIJC

JN
β̂

(
CIM

α̂T
α̂S

QMSPMQR − CIM
α̃Πα̃

QPMQR
)
∂M∂Rξ

PJN
β̂

+
1

2
(MIJ + ΩIJ)CIN

β̂C
JMΠQPMQR∂M∂Rξ

PJN
β̂

− Πα̃
U [MTαN ]

UTα
S
QMSPMQR∂M∂Rξ

PχN
α̃

− 1

2
ΩIJC

IM
α̂C

JN
βT

α̂S
QMSPMQR∂M∂Rξ

PJN
β − Πα̃

MNTβ
S

(QΠα̃
P )SMQR∂M∂Rξ

PJN
β

=
1

2
(MIJ + ΩIJ)CIN

β̂C
JMΠQPMQR∂M∂Rξ

PJN
β̂

− 1

2
Πα̃

MNTα
α̃
β̃T

αS
QMSPMQR∂M∂Rξ

PχN
β̃ +

1

2
Πβ̃

MNTβ
β̃
α̃Πα̃

QPMQR∂M∂Rξ
PJN

β

− Πα̃
U [MTαN ]

UTα
S
QMSPMQR∂M∂Rξ

PχN
α̃ − Πα̃

MNTβ
S

(QΠα̃
P )SMQR∂M∂Rξ

PJN
β
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=
1

2
(MIJ + ΩIJ)CJM (∆ξζM )CIN

β̂JN
β̂ − ∂N(Πα̃

MNΠα̃
RPMRQ∂M∂Qξ

P ) (3.11)

where we have used the identities to remove most ΩIJ terms when going to the second equality. The
remaining term can be written as the non-covariant variation of ζM as shown. This result strongly sug-
gests that one might be able to obtain a pseudo-Lagrangian invariant under generalised diffeomorphisms
by adding the relevant ζM dependent terms. This is indeed what we will show next.

3.2 Gauge invariance

In order to demonstrate gauge-invariance of L, we now consider the ζM dependent terms. These appear
in the kinetic term and in the topological term. Their non-covariant gauge variation is given by

∆ξ

[
L − L|ζ=0

]
= −1

2
(MIJ + ΩIJ)CIM

α̂C
JNJM

α̂∆ξζN

− 1

2
(MIJ + ΩIJ)

(
CIM

α̂T
α̂S

QMSP + CIM
α̃Πα̃

QP + CIMΠQP

)
MQR∂M∂Rξ

PCJN ζN

= −1

2
(MIJ + ΩIJ)CJM (∆ξζM )CIN

β̂JN
β̂ (3.12)

where in the first step we have written out the non-covariant variations of JMα̂, cancelled one term
using the identity to add one vanishing term and group terms together into the non-covariant variation
of F I . In the second step we have then applied the master identity twice to cancel the middle line.

Now we can collect all terms contributing to the variation of the pseudo-Lagrangian and obtain
from (3.11) and (3.12)

δξL = ∂M

(
ξML

)
(3.13)

where we used moreover that the total derivative terms in (3.11) cancel. We have therefore proved that
the pseudo-Lagrangian is gauge-invariant up to a total derivative as claimed. Note moreover that it
transforms under generalised diffeomorphisms as a density, whereas the non-covariant variation usually
only vanishes up to a total derivative.

4 Non-Riemannian Backgrounds in O(D,D) DFT
In this section we first revisit the possible parametrisations of O(D,D) generalised metrics from the
perspective of the coset projector. We demonstrate how the classification of O(D,D) non-Riemannian
parametrisations of Morand and Park [35] fits into this picture. Then, we will review the explicit details
of these parametrisations and look at some examples which will inspire us in our later study of the
SL(5) ExFT.

4.1 Generalised metric and coset projectors

Let us first recall that the generalised metric of DFT may be defined as a symmetric matrix HMN

obeying the compatibility condition HMKη
KLHLN = ηMN with the O(D,D) structure. It transforms

under O(D,D) generalised diffeomorphisms generated by a generalised vector ΛM = (Λi, λi) according
to the generalised Lie derivative (2.2) with the Y-tensor Y MN

PQ = ηMNηPQ and ω = 0. The O(D,D)
section condition ηMN∂M ⊗ ∂N = 0 may be solved by ∂i 6= 0, ∂̃i = 0, where the doubled coordinates are
Y M = (Y i, Ỹi), After solving the section condition in this way, generalised diffeomorphisms produce
D-dimensional diffeomorphisms generated by Λi and B-field gauge transformations with parameter λi.
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This leads to the usual parametrisation in terms of the spacetime metric, gij, in string frame, and the
B-field. The generalised dilaton may then be identified as e−2d = e−2Φ

√
|g|, where Φ is the spacetime

dilaton. There is an implicit assumption that the D×D block Hij, which is identified with the inverse
spacetime metric, is invertible.

The O(D,D) compatibility condition implies the existence of two projectors

PN
M =

1

2
(δNM + ηNPHPM) , P̄N

M =
1

2
(δNM − ηNPHPM) , (4.1)

such the projector PMN
KL, that appears in the generalised Lie derivative of the generalised metric

(2.7), factorises as
PMN

KL = 2P
(K
M P̄N

L) . (4.2)

In the usual parametrisation, the trace ηMNHMN is zero, and hence PMN
MN = D2, as expected for the

O(D,D)/O(D)×O(D) coset.
Let us suppose instead that the trace is not necessarily zero. Then, as PN

M and P̄N
M are still

projectors, we can have ηMNHMN = 2y, for some integer y, with −D ≤ y ≤ D, such that PM
M = D+y,

P̄M
M = D − y.
We can define “square roots” of the projectors, namely matrices VMA and V̄MĀ, where A = 1, . . . , D+

y, Ā = 1, . . . D − y. These obey

VMAh
ABVNB =

1

2
(HMN + ηMN) , VMAη

MNVNB = hAB , HMNVNA = ηMNVNA , (4.3)

V̄MĀV̄NB̄h̄
ĀB̄ =

1

2
(HMN − ηMN) , V̄MĀη

MN V̄NB̄ = −h̄ĀB̄ , HMN V̄NĀ = −ηMN V̄NĀ , (4.4)

where hAB and h̄ĀB̄ are respectively (D + y) × (D + y) and (D − y) × (D − y) diagonal matrices of
signatures (p, q) and (p̄, q̄). This is quite general; we will see how different choices of signature allow
for different coset descriptions and constrains (p, q) and (p̄, q̄). Constructing a vielbein for the full
generalised metric,

EM
A = (VM

A, V̄M
Ā) , HMN = EM

AEN
BHAB , (4.5)

where the 2D × 2D flat metric,

HAB ≡
(
hAB 0

0 h̄ĀB̄

)
, (4.6)

is of signature (p+ p̄, q + q̄) we can check that

ηAB ≡ EM
AEN

BηMN =

(
hAB 0

0 −h̄ĀB̄
)

(4.7)

then has signature (p+ q̄, q+ p̄). Now, EMA must be an O(D,D) group element. This means that ηAB
should have signature (D,D) and so be equivalent (by a choice of basis for the flat indices) to ηMN .
Hence the only possibilities obey p + q̄ = D, q + p̄ = D. This means that p − p̄ = q − q̄ = y which
is consistent with the trace being ηMNHMN = ηABHAB = p + q − p̄ − q̄ = 2y. Note that the explicit
parametrisation that will be used in the subsequent subsection does not make this component counting
manifest, as it uses variables which are written in a D-dimensionally covariant manner. As a result,
there are shift symmetries present (see (4.12) below) which complicate the choice of what should be
regarded as the true independent variables. This suggests there ought to be an alternative formulation
which exhibits the coset structure more clearly.
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4.2 Review of Morand-Park classification

Dropping the assumption of the invertibility of the D × D block Hij in the normal parametrisation
led to the classification of O(D,D) generalised metrics in [35]. Taking the section condition solution,
∂i 6= 0, ∂̃i = 0, they found that the most general parametrisation of the generalised metric is given by

HMN =

(
1 B
0 1

)(
Kij Xa

i Y
j
a − X̄ ā

i Ȳ
j
ā

Xa
j Y

i
a − X̄ ā

j Ȳ
i
ā H ij

)(
1 0
−B 1

)
. (4.8)

Here both H ij and Kij are symmetric D × D matrices which may be non-invertible, with {X, X̄}
spanning the kernel of H ij and {Y, Ȳ } spanning the kernel of Kij. Both kernels have dimensions n+ n̄,
and we index the zero vectors by a = 1, . . . , n and ā = 1, . . . n̄. Explicitly,

H ijXa
j = 0 , H ijX̄ ā

j = 0 , KijY
j
a = 0 , KijȲ

j
ā = 0 . (4.9)

We have some completeness relations which are necessary for the invertibility of HMN , namely

H ikKkj + Y i
aX

a
j + Ȳ i

ā X̄
ā
j = δij , Y i

aX
b
i = δba , Ȳ i

ā X̄
b̄
i = δb̄ā , Y i

a X̄
b̄
i = 0 = Ȳ i

āX
b
i , (4.10)

which imply H ikKklH
lj = H ij, KikH

klKlj = Kij. These objects are all tensors under diffeomorphisms
and invariant under B-field gauge transformations. We see that the trace of the generalised metric is no
longer zero, but given by HM

M = 2(n− n̄), in agreement with the analysis of the previous subsection,
with 0 ≤ n + n̄ ≤ D. Note that X, X̄ and Y, Ȳ are a preferred basis for the zero vectors of H and K.
Any other basis X ′ui , Y ′iu , where u = 1, . . . n+ n̄, would be such that

Zi
j ≡ Xa

i Y
j
a − X̄ ā

i Ȳ
j
ā = X ′ui σu

vY ′jv (4.11)

where σuv is conjugate to diag(δab ,−δāb̄ ). Thus X, X̄ and Y, Ȳ diagonalise σuv. Finally, note there is
also a shift symmetry preserving the parametrisation (4.8), involving arbitrary parameters bia, b̄iā:

Y i
a →Y i

a +H ijbja ,

Ȳ i
ā →Ȳ i

ā +H ij b̄jā ,

Kij →Kij − 2Xa
(iKj)kH

klbla − 2X̄ ā
(iKj)kH

klb̄lā + (Xa
i bka + X̄ ā

i b̄kā)H
kl(Xb

j blb + X̄ b̄
j b̄lb̄) ,

Bij →Bij − 2Xa
[ibj]a + 2X̄ ā

[ib̄j]ā + 2Xa
[iX̄

ā
j]

(
Y k
a b̄kā + Ȳ k

ā bka + bkaH
klb̄lā

)
,

(4.12)

which we can view as eliminating some components of the B-field in the non-Riemannian geometry.
A variety of interesting example have been considered in [35]. For instance, (n, n̄) = (D, 0) corre-

sponds to the maximally non-Riemannian case, HMN = ηMN . When n = n̄ the parametrisations may
be connected by O(D,D) transformations to Riemannian parametrisations. An example, which we will
discuss below, is the (1, 1) non-Riemannian metric corresponding to the Gomis-Ooguri limit of string
theory, or to the T-dual of a supergravity solution. The case (n, n̄) = (D−1, 0) gives an ultra-relativistic
(Carroll) geometry, while (n, n̄) = (1, 0) or (0, 1) provides a version of non-relativistic Newton-Cartan
geometry. (In this case, the transformation (4.12) in fact reduces to known non-relativistic trans-
formations termed Milne transformations or Galilean boosts [35].) In general, the non-Riemannian
background (4.8) can be studied using the doubled sigma model, and it was shown in [35] that the zero
vectors Xi

a pick out n string target space coordinates which become chiral, while the X̄i
ā lead to n̄

antichiral directions.

5 Riemannian Backgrounds and Exotic Supergravities in SL(5)

ExFT
We will now focus on the SL(5) ExFT, a good testing ground as it is simple enough to allow one to realise
various constructions very explicitly, and simultaneously complex enough to be interesting. Already
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at the level of Riemannian parametrisations, the SL(5) ExFT describes not only the conventional
10- and 11-dimensional supergravities, but exotic variants, with all information about the nature of
the spacetime theory encoded in the generalised metric via the choice of parametrisation. We should
however note that though these exotic variants appear to give valid parametrisations of the ExFT
variables, their role in the full quantum string and M-theory is less clear as they involve spacetimes
of non-Minkowskian signatures, and they are not expected to exist as the low energy limits of fully
fledged variants of string and M-theory, though they may still appear as complex saddle points in the
path integral.

Spacetime decompositions

In general, in order to match exceptional field theory with standard supergravity, it is convenient to
start with an intelligent decomposition of the fields of the latter. For instance, the 11- or 10-dimensional
Einstein frame metric ĝµ̂ν̂ can be decomposed in the following manner (corresponding to a partial fixing
of Lorentz symmetry): splitting the 11- or 10-dimensional index µ̂ = (µ, i), where µ is an n-dimensional
index, let

ĝµ̂ν̂ =

(
|φ|ωgµν + Aµ

kAν
lφkl Aµ

kφkj
Aν

kφki φij

)
, (5.1)

where ω is the intrinsic weight appearing in the generalised Lie derivative. For SL(5), ω = −1/5.
The ExFT formalism will work regardless of the signatures of the blocks gµν and φij. We will denote
the signature of metrics by (t, s). Let φij be a d-dimensional metric with signature (t, s), so that
φ ≡ detφ = (−1)t|φ|. Define εi1...id = |φ|1/2ηi1...id , εi1...id = |φ|−1/2ηi1...id with both η1...d = η1...d = +1.
Then we have εi1...id = (−1)tφi1i

′
1 . . . φidi

′
dεi′1...i′d and there are no extra signs in the contractions between

ε with indices up and those with indices down.
As well as the metric, it can be convenient to redefine the components of the gauge fields which

carry the external µ, ν indices, making use of the field Aµi. The details are not important in the present
paper.

The SL(5) ExFT

For SL(5), the representation R1 is the antisymmetric 10-dimensional representation; we will write an
R1 index M as an antisymmetic pair of five-dimensional indices a, b, so that V M ≡ V ab = −V ba. We
will contract indices with a factor of 1/2, V MWM ≡ 1

2
V abWab, meaning that δMN = 2δ

[ab]
cd = δac δ

b
d−δbcδad .

The generalised Lie derivative is defined by giving the Y-tensor, which is Y MN
KL = ηaa

′bb′eηcc′dd′e, and
the section condition is ηabcde∂bc∂de = 0.

The generalised metric,MMN , carries a pair of symmetric R1 indices. We can also define a “little”
generalised metric in the fundamental five-dimensional representation, such that

Mab,cd = ±(macmbd −madmbc) , (5.2)

where the overall sign is needed to describe exceptional field theory in the case where the Y M coordinates
include timelike directions. The little metric is constrained to have unit determinant, detmab = 1. Note
that it is immediate from this decomposition that εabcdeMab,cd = 0 and hence Y MN

PQMMN = 0, so that
referring to the projector trace PMN

MN in (2.10) we find thatMab,cd has 14 components, corresponding
to the coset SL(5)/SO(5) (or SL(5)/SO(2, 3)). The situation with the sign choice in (5.2), meanwhile,
is a little subtle. We choose to fix the sign differently in different parametrisations, such that the
“generalised line element”

gµνdX
µdXν +MMN(dY M +AµdXµ)(dY N +AνdXν) (5.3)
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when written out in terms of the spacetime metric, ĝµ̂ν̂ (as in (5.1)), and spacetime coordinates,
X̂ µ̂ = (Xµ, Y i), always equals

|φ|−ωĝµ̂ν̂dX µ̂dX ν̂ + . . . (5.4)

where the ellipsis denotes terms involving dual coordinates. Pullbacks of the expression (5.3) are used
to construct particle and string actions with target space the extended geometry of ExFT, and the
relative sign between the two terms is fixed by the appropriate notion of gauge covariance under the
ExFT gauge symmetries. As it isMMN that appears in (5.3), we stress that it is the parametrisation
of this version of the generalised metric which must be considered fundamental, though we will almost
always write down explicit expressions using the more compact notation of the little metric mab. (Note
we can also express mab via mab = 1

6
ηaMNηbPQMMPMNQ.)

The gauge fields of the SL(5) ExFT appearing in the action are a one-form AµM , two-form, Bµνa
with field strength Hµνρa, and three-form, Cµνρa, whose field strength Jµνρσa appears in the Chern-
Simons term but does not have a kinetic term. The equation of motion for Cµνρa accordingly amounts
to a duality relation relating it to the degrees of freedom in the other gauge fields. The action is defined
by

S =

∫
d7Xd10Y

√
|g|

(
R̂[g] +

1

12
gµνDµMMNDνMMN − V (M, g) +

1√
|g|
LCS

− 1

4
egµρgνσMMNFµνMFρσN −

1

2
mabHµνρaHµνρ

b

) (5.5)

where

−V (M, g) =
1

12
MMN∂MMKL∂NMKL −

1

2
MMN∂MMKL∂KMLN +

1

2
∂MMMN∂N ln|g|

+
1

4
MMN (∂Mgµν∂Ng

µν + ∂M ln|g|∂N ln|g|)

= ±

(
1

8
macmbd∂abmef∂cdm

ef +
1

2
macmbd∂abm

ef∂ecmdf +
1

2
∂abm

ac∂cdm
bd

+
1

2
mac∂abm

bd∂cd ln|g|+1

8
macmbd(∂abg

µν∂cdgµν + ∂ab ln|g|∂cd ln|g|)

)
(5.6)

and the Chern-Simons term is described in [65].

5.1 Fixing the coefficients of the SL(5) ExFT

We have already seen a truncated form of this theory in the current literature, and described the
tensor hierarchy fields in deep details. Recall we useM,N = 1, . . . 5 to denote five-dimensional funda-
mental indices, while the R1 representation of generalised vectors is the 10-dimensional antisymmetric
representation, for which we write a 10-dimensional index M = [MN ] as an antisymmetric pair of
five-dimensional indices.

The field content of the SL(5) exceptional field theory is{
gµν ,MMN ,PQ,AµMN ,BµνM, CµνρM, . . .

}
. (5.7)

Here we have the 7-dimensional metric gµν , the generalised metric MMN ,PQ parametrizing the coset
SL(5)/SO(5), plus the tensor hierarchy fields: the one-form AµMN , two-form BµνM, and CµνρM. The
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corresponding field strengths of the tensor hierarchy fields are FµνMN , HµνρM and JµνρσM. The four-
form DµνρσMN appears in the definition of JµνρσM, but drops out of the field equations. Hence this
does not describe additional physical degrees of freedom.

All these fields are taken to depend on the 7-dimensional coordinates, xµ, and the 10-dimensional
extended coordinates, Y M . The coordinate dependence of the fields on the latter is subject to the
physical section condition which picks a subspace of the exceptional extended space. This section
condition can be formulated in terms of the SL(5) invariant εMNPQK

εMNPQK∂MN∂PQΦ = 0 , εMNPQK∂MNΦ∂PQΨ = 0 , (5.8)

where Φ and Ψ denote any field or gauge parameter.
It is convenient to decompose the generalised metric as

MMN ,PQ = mMPmQN −mMQmPN , (5.9)

where mMN is symmetric and has unit determinant. We denote its inverse by mMN .
Then we can write the action ?? specialised to SL(5) as

SSL(5) =

∫
d7x dY

√
|g|
(
Rext(g) +

1

4
DµmMNDµmMN

− 1

8
mMPmNQFµνMNFµνPQ −

1

12
mMNHµνρMHµνρ

N

+ Lint(m, g) +
√
|g|
−1
Ltop

)
.

(5.10)

In this case, the internal Lagrangian or potential can be expressed as

Lint(m, g) =
1

8
mMPmNQ∂MNmKL∂PQm

KL +
1

2
mMPmNQ∂MNm

KL∂KPmQL

+
1

2
∂MNm

MP∂PQm
NQ +

1

2
mMP∂MNm

NQ∂PQ ln|g|

+
1

8
mMPmNQ(∂MN g

µν∂PQgµν + ∂MN ln|g|∂PQ ln|g|) .

(5.11)

It can be explicitly checked that this is a scalar under generalised diffeomorphisms. (This is the direct
generalisation of the miniature SL(5) ExFT we wrote down in 2.14, with the scalar ∆ there replaced
by the full 7-dimensional metric gµν here.)

The topological term is best represented by writing it in terms of an integral over an auxiliary
8-dimensional spacetime:

Stop = κ

∫
d8x dY εµ1...µ8

(
1

4
∂̂Jµ1...µ4 • Jµ5...µ8 − 4Fµ1µ2 • (Hµ3µ4µ5 • Hµ6µ7µ8)

)
, (5.12)

where the coefficients have been chosen so that its variation is a total derivative

δStop = 2κ

∫
d8x dY εµ1...µ8 Dµ1

(
− 4δAµ2 • (Hµ3µ4µ5 • Hµ6µ7µ8)

− 12Fµ2µ3 • (∆Bµ4µ5 • Hµ6µ7µ8)

+ (∂̂∆Cµ2µ3µ4) • Jµ5...µ8

)
,

(5.13)

and coefficient κ is determined to be
κ =

1

12 · 4!
. (5.14)
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In 5.1, we demonstrate this by requiring invariance under 7-dimensional diffeomorphisms.
Kinetic terms are included for the generalised metric and the gauge fields Aµ and Bµν . On the other

hand, the field strength Jµνρσ of the gauge field Cµνρ only appears in the topological term. This gauge
field also appears in the field strength Hµνρ. We can find its equation of motion:

∂NM

(√
|g|mMPHµνρ

P − 12κεµνρσ1...σ4Jσ1...σ4

M
)

= 0 . (5.15)

This implies a duality relation between the gauge field Cµνρ and the gauge field Bµν .
Finally, note that although the four-form DµνρσMN appears in the definition of JµνρσM, it does so in

the form ∂̂Dµνρσ and consequently drops out of the variation 11.9, as JµνρσM only appears accompanied
by ∂̂. Specifically, we can integrate by parts and use nilpotency of ∂̂ to see this.

We will give a sense of the type of calculation involved in verifying the invariance of the ExFT
invariance under n-dimensional diffeomorphisms, and how this fixes the coefficients in the action. We
will work with the case of SL(5) that we described. We start with the topological term written as an
integral over one dimension higher is:

Stop = κ

∫
d8x dY εµ1...µ8

(
1

4
∂̂Jµ1...µ4 • Jµ5...µ8 − 4Fµ1µ2 • (Hµ3µ4µ5 • Hµ6µ7µ8)

)
(5.16)

where the coefficients have been chosen so that its variation is a total derivative:

δStop = 2κ

∫
d8x dY εµ1...µ8 Dµ1

(
− 4δAµ2 • (Hµ3µ4µ5 • Hµ6µ7µ8)

− 12Fµ2µ3 • (∆Bµ4µ5 • Hµ6µ7µ8)

+ (∂̂∆Cµ2µ3µ4) • Jµ5...µ8

)
.

(5.17)

Using the definition of •, this is:

δStop = 2κ

∫
d8x dY εµ1...µ8 Dµ1

(
+ 2δAµ2

MNHµ3µ4µ5MHµ6µ7µ8N

+ 6Fµ2µ3

MN∆Bµ4µ5MHµ6µ7µ8N

+ ∂NM∆Cµ2µ3µ4

NJµ5...µ8

M
)
.

(5.18)

The kinetic term for the one- and two-forms are

S1 = −1

8

∫
d7x dY

√
|g|mMPmNQFµνMNFµνPQ , (5.19)

S2 = − 1

12

∫
d7x dY

√
|g|mMNHµνρMHµνρ

N . (5.20)

Recall that

δFµνMN = 2D[µδAν]
MN +

1

2
εMNPQK∂PQ∆BµνK ,

δHµνρM = 3D[µ∆Bνρ]M −
3

4
εMNPQKδA[µ

NPFνρ]
QK + ∂NM∆CµνρN ,

(5.21)

and hence the field equation for Cµνρ is

∂NM

(
1

6

√
|g|mMPHµνρ

P − 2κεµνρσ1...σ4Jσ1...σ4

M
)

= 0 . (5.22)
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Under external diffeomorphisms, we take

δξAµMN = ξσFσµMN +mMPmNQgµν∂PQξ
ν ,

∆ξBµνM = ξσHσµνM ,

∆ξCµνρM = − 1

12 · 4! ·3! ·κ
√
|g|ξσεσµνρλ1λ2λ3m

MNHλ1λ2λ3
N .

(5.23)

The complete variation of the topological term is then:

δξStop = 2κ

∫
d8x dY εµ1...µ7

(
+ 2ξσFσµ1

MNHµ2µ3µ4MHµ5µ6µ7N

+ 2mMPmNQgµ1σ∂PQξ
σHµ2µ3µ4MHµ5µ6µ7N

+ 6ξσFµ1µ2

MNHσµ3µ4MHµ5µ6µ7N

)
+

1

6

∫
d8x dY ∂NM

(√
|g|ξµmNPHνρσ

P

)
JµνρσM .

(5.24)

The first and third lines here cancel via the Schouten identity. For the second line, we write

εµ1...µ7gµ1σ∂PQξ
σHµ2µ3µ4MHµ5µ6µ7N = −|g|εσλ1...λ6∂PQξ

σHλ1λ2λ3
MHλ4λ5λ6

N . (5.25)

Then we integrate by parts to obtain the final expression

δξStop = 8κ

∫
d8x dY

√
|g|ξσεσµ1...µ6∂PQ

(√
|g|mMPHµ1µ2µ3

M

)
mNQHµ4µ5µ6

N

+
1

6

∫
d8x dY ∂NM

(√
|g|ξµmNPHνρσ

P

)
JµνρσM .

(5.26)

Next, we consider

δξHµνρM = LξHµνρM

− 3

4
εMNPQKm

NN ′mPP
′
gσ[µ|∂N ′P ′ξ

σF|νρ]
QK

− ξσ∂MNJσµνρN −
1

12 · 4! ·3! ·κ
∂PM

(√
|g|ξσεσµνρλ1λ2λ3m

PQHλ1λ2λ3
Q

) (5.27)

after using the Bianchi identity for HµνρM to simplify the expression. The final two lines can be viewed
as the anomalous variation of this field strength under the 7-dimensional diffeomorphisms. The very
final line gives:

δanom
ξ S2 ⊃

∫
d7x dY

√
|g|1

6
mMNHµνρ

Mξ
σ∂NPJσµνρP

+
1

6

1

12 · 4! ·3! ·κ

∫
d7x dY ∂PM

(√
|g|mMNHµνρ

N

)√
|g|ξσεσµνρλ1λ2λ3m

PQHλ1λ2λ3
Q

(5.28)

after integrating by parts. The choice of sign is immaterial and we pick the plus sign. Next, we can
consider

δξFµνMN = LξFµνMN +
1

2
εMNPQK∂PQξ

σHσµνK + 2D[µ|(m
MPmNQ∂KLξ

σg|ν]σ) . (5.29)

It is straightforward to check that the contribution to the variation of the kinetic term for this field
strength arising from the second term here cancels against the remaining piece coming from the anoma-
lous variation of HµνρM, i.e. the second line in 5.27. This fixes the coefficients of L1 and L2 relative

23



to each other. With further work, the third term here can be shown to cancel against a term coming
from the variation of the Einstein-Hilbert term, Rext(g), for the metric gµν . This fixes the relative
coefficients of L1 and Rext(g). Finally, further anomalous variations from Rext(g), the kinetic term for
the generalised metric and the internal part of the Lagrangian all conspire to cancel against each other
and fix all relative coefficients (up to the overall scale). We refer the diligent reader to the original
literature to check the precise details.

5.2 M-theory parametrisations

The M-theory solution of the section condition is based on splitting a = (i, 5), where i is a four-
dimensional index, and choosing the physical coordinates to be Y i ≡ Y i5 and the dual coordinates to
be Y ij, with the section condition solution then provided by ∂i 6= 0, ∂ij = 0. Generalised diffeomor-
phisms are generated by Λab = (Λi5,Λij). The vector Λi is then found to generate four-dimensional
diffeomorphisms, while Λij = 1

2
ηijklλkl produces gauge transformations of the three-form. This al-

lows us to parametrise the generalised metric in terms of the internal spacetime metric, φij, and the
internal components of the three-form, Cijk. It is convenient to turn Cijk into a vector by defining
vi ≡ 1

3!
εijklCjkl. Then we have:

mab =

(
λ|φ|−2/5φij −λ|φ|1/10vi
−λ|φ|1/10vj |φ|3/5((−1)t + λvkvk)

)
. (5.30)

This parametrisation incorporates two sign factors. The first of these is (−1)t, which depends on the
number of timelike directions t in φij. This appears in order that the generalised metric parametrise
the correct coset SL(5)/SO(2, 3) rather than SL(5)/SO(5), and ensures that the determinant is +1.
Such timelike variants of the classic G/H cosets were analysed. The second sign factor is denoted by
λ, and controls the sign of the kinetic term of the three-form, providing an ExFT parametrisation for
exotic variants of 11-dimensional supergravity related to timelike dualities. The parametrisation of the
big generalised metric that we use corresponds to

Mab,cd = λ(−1)t(macmbd −madmbc). (5.31)

Studying the gauge transformations of the ExFT gauge fields in this solution of the section condition,
we find that the obvious components of the 11-dimensional three-form can be identified with certain
components of the ExFT gauge fields, schematically Aµij = 1

2
ηijklCµkl, Bµνi = Cµνi, Cµνρ = Cµνρ. Apart

from the obvious identification Aµi = Aµ
i, the other components of the gauge fields are related to the

dual 11-dimensional six-form, and can be eliminated from the ExFT action using duality relations. As
a result, one finds by explicit calculation that the ExFT action is equivalent to that of 11-dimensional
supergravity:

S =

∫
d11X

√
|ĝ|

(
R(ĝ)− λ 1

48
F µ̂ν̂ρ̂σ̂Fµ̂ν̂ρ̂σ̂ +

1√
|ĝ|
LCS

)
. (5.32)

In general we see that λ = +1 corresponds to the usual relative sign between the Ricci scalar and F 2

term, while λ = −1 flips the sign of the F 2 term. The latter variant of supergravity can be thought
of as the low energy effective action of an exotic M-theory, called M− theory, of signature (2, 9) and
containing M2 branes whose worldvolume has Euclidean signature.

We can summarise some of the sign choices appearing in the little generalised metric (5.30), with
reference to figure 2:

• The signature of φij is (0, 4) and λ = +1 so that the signature of mab is (0, 5), and if the external
metric has signature (1, 6) this describes the usual 11-dimensional SUGRA.
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• The signature of φij is (1, 3) and λ = +1 so that the signature of mab is (2, 3), and if the external
metric has signature (0, 7) this describes the usual 11-dimensional SUGRA.

• The signature of φij is (2, 2), and λ = −1 so that the signature of mab is (2, 3), and if the external
metric has signature (0, 7) this describes the unusual 11-dimensional SUGRA with signature (2, 9)
and wrong sign kinetic term, the low energy limit of the M∗ theory (see diagram 2).

• Other choices can correspond to ExFT descriptions of other exotic variants of M-theory.

DFT+ DFT−

IIA++ (IIA)
(1,9)

IIB++ (IIB)
(1,9)

IIB+− (IIB∗)
(1,9)

IIA+− (IIA∗)
(1,9)

x

xt

t

IIB−+ (IIB′)
(1,9)

IIA−+ (IIAE)
(0,10)

IIA−−
(2,8)

IIB−−
(3,7)

. . .

x

t

x t

t x

M+ (M)
(1,10)

M− (M∗)
(2,9)

t x

x t

S

Figure 2: The exotic duality web. Red arrows denote timelike or spacelike reductions from 11 to
10 dimensions. Black arrows denote T-dualities. The dashed arrow in the centre denotes S-duality.
All these theories are described by choosing different parametrisations of exceptional field theory.
The superscript IIA/B±± denotes whether, firstly, fundamental strings and, secondly, D-branes have
Lorentzian or Euclidean worldvolumes, and hence determines which gauge fields have wrong sign kinetic
terms. Similarly M± denotes whether M2 branes have Lorentzian or Euclidean worldvolumes. There
are additional versions of these theories with more exotic signatures.

5.3 IIB parametrisations

For the IIB solution of the section condition we split a = (i, α) where i a three-dimensional index,
and α is a two-dimensional index associated to the unbroken SL(2) S-duality symmetry of IIB. The
physical coordinates are then the three coordinates Y ij. It can be convenient to view the i index as
being naturally down, i.e. Y M = (Yij, Yi

α, Y αβ), such that the physical coordinates can be defined to
have the usual index position via Y i = ηijkYjk.

The generalised diffeomorphism parameter Λab = (ηijkΛ
k,Λi

α,Λαβ) now produces three-dimensional
diffeomorphisms generated by Λi, gauge transformations Λi

α of the two-form doublet, and gauge trans-
formations Λαβ ≡ εαβ 1

3!
ηijkλijk of the four-form singlet.

The generalised metric can be parametrised in terms of the internal metric, φij, the two two-forms
(Cij, Bij) = Cij

α (which we again write as vectors, viα ≡ 1
2
εijkCjk

α), and a two-by-two matrix, Hαβ,
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containing the dilaton Φ and RR zero-form C0. We write

mab =

(
|φ|3/5((−1)tσFσDφ

ij +Hγδv
iγvjδ) |φ|1/10Hαγv

iγ

|φ|1/10Hβγv
jγ |φ|−2/5Hαβ

)
, (5.33)

Hαβ = σF e
Φ

(
1 C0

C0 σFσDe
−2Φ + C2

0

)
. (5.34)

Again, we allow for a general distribution of sign factors when the coset is SL(5)/SO(2, 3). Here the
signs σi = ± dictate whether the parametrisation corresponds to a set of variants of type IIB, denoted
IIBσF σD , where IIB++ is the standard IIB, IIB+− is obtained by a timelike T-dualisation of type IIA,
IIB−+ is the S-dual of IIB+− and is a theory where the fundamental strings have Euclidean worldsheet,
and IIB−− is obtained by further T-dualities. The subscript on σF means that the sign corresponds to
the F1 having Lorentzian/Euclidean worldvolume, while that on σD means that the sign corresponds
to D-branes having Lorentzian/Euclidean worldsheets. In this case, the parametrisation of the big
generalised metric that we use corresponds to

Mab,cd = (−1)t(macmbd −madmbc). (5.35)

We also identify the gauge fields such that (schematically) Aµij = ηijkAµ
k, Aµiα = (Cµi, Bµi), Aµαβ =

εαβ 1
3!
ηijkCµijk and similarly for the higher rank fields. Then the SL(5) ExFT dynamics are equivalent

to those following from the type pseudo-IIB action of the form

S =

∫
d10X

√
|ĝ|
(
R(ĝ) +

1

4
ĝµ̂ν̂∂µ̂Hαβ∂ν̂Hαβ − 1

12
σDσFHαβFµ̂ν̂ρ̂

αF µ̂ν̂ρ̂β

− 1

4 · 5!
σDσFFµ̂1...µ̂5F

µ̂1...µ̂5 +
1√
|ĝ|
LCS

)
,

(5.36)

which matches the Einstein frame action exactly for the type IIBσF σD supergravities [56]. We see
that the choice of signs σF , σD will determines which kinetic terms come with the wrong sign. When
σF = −1, the NSNS B-field does, while when σD = −1 the RR two-form does.

6 Membrane Newton-Cartan Fundamental Limit and Exotic
Eleven Dimensional Supergravity

6.1 Setting up the expansion

Metric We start by writing the 11-dimensional metric and its inverse as

ĝµν = c2τµν + c−1Hµν , ĝµν = cHµν + c−2τµν . (6.1)

We can view this simply as a field redefinition which introduces the 11-dimensional Newton-Cartan
variables alongside the (dimensionless) parameter c. We will seek to send c to infinity and interpret the
result as a non-relativistic limit. In principle, we can also think of this ansatz as containing the first
terms in an infinite expansion in c−3, and we will occasionally allow such a perspective to influence our
presentation. However, we leave the development of the full non-relativistic expansion to future work.
To see that the field redefinition (6.1) makes sense in Newton-Cartan terms we look at the condition
δνµ = ĝµρĝ

ρν , which gives at order c3, c0 and c−3 respectively the following three conditions:

τµρH
ρν = 0 , τµρτ

ρν +HµρH
ρν = δνµ , Hµρτ

ρν = 0 . (6.2)
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We view these as the defining conditions for τµν , viewed as a longitudinal Newton-Cartan metric (of
Lorentzian signature), and Hµν , viewed as the corresponding orthogonal transverse Newton-Cartan
metric (of Euclidean signature). Letting A = 0, 1, 2 and a = 1, . . . 8 denote longitudinal and transverse
flat indices, respectively, we can introduce projective vielbeins such that

τµν ≡ τµ
Aτν

BηAB , τµν ≡ τµAτ
ν
Bη

AB , τµAτµ
B = δBA , (6.3)

Hµν ≡ hµah
ν
bδ
ab , Hµν ≡ haµh

b
νδab , hµah

b
µ = δba , (6.4)

and hence obeying the Newton-Cartan completeness relations following from (6.2). Here ηAB is the flat
three-dimensional Minkowski metric and δab is the flat Euclidean 8-dimensional metric. We can then
compute the determinant of the 11-dimensional metric:

det ĝµν = −c−2Ω2 , Ω2 ≡ − 1
3!8!
εµ1...µ11εν1...ν11τµ1ν1τµ2ν2τµ3ν3Hµ4ν4 . . . Hµ11ν11 , (6.5)

where εµ1...µ11 denotes the 11-dimensional Levi-Civita symbol. Hence
√
−ĝ = c−1Ω and it is Ω which

will be used as the measure factor in the non-relativistic action. In terms of the vielbeins, we can write

Ω =
∣∣∣ 1

3!8!
εµνρσ1...σ8εABCεa1...a8τµ

Aτν
Bτρ

Cha1
σ1 . . . h

a8
σ8

∣∣∣ (6.6)

and note that
∂µ ln Ω = τ νA∂µτν

A + hνa∂µh
a
ν . (6.7)

We can obtain further useful identities by substituting the expressions (6.1) into contractions of the
Levi-Civita symbol and the metric. One that we will use later is

n!H [µ1|ν1 . . . H |µn]νn = −εµ1...µnλ1...λ11−nεν1...νnσ1...Ω2

τλ1σ1 . . . τλ3σ3Hλ4σ4 . . . Hλ11−nσ11−n . (6.8)

Three-form For the three-form, let

Ĉ3 = C3 − 1
6
c3εABCτ

A ∧ τB ∧ τC + c−3C̃3 , (6.9)

so that
F̂4 = F4 − 1

2
c3εABCdτ

A ∧ τB ∧ τC + c−3F̃4 , (6.10)

where
F4 ≡ dC3 , F̃4 ≡ dC̃3 . (6.11)

Although C̃3 is subleading, it will explicitly appear in the action and dynamics of the non-relativistic
limit. Its equation of motion will impose a self-duality constraint on F4, and we will be able to identify
a certain projection of its field strength with the totally longitudinal components of the dual seven-form
field strength. We can therefore interpret the subleading part of Ĉ3 as being ‘dual’ to the finite part.
This is clearly a general fact: the Hodge star itself has an expansion in powers of c and so inevitably
mixes up the terms at different powers of c in any p-form it acts on. What is non-trivial is that the
Chern-Simons term of the 11-dimensional theory will lead to both C3 and C̃3 playing a role in the
non-relativistic limit.

6.2 Expanding the action

The action for the eleven-dimensional metric and three-form is

S =

∫
d11x

(√
|ĝ|
[
R̂(ĝ)− 1

48
F̂ µνρσF̂µνρσ

]
+ 1

1442 ε
µ1...µ11F̂µ1...µ4F̂µ5...µ8Ĉµ9µ10µ11

)
. (6.12)

Here F̂4 = dĈ3. In form notation the Chern-Simons term is 1
6
F̂4 ∧ F̂4 ∧ Ĉ3, the equation of motion of

the three-form is d?̂F̂4 = 1
2
F̂4 ∧ F̂4 and its Bianchi identity is dF̂4 = 0. The Hodge dual field strength

is F̂7 = ?̂F̂4, which obeys the Bianchi identity dF̂7 = 1
2
F̂4 ∧ F̂4 and the equation of motion d?̂F̂7 = 0.
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Chern-Simons term We start with the expansion of the Chern-Simons term. Leaving wedge prod-
ucts implicit, we can simply compute

1
6
F̂4F̂4Ĉ3 = 1

6
F4F4C3 − 1

6
(3c3F4F4 + 6F4F̃4)1

6
εABCτ

AτBτC

− 1
3
d
(
c3F4C3

1
6
εABCτ

AτBτC + 1
6
εABCτ

AτBτC(F4C̃3 + C3F̃4)
)

+O(c−3) .
(6.13)

We drop the total derivative.

Kinetic term for three-form First, let’s write the component expression

F̂µ1µ2µ3µ4 = −6c3T[µ1µ2

Aτµ3

Bτµ4]
CεABC + Fµ1µ2µ3µ4 + c−3F̃µ1µ2µ3µ4 (6.14)

where we introduce the Newton-Cartan torsion

Tµν
A ≡ 2∂[µτν]

A . (6.15)

Any term involving three Hµν contracting the first term in (6.14) vanishes as one Hµν must necessarily
contract a τµA. As a result,√

|ĝ|ĝµ1µ4 . . . ĝµ4ν4F̂µ1...µ4F̂ν1...ν4

= Ω
(
c3
(
Hµ1ν1Hµ2ν2Hµ3ν3Hµ4ν4Fµ1µ2µ3µ4Fν1ν2ν3ν4 − 12Hµ1ν1Hµ2ν2Tµ1µ2

ATν1ν2

BηAB
)

− 24HµνTµρ
ATνσ

Bτ ρAτ
σ
B − 12Hµ1ν1Hµ2ν2Fµ1µ2µ3µ4Tν1ν2

Aτµ3Bτµ4CεABC

+ 4Hµ1ν1Hµ2ν2Hµ3ν3τµ4ν4Fµ1µ2µ3µ4Fν1ν2ν3ν4

+ 2Hµ1ν1Hµ2ν2Hµ3ν3Hµ4ν4Fµ1µ2µ3µ4F̃ν1ν2ν3ν4

)
+O(c−3) .

(6.16)

Kinetic term/Chern-Simons cancellations and self-duality We now examine the O(c3) terms
in (6.13) and (6.16) which involve a field strength F4, as well as the O(c0) terms involving the subleading
F̃4. These cannot possibly be cancelled by a contribution from the expansion of the Ricci scalar. The
relevant terms are:

− 1
2·4!

ΩHµ1ν1Hµ2ν2Hµ3ν3Hµ4ν4Fµ1µ2µ3µ4(c3Fν1ν2ν3ν4 + 2F̃ν1ν2ν3ν4)

− 1
2·4!4!3!

εµ1......µ11Fµ1µ2µ3µ4(c3Fµ5µ6µ7µ8 + 2F̃µ5µ6µ7µ8)εABCτµ9

Aτµ10

Bτµ11

C
(6.17)

To cancel the terms at order c3, we are led to require the following constraint:

ΩHµ1ν1Hµ2ν2Hµ3ν3Hµ4ν4Fν1ν2ν3ν4 = − 1
4!3!
εµ1......µ11Fµ5µ6µ7µ8εABCτµ9

Aτµ10

Bτµ11

C . (6.18)

This says that the totally transverse part of Fµνρσ is self-dual (or anti-self-dual). This is self-consistent
thanks to current solutions. We will refer to this as the self-duality constraint.

Three-form equation of motion As a sanity check that requiring the constraint (6.18) is sensible
and necessary, let us at this point also take the limit at the level of the equation of motion of the
three-form gauge field. We will revisit the equations of motion, including that of the metric, in more
detail in section 7. For the three-form, we have originally:

∂σ(
√
|ĝ|ĝµλ1 ĝνλ2 ĝρλ3 ĝσλ4F̂λ1...λ4) = 1

2·4!4!
εµνρσ1...σ8F̂σ1...σ4F̂σ5...σ8 . (6.19)

Inserting the expansion, one has firstly at O(c3) that

∂σ
(
ΩHµλ1Hνλ2Hρλ3Hσλ4Fλ1...λ4

)
= − 1

3!4!
εµνρσσ1...σ7∂σ(Fσ1...σ4εABCτσ5

Aτσ6

Bτσ7

C) , (6.20)
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which is the duality relation (6.18) under a derivative.
At O(c0) we have the finite equation of motion

∂σ

(
Ω(4H [µ|λ1H |ν|λ2H |ρ|λ3τ |σ]λ4Fλ1...λ4 − 6H [µ|λ1H |ν|λ2τ |ρ|Bτ |σ]CTλ1λ2

AεABC

+Hµλ1Hνλ2Hρλ3Hσλ4F̃λ1...λ4)
)

= 1
2·4!4!

εµνρσ1...σ8(Fσ1...σ4Fσ5...σ8 − 12εABCTσ1σ2

Aτσ3

Bτσ4

CF̃σ5...σ8) .

(6.21)

This will be reproduced from the action that we find below.

Ricci scalar Now we come to the Ricci scalar. A very quick way to take the limit is to start with
the explicit expression for the Ricci scalar in terms of the metric and its derivatives:

R̂ =
1

4
ĝµν∂µĝρσ∂ν ĝ

ρσ − 1

2
ĝµν∂ν ĝ

ρσ∂ρĝµσ

− 1

4
ĝµν∂µ ln ĝ ∂ν ln ĝ − ĝµν∂µ∂ν ln ĝ − ∂µ ln ĝ ∂ν ĝ

µν − ∂µ∂ν ĝµν .
(6.22)

Calculating the expansion is trivial. One has R̂ = c4R(4) + cR(0) +O(c−2) with

R(4) =
1

4
Hµν∂νH

ρσ∂µτρσ −
1

2
Hµν∂νH

ρσ∂ρτµσ ,

R(0) =
1

4
Hµν(∂µτρσ∂ντ

ρσ + ∂µHρσ∂νH
ρσ) +

1

4
τµν∂µτρσ∂νH

ρσ

− 1

2
Hµν∂ντ

ρσ∂ρτµσ −
1

2
Hµν∂νH

ρσ∂ρHµσ −
1

2
τµν∂νH

ρσ∂ρτµσ

−Hµν∂µ ln Ω ∂ν ln Ω− 2Hµν∂µ∂ν ln Ω− 2∂µ ln Ω ∂νH
µν − ∂µ∂νHµν .

(6.23)

Recall that the measure
√
−ĝ introduces a further power of c−1. The singular piece can be easily

rewritten as

R(4) = −1
2
HµνHρσ(∂µτρ

A∂ντσ
B − ∂ρτµA∂ντσB)ηAB = −1

4
HµνHρσTµρ

ATνσ
BηAB . (6.24)

This cancels exactly the remaining singular term appearing in the expansion (6.16) of the kinetic term
for the three-form. An entirely similar cancellation appeared in the NSNS sector expansion of [27],
and as noted there is reminiscent of what happens when taking the Gomis-Ooguri limit on the string
worldsheet. In the conclusions in section 15 we discuss the comparison with this limit in more detail.

Action and constraint Combining (6.13), (6.16) and (6.23) we obtain the expansion of the 11-
dimensional SUGRA action in the form S = c3S(3) + c0S(0) + . . . . The singular part is:

S(3) = −
∫

d11x 1
2·4!
Fµ1...µ4

(
ΩHµ1ν1 . . . Hµ4ν4 + 1

4!3!
εµ1...µ4ν1...ν7εABCτν5

Aτν6

Bτν7

C
)
Fν1...ν4 , (6.25)

and in order to have a good c→∞ limit, we impose the constraint

ΩHµ1ν1Hµ2ν2Hµ3ν3Hµ4ν4Fν1ν2ν3ν4 = − 1
4!3!
εµ1......µ11Fµ5µ6µ7µ8εABCτµ9

Aτµ10

Bτµ11

C , (6.26)
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to ensure that S(3) vanishes. The finite part of the supergravity action is:

S(0) =

∫
d11xΩ

(
R(0) + 1

2
HµνTµρ

ATνσ
Bτ ρAτ

σ
B

− 1
12
Hµ1ν1Hµ2ν2Hµ3ν3τµ4ν4Fµ1µ2µ3µ4Fν1ν2ν3ν4

+ 1
4
Hµ1ν1Hµ2ν2Fµ1...µ4εABCTν1ν2

Aτµ3Bτµ4C

− 1
·4!
F̃ν1ν2ν3ν4(Hµ1ν1Hµ2ν2Hµ3ν3Hµ4ν4Fµ1µ2µ3µ4

+ 1
4!3!Ω

εν1ν2ν3ν4µ1...µ7Fµ1µ2µ3µ4εABCτµ5

Aτµ6

Bτµ7

C)
)

+ 1
6
F4 ∧ F4 ∧ C3 ,

(6.27)

where R(0) is as defined in (6.23). The equation of motion of Cµνρ gives exactly (6.21), and we will
discuss the equations of motion of the Newton-Cartan fields in detail in section 7. The equation of
motion of C̃µνρ is (6.20), giving the constraint under a derivative. Alternatively if we were just to take
the action (6.27) at face value, forgetting about its origin via an expansion of the three-form, we could
make the choice to view F̃µνρσ as an independent field, serving as a Lagrange multiplier imposing the
constraint in its form (6.26).

Symmetries The action is diffeomorphism invariant (as follows from the covariant rewriting we carry
out below), as well as gauge invariant under δC3 = dλ2, δC̃3 = dλ̃2. The vielbeins haµ and τAµ transform
under SO(8) and SO(1, 2) rotational symmetries respectively, which are also symmetries of the action.
The non-relativistic theory is also invariant under Galilean boosts and a dilatation symmetry.

The Galilean boosts mix the longitudinal and transverse degrees of freedom. The parameter for such
a boost is denoted Λa

A. Letting Λµ
A ≡ haµΛa

A such that τµAΛµ
B = 0, we can give the (infinitesimal)

action of these symmetries as

δΛHµν = 2Λ(µ
Aτν)A , δΛτ

µ
A = −HµνΛνA , δΛCµνρ = −3εABCΛ[µ

Aτν
Bτρ]

C . (6.28)

The action S(0) is invariant under these transformations on using the self-duality constraint. One way
for the action to be exactly invariant would be to treat F̃µνρσ as an independent field transforming as
δΛF̃µνρσ = −4Λ[µ

AFνρσ]λτ
λ
A, or to have C̃µνρ transform in a way leading to this transformation.

The dilatations are meanwhile induced by the expansion in powers of c, with the dilatation weight
of each field equal to the power of c which accompanies it in the expansion. The (infinitesimal) action
of dilatations is hence:

δλH
µν = +λHµν , δλHµν = −λHµν , δλτ

µ
A = −λτµA , δλτµ

A = +λτµ
A , δλCµνρ = 0 . (6.29)

Note δΩ = −λΩ. For λ coordinate dependent this is a symmetry of the action S(0) on using the self-
duality constraint (6.26). If we treat F̃µνρσ as an independent field transforming as δλF̃µνρσ = −3λF̃µνρσ,
then the action S(0) is exactly invariant. We will explicitly verify the invariance of the action and study
these symmetries in more detail in section 7.

Newton-Cartan connections and covariant rewriting The way we obtained the action (6.27)
was by a straightforward computation at the level of the metric and three-form. To better understand
the result, we rewrite the action in a covariant way by introducing the following connection

Γρµν = τ ρA∂µτν
A +

1

2
Hρσ (∂µHσν + ∂νHµσ − ∂σHµν) , (6.30)

whose covariant derivative we denote by∇µ. This satisfies the following metric compatibility conditions:

∇ρH
µν = 0 = ∇ρτµ

A , (6.31)
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though it is not the unique solution. The antisymmetric component of (6.30) is the torsion (6.15):

Γρ[µν] =
1

2
τ ρATµν

A . (6.32)

It is also useful to define the ‘acceleration’ and its trace

aµ
AB ≡ −τ ρATBρµ , aµ ≡ aµ

ABηAB , (6.33)

as well as its symmetric traceless component

aµ
{AB} ≡ aµ

(AB) − 1

dL
ηABaµ , (6.34)

where dL is the dimension of the longitudinal space (which is dL = 3 here, but we will also use this
notation in the reduction to the dL = 2 case of SNC in section 8.1). The final tensor that will appear
is the extrinsic curvature defined by

KµνA =
1

2
LτρAHµν , KA ≡ HµνKµνA , (6.35)

and obeying the following useful identities

τµ(AKµνB) = 0, ∇µτ
νA = HνρKµρA . (6.36)

Finally, let’s introduce some notation to make the expressions more compact. Given an arbitrary tensor
Mµν carrying lower indices, we will employ for convenience the following short-hand notation:

Mµν ≡ HµρHνσMρσ , MAB ≡ τµAτ
ν
BMµν , ∇ρMAB ≡ ∇ρ (τµAτ

ν
BMµν) , (6.37)

and similarly for tensors of arbitrary rank. The meaning of raised indices should then hopefully clear
from context – note that e.g. the field strengths, Newton-Cartan torsion and covariant derivative are
all naturally defined with lower curved indices so when they appear instead with raised curved or
longitudinal flat indices this uses the above notation.

The action can then be written in terms of these manifestly covariant quantities as

S =

∫
d11xΩ

(
L+ LF̃ + Ω−1Ltop

)
, (6.38)

with

L = R− aµABaµ(AB) +
3

2
aµaµ −

1

12
F µνρAFµνρA +

1

4
εABCF

ABµνTµν
C ,

LF̃ = − 1

4!
F̃ν1...ν4

(
F ν1...ν4 +

1

4! 3! Ω
εν1...ν4µ1...µ7Fµ1...µ4εABCτµ5

Aτµ6

Bτµ7

C

)
,

Ltop =
1

6
F4 ∧ F4 ∧ C3 =

1

6

1

3! 4!2
εµ1...µ11Fµ1...µ4Fµ5...µ8Cµ9...µ11 ,

(6.39)

where the Ricci scalar R is defined in terms of the usual Riemann curvature tensor of the connection
(6.30) via

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ , R = Rρ

µρνH
µν . (6.40)
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Dual field strength

The appearance of the two field strengths F4 and F̃4 in the finite action (6.27) may seem rather exotic.
In fact, we can relate the latter to components of the dual seven-form field strength, revealing that the
non-relativistic action involves a partially democratic treatment of what are originally dual degrees of
freedom. In 11-dimensional SUGRA, we have

F̂7 = dĈ6 + 1
2
Ĉ3 ∧ F̂4 , F̂7 = ?̂F̂4 . (6.41)

With our expansion, we can compute ?̂F̂4 in components:

(?̂F̂4)µ1...µ7 = Ωεµ1...µ7ν1...ν4(c3Hν1λ1 . . . Hν4λ4Fρ1...ρ4 +Hν1λ1 . . . Hν4λ4F̃λ1...λ4

+ 4Hν1λ1 . . . Hν3λ3τ ν4λ4Fλ1...λ4

− 6Hν1λ1Hν2λ2Tλ1λ2

Aτ ν3Bτ ν4CεABC) +O(c−3) .

(6.42)

We then search for an expansion of Ĉ6 that can reproduce the singular term and lead to a sensible
definition of the dual six-form in the non-relativistic theory. This is provided by

Ĉ6 = −1
2
c3C3 ∧ 1

6
εABCτ

A ∧ τB ∧ τC + C6 − 1
2
C̃3 ∧ 1

6
εABCτ

A ∧ τB ∧ τC +O(c−3) , (6.43)

leading to

F̂7 = −1
6
c3εABCτ

A ∧ τB ∧ τC ∧ F4 + dC6 + 1
2
C3 ∧ F4 − 1

6
εABCτ

A ∧ τB ∧ τC ∧ F̃4 +O(c−3) . (6.44)

The singular piece in (6.44) agrees with that in (6.42) on using the self-duality constraint (6.26) obeyed
by F4. From the finite terms, we can define in the non-relativistic limit the quantity F7 ≡ dC6+ 1

2
C3∧F4

which obeys again dF7 = 1
2
F4 ∧ F4. We could also define this quantity directly in the non-relativistic

theory after taking the limit by starting with the equation of motion (6.21) of the gauge field. In
that case, we would define the dual seven-form field strength to be the quantity appearing under the
exterior derivative, including all terms on the left-hand side of (6.21) as well as that involving dτ on
the right-hand side. In components, this means

Fµ1...µ7 = 1
4!

Ωεµ1...µ7ν1...ν4(Hν1λ1 . . . Hν4λ4F̃λ1...λ4 + 4Hν1λ1 . . . Hν3λ3τ ν4λ4Fλ1...λ4

− 6Hν1λ1Hν2λ2Tλ1λ2

Aτ ν3Bτ ν4CεABC

+ 1
4!3!

Ω−1εν1...ν4λ1...λ7εABCτλ1

Aτλ2

Bτλ3

CF̃λ4...λ7) .

(6.45)

Now, we can take the totally longitudinal contraction

Fµ1...µ4σ1σ2σ3τ
σ1
Aτ

σ2
Bτ

σ3
C = 1

4!
Ωεµ1...µ4ν1...ν4σ1σ2σ3τ

σ1
Aτ

σ2
Bτ

σ3
CH

ν1λ1 . . . Hν4λ4F̃λ1...λ4

+ εABCF̃µ1...µ4 .
(6.46)

Using (??), it can be shown that whereas the transverse part of Fµνρσ obeys a self-duality constraint,
the longitudinal part of Fµ1...µ7 obeys an anti-self-duality constraint:

ΩHµ1ν1 . . . Hµ4ν4Fµ1...µ4σ1σ2σ3τ
σ1
Aτ

σ2
Bτ

σ3
C

= + 1
4!3!
εµ1...µ4ν1...µ4λ1...λ3εDEF τλ1

Dτλ2

Eτλ3

FFµ1...µ4σ1σ2σ3τ
σ1
Aτ

σ2
Bτ

σ3
C .

(6.47)

The conclusion is that (6.46) shows that the totally longitudinal part of Fµ1...µ7 can be identified with
the anti-self-dual transverse part of F̃µνρσ. Notice that the longitudinal part of the latter projects
trivially out of the action, and in fact it is exactly the projection as on the right-hand side of (6.46)
which appears in (6.27). Hence we can re-express the terms in the Lagrangian involving F̃µνρσ as

LF̃ = −1
2

1
4!
Fµ1...µ4λ1...λ3

1
6
εABCτλ1

Aτ
λ2
Bτ

λ3
C×

× (Hµ1ν1 . . . Hµ4ν4 + 1
4!3!Ω

εµ1...µ4ν1...ν7εDEF τν5

Dτν6

Eτν7

F )Fν1ν2ν3ν4 .
(6.48)

This appearance of (components of) both the four-form and its dual together in the action is again
reminiscent of exceptional field theory.
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7 Equations of Motion and Symmetries
We have expanded the action, and now we turn our attention to the equations of motion, and the role
played by the non-relativistic dilatation and boost symmetries.

7.1 Equations of motion from expansion

To keep track of the equations of motion at each order, we will consider the result of expanding the
variation of the action. We will explicitly find that this gives the same results as varying the expansion
of the action we considered previously. The reason we take this approach is that it will provide a useful
way to keep track of which parts of the expansion of the eleven-dimensional equations of motion appear
at which order. Recall that we view our non-relativistic limit as arising from a field redefinition, and
we do not consider possible subleading terms which would occur in a true non-relativistic expansion.
That said, we set up the expansion below in a way that would be reminiscent of such an expansion.

The relativistic equations of motion are obtained from the variation of the action (6.12):

δS =

∫
d11x(

√
|ĝ|δĝµνGµν + δĈµνρEµνρ) , (7.1)

where

Gµν = Rµν − 1
12
F̂µρ1...ρ3F̂ν

ρ1...ρ3 − 1
2
ĝµν(R− 1

48
F̂ ρ1...ρ4F̂ρ1...ρ4) ,

Eµνρ = −1
6

(
∂σ(
√
|ĝ|F̂ µνρσ)− 1

2·4!·4!
εµνρσ1...σ8F̂σ1...σ4F̂σ5...σ8

)
.

(7.2)

We consider the non-relativistic expansion of the fields, in the form

ĝµν = cHµν + c−2τµν , ĝµν = c2τµν + c−1Hµν , Ĉµνρ = c3ωµνρ + Cµνρ + c−3C̃µνρ , (7.3)

where ωµνρ = −εABCτµAτνBτρC . Both G and E admit an expansion in powers of c3, with

G = c6G(6) + c3G(3) + c0G(0) + c−3G(−3) + . . . , E = c3E(3) + c0E(0) + c−3E(−3) + . . . . (7.4)

We now re-organise the variation of the action that results from (7.3), by inserting the expressions (7.3)
for the metric and three-form. We choose to consider the variations of τµA and Hµν as independent,
in terms of which

δωµνρ = −ωµνρτDλ δτλD − 3ωλ[µνHρ]κδH
λκ . (7.5)

The general result at order c3n following from (7.1) is that

δS(3n) =

∫
d11x

[
δHµν(ΩG(3n)

µν − 3ωµρσHλνEρσλ(3n−3))

+ δτµA(2τ νAΩG(3n+3)
µν − τAµωρσλEρσλ(3n−3))

+ δCµνρEµνρ(3n) + δC̃µνρEµνρ(3n+3)

]
,

(7.6)

using
√
|ĝ| = Ωc−1. Hence, in general, if we expand the theory up to order 3k, for k ≤ n ≤ 2, the

equations of motion will be

G(3n)
〈µν〉 = 3Hλ〈µων〉ρσΩ−1Eλρσ(3n−3) , 2G(3n+3)

µA = τµAωρσλΩ
−1Eρσλ(3n−3) , Eµνρ(3n) = 0 , (7.7)

with the understanding that G(9) = E (6) = 0. The angle bracket notation takes into account that
the variation of Hµν is constrained by δHµντµ

Aτν
B = 0. We can solve this constraint by letting

δHµν = Hρ(µHρσM
ν)σ such that the naive variation δHµνTµν implies instead the equation of motion

T〈µν〉 = 1
2
(HµρH

ρσT(σν) +HνρH
ρσT(µσ)) (7.8)
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which is symmetric and obeys τµAτ νBT〈µν〉 = 0. Note that the equation of motion for C̃ at each order
is exactly that of C at the previous order.

We should contrast the equations of motion (7.7) with the result of independently expanding G and
E . If we naively set each other of the expansion of the latter to zero, we would find the equations
G(3n) = 0 = E (3n) at any given order. However, in the non-relativistic expansion, treating τµA and Hµν

as independent fields, then equation (7.7) says that we cannot simply expand the relativistic equations
and set each order independently to zero unless we consider the full expansion (potentially infinite if
treating subleading terms). A similar subtlety is the question of which equations of motion we are
meant to expand. For instance, in the relativistic theory both Eµνρ = 0 and gµσgρκgσλEσκλ = 0 are
equivalent, but lead to different truncations to finite order in the 1/c expansion. Here we have made
the choice to expand the equations of motion that appear conjugate to the variations δgµν and δCµνρ.

Let us look for example at the first two orders, c6 and c3. If we simply wanted to expand the
theory up to order c6 we would find the equation

(
G(6) − 3ωE (3)H

)
〈µν〉 = 0, however if we proceed with

expanding up to order c3 we find that the equation for the 3-form tells us that E (3) = 0, so that we can
safely impose the two equations G(6)

〈µν〉 = E (3) = 0 independently.
Matters are further complicated by a number of ‘off-shell’ identities obeyed by the terms appearing

in the expansion of G and E . These identities will feature heavily below, and in fact are crucial for the
consistency and symmetries of the non-relativistic truncation.

To put all these ideas together, we now look in detail at the first orders of the expansion of (7.1).

Terms at O(c6) Here we encounter the leading terms in the expansions of G and E . First of all, we
have

G(6)
µν = 1

2
τµν
(

1
2
TAρ1σ1

TBρ2σ2
ηABH

ρ1σ1Hρ2σ2 + 1
48
Hρ1σ1 . . . Hρ4σ4Fρ1...ρ4Fσ1...σ4

)
(7.9)

which obeys G〈µν〉 = 0 automatically. Hence the δHµν variation at order c6 does not imply an actual
equation of motion. One also has

Eµνρ(3) = −1
6
∂σ
(
ΩHµλ1Hνλ2Hρλ3Hσλ4Fλ1...λ4 + 1

3!4!
εµνρσσ1...σ7Fσ1...σ4εABCτσ5

Aτσ6

Bτσ7

C
)
. (7.10)

This is the self-duality constraint under a derivative. It obeys τµAτνBEµνρ(3) = 0, and so also the δτ
variation at order c6 vanishes identically. This is however necessary for consistency: the expansion
of the action itself started only at order c3, i.e. S(6) ≡ 0. Hence at this order we do not obtain any
equations of motion.

Terms at O(c3) At this order, there was a non-zero S(3) given by (6.25), for which we required the
self-duality constraint (6.26) to set to zero. Let us see how this information is reproduced. First of all,
the variation of C3 coming from (7.6) at this order implies E(3) = 0. The variation of τµA involves a
contribution from E(0), which can be read off from the finite part of the expansion of the three-form
equation of motion, which was (6.21). For convenience, we repeat this here:

Eµνρ(0) = −1
6
∂σ

(
Ω(4H [µ|λ1H |ν|λ2H |ρ|λ3τ |σ]λ4Fλ1...λ4 − 6H [µ|λ1H |ν|λ2τ |ρ|Bτ |σ]CTλ1λ2

AεABC

+Hµλ1Hνλ2Hρλ3Hσλ4F̃λ1...λ4)
)

+ 1
2·3!4!4!

εµνρσ1...σ8(Fσ1...σ4Fσ5...σ8 − 12εABCTσ1σ2

Aτσ3

Bτσ4

CF̃σ5...σ8) .

(7.11)

What one finds then is that

2τ νAΩG(6)
µν − τµAωρσλE (0)ρσλ

= 1
2·4!
τµ
AΩFν1...ν4

(
Hν1ρ1 . . . Hν4ρ4Fρ1...ρ4 + 1

Ω3!4!
εν1...ν4ρ1...ρ7Fρ1...ρ4εABCτρ5

Aτρ6

Bτρ7

C
)
,

(7.12)
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which is proportional to the self-duality constraint. For the terms accompanying the δHµν variation
one finds

δHµν(ΩG(3)
µν − 3ω(µ|ρσHλ|ν)Eρσλ(0) )

= δHµν( 1
4·4!2

εABCHλ1(µτν)
Aτλ2

Bτλ3

CFσ1...σ4Fσ5...σ8ε
λ1...λ3σ1...σ8

− Ω
12
Fµρ1...ρ3Fν

ρ1...ρ3 + Ω
96
HµνF

2)

(7.13)

such that after projecting using (7.8)

ΩG(3)
〈µν〉 − 3ω〈µ|ρσHλ|ν〉Eρσλ(0) = 1

8·4!2
εABCHλ1(µτν)

Aτλ2

Bτλ3

CFσ1...σ4Fσ5...σ8ε
λ1...λ3σ1...σ8

+ Ω
96
HµνF

2 − Ω
12
Hκ(µFν)ρσλF

κρσλ ,
(7.14)

using the obvious shorthand for raised indices and F 2 instead of writing Hµν multiple times. This
exactly reproduces the variation δS(3) of the leading part of the expansion of the action (6.25). Then,
after projecting and using the Schouten identity (7.13) or (7.14) can be shown to again be proportional
to the self-duality constraint (specifically: the time-space projection of the first term combines with the
time-space projection of the third term, and the space-space projection of the second term combines
with the space-space projection of the third term).

Hence the sole equation of motion we obtain at this order is the self-duality constraint. This is
consistent with what we required from the expansion of the action.

Terms at O(c0) We next consider (7.6) with n = 0. First of all, the equation of motion of C indeed
gives E(0), as in (7.11), while that of C̃ gives the constraint in the form E(3). This is exactly what
we obtain from varying the finite action S(0) directly. Note that the longitudinal projection of E(0) in
conjunction with the self-duality constraint implies the equation

1
2
ηABH

µρHνσTµν
ATρσ

B = − 1
48
Hµ1ν1 . . . Hµ4ν4Fµ1...µ4Fν1...ν4 , (7.15)

thereby reproducing the equation we would get by setting G(6) = 0 (compare (7.9)). Hence although
we could not set G(6) = 0 previously, the non-relativistic theory is not missing this equation. Note that
for generic non-vanishing F4, equation (7.15) is incompatible with imposing foliation-type constraints
on the MNC torsion such that the left-hand side vanishes, however if F4 is also restricted to vanish (for
example) one could require such constraints (as is always possible in the NSNS sector case [27]).

Now we turn to the equations of motion following from the variations of τ and H. For simplicity,
we present here the independent equations of motion after projecting onto longitudinal (time) and
transverse (space) components. The temporal and spatial projectors are defined as

(∆T )µ ν = τµAτν
A, (∆S)µ ν = HµρHρν , (∆T )µ ν + (∆S)µ ν = δµν . (7.16)

We start with the equations of motion of τ . The trace of the time projection gives an equation involving
the Ricci scalar:

R = 7
3
∇µaµ + aµ{AB}aµAB + 7

6
a2 + 1

36
FAνρσF

Aνρσ − 1
6
εABCF

ABρσTρσ
C

+ 1
4!
F̃µνρσ

(
F µνρσ + 1

Ω4!3!
εABCε

µνρσλ1...λ7Fλ1...λ4τλ5

Aτλ6

Bτλ7

C
)
.

(7.17)

The traceless part of the time-time projection is:

∇µaµ{AB} + aµaµ{AB} + aµ[C(A]a
µ
{B)D}η

CD

= − 1
12
FA

µνρFBµνρ + ε(A|CDF|B)
CµνTµν

D − ηAB
3

(
− 1

12
FCµνρFCµνρ + εCDEF

µνCDTµν
E
)
.

(7.18)
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The space projection is

∇ρT
µρ
A + aρACT

µρC = 1
6
F µνρσFAνρσ − 1

2
εABCF

µρσBTρσ
C (7.19)

Finally, consider the equations of motion of H. The space-space projection is:

R(µν)−aµABaν{AB} + 1
6

(
aµaν − a2Hµν

)
= τ ρA∇(µT ν)

ρA + 1
6
Hµν∇ρaρ + 1

4
F µρσAF ν

ρσA − 1
36
HµνFAρσλFAρσλ

− 1
2
εABCF

(µ|ρABT |ν)
ρ
C + 1

24
HµνεABCF

ρσABTρσ
C

+ 1
6
F (µ|ρσλF̃ |ν)

ρσλ − 1
48
HµνF ρσλκF̃ρσλκ

+ 1
2
Hµν(−R+ 7

3
∇µaµ + aµ{AB}aµAB + 7

6
a2 + 1

36
FAνρσF

Aνρσ − 1
6
εABCF

ABρσTρσ
C) .

(7.20)

Combining the trace of (7.20) with (7.17) we find that the self-duality constraint (6.26) appears (con-
tracted with F̃µνρσ).

The time-space projection is (with εABC ≡ ηADεDBC)

R(µA)−aµBCaA(BC) + 1
2
aBa

µBA

= 1
4
εABC∇ρF µ

ρ
BC + 1

4
εABCaρF

µρBC + 1
4
εBCDaρ

ABF µρCD

+ 1
4
FABρσF µ

Bρσ + 1
4
εBCDF

ABCρTρ
µD

+ 1
2
aρBA∇ρτ

µ
B − 1

2
∇2τµA − aρ∇ρτ

µA − 1
2
aµBAKB + 1

2
aµKA

− 1
2
∇Ba

µBA +∇Aaµ + 1
2
T µσB∇BτσA + 1

2
∇ρ∇µτ ρA − 1

2
τ ρB∇µaρ

AB

+ 1
6
F (µ

νρσF̃
A)νρσ − 1

4·4!2Ω
εABCτλ2

Bτλ3

CHµκHκλ1Fσ1...σ4F̃σ5...σ8ε
λ1...λ3σ1...σ8 .

(7.21)

We have verified that these are indeed exactly the equations of motions that one gets by varying the
finite part of the action, S(0), given in (6.27).

7.2 Dilatations and a ‘missing’ equation of motion

We already mentioned the existence of a dilatation transformation given by (6.29), whose origin lay
in the expansion in powers of c. There is evidently a freedom to rescale c by some constant while
simultaneously rescaling the component fields such that the eleven-dimensional fields are unchanged.
This rigid dilatation leaves the full action invariant. Hence for an infinitesimal dilatation, with δλc =
−λc, we have the transformations (6.29), and clearly order-by-order for the action we should have

δλS
(6) = 6λS(6) , δλS

(3) = 3λS(3) , δλS
(0) = 0 · λS(0) , δλS

(−3) = −3λS(−3) , . . . (7.22)

Recall that S(6) and δS(6) vanish identically, so the first of these is just 0 = 0.
A powerful consequence of the rigid dilatations is that if we know the equations of motion for the

action S(3k) at a given order k 6= 0 we can immediately write down an action that produces them
(which will agree up to total derivatives with that arising from the expansion). This works by applying
the formula (7.6) for the variation and specialising to the dilatation variation. This is guaranteed to
produce 3kS(3k). This singles out the finite order action as being special, as here knowing the equations
of motion and dilatation symmetry is not enough to determine its form. Furthermore, for this case
we can promote the dilatation parameter to be coordinate dependent, and obtain a local dilatation
symmetry.

Let’s verify these statements. Under a rigid dilatation with parameter λ, the variation of the c3

part of the action is

δλS
(3) =

∫
d11xΩ

(
λG(3)

µνH
µν − λ

(
2(G(6))AA + 3εABCΩ−1EABC(0)

))
, (7.23)
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where EABC ≡ τµ
Aτν

Bτρ
CEµνρ. It can be checked that G(3)

µνHµν = 0. Then, if we denote the self-duality
constraint by

Θµ1...µ4 ≡ Hµ1ρ1 . . . Hµ4ρ4Fρ1...ρ4 + 1
Ω3!4!

εµ1...µ4ρ1...ρ7Fρ1...ρ4εABCτρ5

Aτρ6

Bτρ7

C (7.24)

we have
2(G(6))AA + 3εABCΩ−1EABC(0) = 3 1

2·4!
Fµ1...µ4Θµ1...µ4 , (7.25)

hence indeed referring to (6.25) for S(3) we indeed have

δλS
(3) = 3λS(3) . (7.26)

Next consider the finite part of the action, with:

δλS
(0) =

∫
d11xΩ

(
λG(0)

µνH
µν − λ

(
2(G(3))AA + 3εABCΩ−1EABC(−3)

)
+ Ω−1E (3)µνρδλC̃µνρ

)
. (7.27)

Now we can show that

G(0)
µνH

µν −
(
2(G(3))AA + 3εABCΩ−1EABC(−3)

)
= −1

8
F̃µ1...µ4Θµ1...µ4 , (7.28)

such that using Eµνρ(3) = −1
6
∂σΘµνρσ we have

δλS
(0) =

∫
d11x (−1

8
λF̃µνρσΘµνρσ − 1

6
∂σΘµνρσδλC̃µνρ) ,

=

∫
d11x (−1

8
λF̃µνρσΘµνρσ − 1

24
ΘµνρσδλF̃µνρσ) ,

(7.29)

after integrating by parts. For arbitrary local λ, we therefore have δλS(0) = 0 on imposing the self-
duality constraint, irrespective of the transformation of C̃µνρ. Alternatively, if we require that

δλF̃µνρσ = −3λF̃µνρσ , (7.30)

then (7.29) vanishes identically without use of the constraint. This would mean accepting a non-local
transformation for C̃µνρ itself, which is not completely outlandish given the discussion in section 6.2
suggests we may think of it as being a dual degree of freedom to C3.

What this means in practice is that the action S(0) is invariant under variations of Hµν and τµA
of the form (6.29). This implies that there is a ‘direction’ in the space of variations which leaves the
action S(0) unchanged (or at best produces the self-duality constraint, which is not an independent
equation of motion). Hence if we vary S(0) to obtain the equations of motion of Hµν and τµA, we will
find that we are ‘missing’ an equation of motion. This is exactly as in the NSNS sector case [26,27] and
reflects a known difficulty, even in the purely gravitational context, of obtaining the Poisson equation
from an action principle for non-relativistic theories [52,53], at least at first order.

Thus, in order to obtain an equation of motion for this missing variation, we go one step further in
the expansion. The variation of S(−3), from (7.6), is:

δS(−3) =

∫
d11x

[
δHµν(ΩG(−3)

µν − 3ωµρσHλνEρσλ(−6)) + δτµA(2τ νAΩG(0)
µν − τAµωρσλE

ρσλ
(−6))

+ δCµνρEµνρ(−3) + δC̃µνρEµνρ(0)

]
,

(7.31)

For dilatations we have

δλS
(−3) =

∫
d11x

[
λ
(
HµνΩG(−3)

µν − 2Ω(G(0))A
A − 3εABCEABC(−6)

)
+ δλC̃µνρEµνρ(0)

]
. (7.32)
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With constant λ, equation (7.22) implies that

S(−3) =

∫
d11x (ΩN + C̃µνρEµνρ(0) ) , (7.33)

where we defined the combination

N ≡ 1
3
(−HµνG(−3)

µν + 2(G(0))A
A) + εABCΩ−1EABC(−6) . (7.34)

Crucially, (7.34) does not vanish on applying the self-duality constraint, unlike the combination of
terms (7.25) and (7.28) which appeared at the previous orders, and nor is it a combination of any
other equations of motion resulting from the finite action. It can therefore be used as the equation of
motion of the ‘dilatation mode’. (We are not really interested in the C̃ variation appearing in (7.32),
which multiplies something we have already taken into account as an equation of motion.) It involves
the fully longitudinal part of G(0), which has not yet appeared in the equations of motion. Hence, we
identify it with the ‘Poisson equation’, in which the longitudinal part of Cµνρ plays the role of the
Newton potential (as did the longitudinal part of the B-field in the Stueckelberg gauge-fixed NSNS
sector). This is because E(−6) is the first equation of motion which contains two derivatives acting on
the former. Explicitly,

Eµνρ(−6) = −1
6
∂σ

(
Ω(4H [µ|λ1τ |ν|λ2τ |ρ|λ3τ |σ]λ4Fλ1...λ4 + 6H [µ|λ1H |ν|λ2τ |ρ|λ3τ |σ]λ4F̃λ1...λ4

)
+ 1

2·4!4!3!
εµνρσ1...σ8F̃σ1...σ4F̃σ5...σ8 .

(7.35)

Intriguingly, the combination of G(−3) and G(0) appearing in (7.34) has a somewhat murky relationship
to the ‘trace-reversed’ version of the metric equation of motion. The equation Gµν = 0 in the original
11-dimensional theory can be simplified somewhat by taking its trace and solving that for the Ricci
scalar. This trace is

ĝµνGµν = −9
2
R + 1

32
F̂ 2 (7.36)

and the equation of motion without the Ricci scalar is

Ḡµν ≡ Gµν − 1
9
ĝµν ĝ

ρσGρσ = Rµν − 1
12
F̂µ

ρσλF̂νρσλ + 1
144
ĝµνF̂

2 , (7.37)

for which
τµνḠ(0)

µν = 1
3
(2τµνG(0)

µν −HµνG(−3)
µν ) , (7.38)

which is exactly the combination appearing in (7.34). Note the relative numerical factors here are the
same as the relative numerical factors in the powers of c in the expansion.

Now, what exactly is the equation (7.34)? Expanding the metric equation contributions and co-
variantising everything, one arrives at

τµνḠ(0)
µν = 2τµA∇ρKµρA −∇AKA − 1

4
aABCaABC − 1

2
aABCaACB − aAaA

− εABCFDABρaρD
C − 1

8
FABµνFABµν + 1

48
F̃ µνρσF̃µνρσ + 1

4
εABCF̃

µνABTµν
C

− aAKA +KµνAKµνA − 2τµAτ νB∇νaµ[AB] − τµν∇µaν ,

(7.39)

εABCτµ
Aτν

Bτρ
CΩ−1Eµνρ(−6) = −1

6
εABC∇µFABC

µ − 1
4
εABCF̃

ABµνTµν
C

+ 1
2·4!2Ω

1
6
ελ1...σ1...σ8F̃σ1...σ4F̃σ5...σ8εABCτλ1

Aτλ2

Bτλ3

C ,
(7.40)

hence the covariant Poisson equation is

N = −1
6
εABC(∇µFABC

µ + aµF
ABCµ + 3aµD

AFBCDµ)− 1
8
FABµνFABµν

+ 1
48
F̃ µνρσF̃µνρσ + Ω−1

2·4!23!
ελ1...λ3σ1...σ8F̃σ1...σ4F̃σ5...σ8εABCτλ1

Aτλ2

Bτλ3

C

−∇AKA − aAKA −KµνAKµνA − 2aµ[AB]KµAB − 2τµν∇µaν

− aABC(1
4
aABC + 1

2
aACB + ηBCaA)

= 0 .

(7.41)
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Note that this expression could equivalently be rewritten in terms of the Ricci tensor, using the following
identity:

RA
A = τµνRµν = −∇AKA −KµνAKµνA − aµABKµAB . (7.42)

Remarkably, equation (7.41) transforms covariantly under local dilatations. Exactly this equation will
also be selected by the exceptional field theory description as an ‘extra’ equation of motion that one
can not find from the variation of the finite part of the action. Furthermore, under Galilean boosts
(discussed in next subsection), it transforms into the other equations of motions. All this is in keeping
with the properties of the missing Poisson equation in the NSNS sector [26,27] and supports including
equation (7.41) as an equation of motion of the non-relativistic theory.

If we think in terms of the expansion it might seem strange to find the rest of the equations of
motion from the expansion at order c0 and this extra equation from order c−3. Clearly, if we would
vary the action S(−3) we would find additional O(c−3) contributions to the finite equations of motion,
and if we would vary the action S(−6) we would find additional O(c−3) contributions to the equation
of motion (7.41), i.e. it would become N = O(c−3). The guiding philosophy is to find the lowest
order non-zero equation of motion resulting from the variations of the action. For the Poisson equation
associated to the degree of freedom that disappears into dilatations at the level of S(0), this happens
to arise at lower order than the other equations of motion.

As a final remark, just as in the NSNS sector case [27], it is also possible to define a covariant
derivative that is covariant with respect to dilatations. Letting bµ denote this dilatation connection,
and simultaneously introducing ωµAB as the longitudinal spin connection, we this new affine connection
is defined by the following metric compatibility conditions

∇̃µτν
A = ∂µτν

A − ωµABτνB − bµτνA − Γ̃ρµντρ
A = 0 , (7.43)

∇̃µH
ρσ = ∂µH

ρσ − bµHρσ + Γ̃ρµλH
λσ + Γ̃σµλH

ρλ = 0 . (7.44)

The solution to these equations is

Γ̃ρµν = Γρµν − τ ρA
(
bµτν

A + ωµ
ABτνB

)
− 1

2
Hρσ (bµHνρ + bνHµρ − bρHµν) (7.45)

where the dilatation and spin connections are explicitly given by

bµ =
1

3
aµ +

1

6
τµ
AaA , ωµ

AB = −aµ[AB] +
1

2
τµ
CaABC + τµ

[AaB] . (7.46)

7.3 Boost invariance

Now let’s consider the boost transformations defined in (6.28). The calculations are very similar to
those in the previous subsection. The variation of S(3) under (6.28) vanishes identically. The variation
of the finite action gives

δS(0) =

∫
d11x

[
− Λρ

A
(

2Hµρτ νAΩG(3)
µν + 3εABCτµ

Bτν
CEµνρ(0)

)
+ δΛC̃µνρEµνρ(3)

]
, (7.47)

and the combination of G and E terms appearing here is

−2ΩG(3)
AµΛµA−3εABCEµAB(0) Λµ

C = 1
6
FAµνρΛσ

AFσµνρ− ελ1...λ3σ1...σ8

4·4!2Ω
Fσ1...σ4Fσ5...σ8Λλ1

Aτλ2

Bτλ3

CεABC . (7.48)

Using ΛµAτ
µ
B = 0 and the Schouten identity this can be shown to be proportional to the self-duality

constraint. Hence the finite action S(0) is invariant under boosts up to a total derivative and the self-
duality constraint. To make the action boost-invariant off-shell we must improve the transformations
(??) by requiring F̃ to transform as well, similarly to (7.30). The improved boost transformations are

δΛHµν = 2Λ(µ
Aτν)A , δΛτ

µ
A = −HµνΛνA ,

δΛCµνρ = −3εABCΛ[µ
Aτν

Bτρ]
C , δΛF̃µνρσ = −4τλAFλ[µνρΛσ]

A .
(7.49)
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Furthermore, one can then check that the set of equations of motion presented in the previous sections
is boost-invariant (i.e. closed under boosts) as expected. This includes the extra equation of motion
(7.41), which under boosts transforms into the time-space projection of the equation of motion of Hµν ,
equation (7.21), as well as the self-duality constraint. This further implies that it is consistent to
include it on the same footing as the remaining equations of motion that can be derived by varying
S(0). Indeed, one can obtain the boost variation directly from that of S(−3), which is:

δS(−3) =

∫
d11x

[
− Λρ

A
(

2Hµρτ νAΩG(0)
µν + 3εABCτµ

Bτν
CEµνρ(−3)

)
+ δΛC̃µνρEµνρ(0)

]
. (7.50)

The quantity in round brackets is exactly the time-space projection of the Hµν equation of motion. (As
a side-remark, note that this means that the boost variation of S(−3) is not identically zero, although
it is zero on using the equations of motion following from the finite action.)

8 Dimensional Reductions and Type IIA Newton-Cartan
In this section we will propose reductions from the 11-dimensional Newton-Cartan theory to ten-
dimensional type IIA Newton-Cartan theories. We have a choice of whether to reduce on a longitudinal
or a transverse direction. Reducing on a longitudinal direction will lead to type IIA stringy Newton-
Cartan with RR fields. Reducing on a transverse direction will lead to a novel type IIA Newton-Cartan
geometry which can be thought of as arising from a non-relativistic limit associated to D2 branes rather
than strings. Similar reductions have been carried out in [37,48] from the M2 worldvolume theory.

For comparison with the reduction ansatzes below, let us record here the usual decomposition of
the eleven-dimensional metric and three-form into ten-dimensional fields:

dŝ2
11 = e4Φ̂/3(dy + Â1)2 + e−2Φ̂/3dŝ2

10 , Ĉ3 = Â3 + B̂2 ∧ dy , (8.1)

where y denotes the direction on which we reduce.

Index book-keeping In this section, we denote the 11-dimensional Newton-Cartan fields and curved
spacetime indices with hats, thus ĥaµ̂, τ̂µ̂A, Ω̂, and so on such that the 11-dimensional coordinates are
xµ̂ = (xµ, y), with µ = 0, . . . , 9. We assume that we have an isometry in the y direction. The 11-
dimensional three-forms are denoted Cµ̂ν̂ρ̂, C̃µ̂ν̂ρ̂.

8.1 Type IIA SNC

Here we present a reduction ansatz which produces the known Stueckelberg gauge-fixed form of the
SNC NSNS sector action, supplemented with RR fields.

Reduction ansatz We want to reduce on a longitudinal direction. We therefore split the longitudinal
index A = (A, 2) with A = 0, 1. Then we single out

τ̂ 2 ≡ e2Φ/3(dy + Aµdx
µ) , (8.2)

thereby defining the dilaton Φ and RR one-form Aµ that will appear in the reduced theory. If we take
τ̂2 = e−2Φ/3∂y then the remaining pair of Newton-Cartan clock forms and vectors must have the form

τ̂A = e−Φ/3τµ
Adxµ , τ̂A = e+Φ/3(τµA∂µ,−τ νAAν∂y) . (8.3)

A compatible ansatz for the transverse vielbein is

ĥaµ̂ = (e−Φ/3haµ, 0) , ĥµ̂a = (eΦ/3hµa,−eΦ/3hνaAν) . (8.4)
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These are such that τµA, τµA and hµa, haµ are ten-dimensional fields obeying the usual stringy Newton-
Cartan completeness identities. We can define τµν ≡ τµ

Aτν
BηAB, Hµν ≡ haµh

b
νδab, and similarly for the

projective inverses. We also have

Ω̂ = e−8Φ/3Ω , Ω ≡ 1
2!8!
εµνσ1...σ8εABεa1...a8τµ

Aτν
Bha1

σ1 . . . h
a8
σ8 . (8.5)

Finally, we make the traditional decomposition of the three-form and its field strength:

C3 = A3 +B2 ∧ dy , F4 = G4 +H3 ∧ (dy + A1) , G4 = dA3 − A1 ∧H3 , H3 = dB2 , (8.6)

where A1 ≡ Aµdx
µ, along with

C̃3 = Ã3 + B̃2 ∧ dy , F̃4 = G̃4 + H̃3 ∧ (dy + A1) , G̃4 = dÃ3 − A1 ∧ H̃3 , H̃3 = dB̃2 . (8.7)

Interpretation as an expansion Inserting the above ansatz into the original limit (??) gives

dŝ2
11 = c2e4Φ/3(dy + A1)2 + e−2Φ/3(c2τµν + c−1Hµν) ,

Ĉ3 = −c3 1
2
εABτ

A ∧ τB ∧ dy + A3 +B2 ∧ dy + c−3(Ã3 + B̃2 ∧ dy) .
(8.8)

Hence according to (8.1) this translates into the following expansion of the ten-dimensional type IIA
string frame metric ĝµν , NSNS two-form, B̂2, and dilaton Φ̂:

ĝµν = c2
sτµν +Hµν ,

B̂2 = −c2
sεABτ

A ∧ τB +B2 + c−2
s B̃2 ,

eΦ̂ = cse
Φ ,

(8.9)

where cs ≡ c3/2. This is nothing but the limit leading to stringy Newton-Cartan. In addition, we have
an expansion of the RR fields:

Â3 = A3 + c−2
s Ã3 , Â1 = A1 , (8.10)

It is clear from these expressions that we can equivalently view this reduction as the result of the usual
M-theory to type IIA reduction using (8.1) followed by the SNC field redefinitions of (8.9) and (8.10).
At first glance, this is not completely general, given that the ansatz for the RR 1-form A1 does not
involve a subleading term while the other gauge fields do. A justification for the above ansatz is that
it correctly produces the NSNS sector dynamics of SNC. Modifications to the ansatz would involve
relaxing the implicit Stueckelberg gauge-fixing in 11-dimensions and comparing this to the possible
10-dimensional expansions. We do not consider this in this paper.

Constraint The constraint (6.26) becomes

ΩHµ1ν1Hµ2ν2Hµ3ν3Hµ4ν4Gν1ν2ν3ν4 = − 1
4!2!
εµ1...µ10Gµ5µ6µ7µ8εABτµ9

Aτµ10

B (8.11)

and so only involves the RR 4-form field strength. The field strength of the NSNS 2-form is not
constrained. This is to be expected, as the limit of the NSNS sector alone makes sense without any
constraint, and in the eleven-dimensional case the constraint arose as a consequence of the Chern-
Simons term, which is not present in the truncation to the NSNS sector.
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Type IIA SNC with RR fields The action obtained from the reduction ansatz (8.3) and (8.4) is

SIIA SNC =

∫
d10xΩ

(
e−2ΦL+ LG̃ + Ω−1Ltop

)
(8.12)

with

L =R− aµABaµ{AB} + (aµ − 2DµΦ)(aµ − 2DµΦ)− 1
12
HµνρHµνρ − 1

2
εABτ

ρAHρµνT
µνB

− 1
2
e2ΦGµAGµA − 1

12
e2ΦGµνρAGµνρA + 1

4
e2ΦεABGABρσG

ρσ,

LG̃ = − 1
4!
G̃ν1...ν4

(
Gν1...ν4 + 1

4!2!Ω
εν1...ν4µ1...µ6Gµ1...µ4εABτµ5

Aτµ6

B
)
,

Ltop = 1
2
dA3 ∧ dA3 ∧B2 ,

(8.13)

using the field strengths defined in (8.6) and (8.7) along with Gµν ≡ 2∂[µAν]. As before, we write
for convenience Gµν ≡ HµρHνσGρσ. The Ricci scalar and connection, torsion, acceleration and so on
are defined in the same way as before but for the SNC geometry. If we ignore the RR fields, this is
exactly the Stueckelberg gauge fixed action for NSNS SNC (note that the subleading component B̃2

only appears in the definition of G̃4). Furthermore, one can check that the reduction of the Poisson
equation agrees with the Poisson equation for SNC, with of course additional contributions from the
RR sector. The reduced Poisson equation is found to be

−1
2
εAB∇µHABµ +∇AKA − 2τµν∇µ∇νΦ + 2τµν∇µaν + εABHABµ∇µΦ− 2aA∇AΦ

+KµνAKµνA + aAKA + 2aµ[AB]KµAB + aABC
(

1
4
aABC + 1

2
aACB + ηBCaA

)
+ 1

4
HAµνHAµν − εABHCBµ

(
aµC

A + 1
2
aµδ

A
C

)
+ 1

4
e2Φ
(
GABGAB + 1

2
GABµνGABµν

)
− e2Φ 1

48

(
G̃µνρσG̃µνρσ + 1

48Ω
ελ1λ2µ1...µ8G̃µ1...µ4G̃µ5...µ8εABτλ1

Aτλ2

B
)

= 0 .

(8.14)

In this case [27], it is the longitudinal components of the NSNS 2-form playing the role of the Newton
potential. It is also interesting to look at the reduction of the equation (7.15), which was the equation
of motion of the longitudinal components of the three-form. This reduces to

1
2
ηABH

µρHνσTµν
ATρσ

B = − 1
48
e2ΦHµ1ν1 . . . Hµ4ν4Gµ1...µ4Gν1...ν4 , (8.15)

and in particular in the truncation to the NSNS sector the right-hand side is zero. This allows imposing
foliation constraints on the NSNS sector SNC torsion TµνA, such as those discussed in [27].

8.2 Type IIA D2NC

General decompositions breaking local rotational invariance The next reduction we do in-
volves reducing on a transverse reduction. This breaks part of the local SO(8) rotational invariance.
Accordingly, write the flat index a = (a, ı̄), with a = 1, . . . , 8 − q and ı̄ = 1 . . . q. Simultaneously
we can consider a different decomposition of the spacetime coordinate index µ̂ = (µ, i) where µ is
n-dimensional and i is (11− n)-dimensional. We then pick a lower triangular form for the vielbein ĥaµ̂
such that

ĥaµ̂ =

(
haµ 0

Aµ
khı̄k hı̄i

)
. (8.16)

The condition ĥaµ̂τ̂ µ̂A = 0 implies

haµτ̂
µ
A = 0 , hı̄i(τ̂

i
A + Aµ

iτ̂µA) = 0 . (8.17)

42



The diagonal blocks in (8.16) will in general not be square. Two interesting examples however are to
take these blocks to be square and invertible. In this subsection, we will take the lower right block
to be a non-zero 1 × 1 matrix, and perform a reduction to a novel type of type IIA Newton-Cartan
geometry associated to D2 branes. In section 9, we will take the upper left block to be an invertible
(11− d)× (11− d) matrix, and offer a description of the M-theory Newton-Cartan theory in terms of
exceptional field theory.

Transverse reduction to type IIA The dimensional reduction to type IIA corresponds to taking
n = 10, and q = 1 above. We again label the coordinates again as xµ̂ = (xµ, y). In this case hȳy is
a scalar and we can identify it with the dilaton as hȳy ≡ e2Φ/3. Using the conditions (8.17), the full
Kaluza-Klein ansatz is:

ĥaµ̂ =

(
e−Φ/3haµ 0
e2Φ/3Aµ e2Φ/3

)
, ĥµ̂a =

(
eΦ/3hµa 0
−eΦ/3Aνh

ν
a e−2Φ/3

)
, (8.18)

τ̂µ̂
A = e−Φ/3(τµ

A, 0) , τ̂ µ̂A = e+Φ/3(τµA,−Aντ νA) , (8.19)

plus the same definitions (8.6) and (8.7) for the three-forms and field strengths. We also have

Ω̂ = e−8Φ/3Ω , Ω ≡ 1
3!7!
εµνρσ1...σ7εABCεa1...a7τµ

Aτν
Bτρ

Cha1
σ1 . . . h

a7
σ1 . (8.20)

Interpretation as an expansion Inserting the above ansatz into the original limit (??) gives

dŝ2
11 = c−1e4Φ/3(dy + A1)2 + e−2Φ/3(c2τµν + c−1Hµν) ,

Ĉ3 = −c3e−Φ 1
3!
εABCτ

A ∧ τB ∧ τC + A3 +B2 ∧ dy + c−3(Ã3 + B̃2 ∧ dy) .
(8.21)

Hence according to (8.1) this translates into the following expansion of the ten-dimensional type IIA
string frame metric ĝµν , RR three-form, Ĉ2, and dilaton Φ̂:

ĝµν = c2
Dτµν + c−2

D Hµν ,

Ĉ3 = −c4
DεABCe

−ΦτA ∧ τB ∧ τC + C3 + c−4
D C̃3 ,

eΦ̂ = c−1
D eΦ ,

(8.22)

along with expansions for the NSNS two-form, B̂2, and RR one-form, Â1:

B̂2 = B2 + c−4
D B̃2, , Â1 = A1 , (8.23)

where cD ≡ c3/4. This is an expansion and non-relativistic limit associated to the D2 brane (the powers
of cD appear in the same way as those of the harmonic function in the D2 brane SUGRA solution).
We can refer to it as D2 Newton-Cartan (D2NC).

Constraint The constraint (6.26) becomes

ΩHµ1ν1Hµ2ν2Hµ3ν3Hµ4ν4Gν1ν2ν3ν4 = + 1
3!3!
e−Φεµ1...µ10Hµ5µ6µ7εABCτµ8

Aτµ9

Bτµ10

C ,

Ωe−ΦHµ1ν1Hµ2ν2Hµ3ν3Hν1ν2ν3 = + 1
4!3!
εµ1...µ10Gµ4µ5µ6µ7εABCτµ8

Aτµ9

Bτµ10

C ,
(8.24)

which are equivalent. So now we have a duality relation between the RR 3-form gauge field and the
NSNS 2-form.
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Type IIA D2 Newton-Cartan theory The action obtained from the reduction ansatz (8.18) and
(8.2) is

SD2NC =

∫
d10xΩ

(
e−2ΦL+ LG̃ + Ω−1Ltop

)
(8.25)

with

L =R− aµABaµ(AB) + 3
2
aµaµ − 5aµDµΦ + 9

2
DµΦDµΦ− 1

4
HµνAHµνA

− 1
4
e2ΦGµνGµν − 1

12
e2ΦGµνρAGµνρA + 1

4
eΦεABCGABρσT

ρσ
C ,

LG̃ = − 1
4!
G̃ν1...ν4

(
Gν1...ν4 − 1

3!2Ω
e−Φεν1...ν4µ1...µ6Hµ1...µ3εABCτµ4

Aτµ5

Bτµ6

C
)

− 1
3!
e−2ΦH̃ν1...ν3

(
Hν1...ν3 − 1

4!3!Ω
e+Φεν1...ν3µ1...µ7Gµ1...µ4εABCτµ5

Aτµ6

Bτµ7

C
)
,

= − 1
4!

(
G̃ν1...ν4 − 1

3!
e−ΦH̃ρ1...ρ3ε

ρ1...ρ3σ1...σ7 1
3!Ω
εABCHν1σ1 . . . Hν4σ4τσ5

Aτσ6

Bτσ7

C
)
×

×
(
Gν1...ν4 − 1

3!2Ω
e−Φεν1...ν4µ1...µ6Hµ1...µ3εABCτµ4

Aτµ5

Bτµ6

C
)
,

Ltop = 1
2
dA3 ∧ dA3 ∧B2 ,

(8.26)

where the field strengths are defined as in (8.6) and (8.7) with again G2 ≡ dA1. Note that we obtain
what appears to be an extra contribution to the dilaton kinetic term due to the e−Φ factor that in the
expansion of Ĉ3 in (8.22). We could alter this by redefining the RR fields in the reduced theory. In
addition, the reduction of the Poisson equation (7.41) gives

1
6
eΦεABC

(
∇µG

ABCµ + aµG
ABCµ + 3aµD

AGDBCµ
)
− 1

3
eΦεABCG

ABCµ∇µΦ

+∇AKA − 3τµν∇µ∇νΦ− 3aA∇AΦ + 2∇AΦ∇AΦ−KA∇AΦ + 2τµν∇µaν

+KµνAKµνA + aAKA + 2aµ[AB]KµAB + aABC
(

1
4
aABC + 1

2
aACB + ηBCaA

)
+ 1

4
HABµHACµ + 1

8
e2Φ
(
GABµνGABµν + 4GAµGAµ

)
− e2Φ 1

48
G̃µνρσG̃µνρσ − 1

12
H̃µνρH̃µνρ

+ e−Φ 1
4!3!3!Ω

ελ1λ2λ3µ1...µ7εABCτλ1

Aτλ2

Bτλ3

CG̃µ1...µ4H̃µ5...µ7 = 0 .

(8.27)

As in the MNC case, the longitudinal components of the three-form gauge field play the role of the
Newton potential.

9 Dimensional Decompositions and Exceptional Field Theory
Description

9.1 Exceptional field theory

We will now discuss the exceptional field theory description of the 11-dimensional MNC theory. ExFT
automatically has a number of features in common with the non-relativistic theory: breaking of 11-
dimensional Lorentz symmetry, a geometry arising from mixing metric and form-field components, and
the inclusion of dual degrees of freedom. We will see how it provides a unified framework treating the
relativistic and non-relativistic theory on an equal footing, which demonstrates that the same excep-
tional Lie algebraic structures that underlie the relativistic theory are present in the non-relativistic
one. In addition, the ExFT equations of motion include the additional missing Poisson equation.

We will focus particularly on the relatively unexceptional case of the SL(3) × SL(2) ExFT [54].
This makes use of an (8 + 3)-dimensional split of the 11-dimensional spacetime. As such, it is a
very natural fit for the (8 + 3)-dimensional split into transverse and longitudinal directions present in
the MNC expansion. The SL(3) × SL(2) ExFT includes a Riemannian metric for the 8-dimensional
part of the spacetime, but the 3-dimensional part is described by an ‘extended geometry’ involving an
SL(3)×SL(2) symmetric generalised metric. By decomposing the 11-dimensional Newton-Cartan theory
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appropriately, we will replace the transverse Newton-Cartan metric with an invertible 8-dimensional
metric, Ĥ µ̂ν̂ → gµν , and the longitudinal metric with an invertible 3-dimensional metric, τ̂µ̂ν → τij,
which will be embedded into the generalised metric description. This drastic simplification of the
geometry is nonetheless sufficient to highlight the key features of the theory.

It would also be interesting to consider for example the opposite (3+8)-dimensional split correspond-
ing to the E8(8) ExFT, embedding the transverse metric into the E8(8) generalised metric. However
as the known formulation of ExFT makes use of a Riemannian metric for the unextended part of the
spacetime, this is not immediately available for our purposes. Evidently, for any given Ed(d) ExFT,
one can construct or imagine multiple other ‘hybrid’ formulations depending on how one chooses to
separate or mix the longitudinal and transverse directions. More ambitiously, one could choose to work
with the recently fully constructed ‘master’ E11 ExFT [55], for which no coordinate decomposition is
necessary. Evidently this would eschew the technical difficulties of the latter in favour of the technical-
ities associated to working with an infinite-dimensional algebra. In this paper, although many features
that we will see are quite general, we describe the explicit details mainly for the d ≤ 4 cases.

ExFT ingredients The basic idea behind ExFT is to replace d-dimensional vectors with generalised
vectors V M transforming in a specified representation of Ed(d). This representation is such that we
can decompose V M under GL(d) as V M = (V i, Vij, Vijklm, . . . ) where V i is a d-dimensional vector, Vij
and Vijklm a two- and five-form, and the ellipsis corresponds to higher rank mixed symmetry tensors
that appear for d ≥ 7. Generalised vectors are used to provide an Ed(d)-compatible local symmetry of
generalised diffeomorphisms. These are defined in terms of a generalised Lie derivative which acts on
a generalised vector V M of weight λV as

δUV
M = LUV M ≡ UN∂NV

M − V N∂NU
M + Y MN

PQ∂NU
PV Q + (λV − 1

9−d)∂NU
NV M . (9.1)

Here Y MN
PQ is constructed from invariant tensors of Ed(d). This together with the weight term with

coefficient −1/(9 − d) appear such that this generalised Lie derivative involves an infinitesimal Ed(d),
rather than GL(N) transformation. The partial derivatives written here formally involve an extended
set of coordinates yM . However, consistency requires the imposition of a constraint Y MN

PQ∂M∂N = 0
where the derivatives can act on a single field or a product of fields. One solution to this constraint
is to view the d-dimensional partial derivatives as being embedded such that ∂M = (∂i, 0, . . . , 0). We
always assume we have made this choice below. (An alternative solution leads to a ten-dimensional
type IIB description.)

Given this choice, for the d ≤ 4 cases we will look at in detail, the action of UM = (ui, λij) on
V M = (V i, Vij) (both having generalised diffeomorphism weight 1/(9− d)) is LUV M = (LuV

i, LuV
ij −

3V k∂[kλij]), where Lu denotes the usual d-dimensional Lie derivative. Identifying the two-form com-
ponents λij with the gauge transformation parameter of a three-form Ĉijk, this means we can write
V M = (V i, Ṽij − ĈijkV k), with Ṽij gauge invariant. We use this to give explicit parametrisations for
the ExFT fields.

The field content of ExFT is as follows. We now let µ, ν, . . . be (11 − d)-dimensional indices.
We then have an (11 − d)-dimensional metric, gµν , which is a scalar of weight −2/(9 − d) under
generalised diffeomorphisms. The Ed(d) extended geometry is equipped with a generalised metric,
MMN , transforming as a rank two symmetric tensor of weight zero under generalised diffeomorphisms.
In addition, there is a ‘tensor hierarchy’ of gauge fields, starting with an (11−d)-dimensional one-form
AµM , and continuing with p-forms Bµν , Cµνρ, . . . in particular representations of Ed(d). This set of
fields mimics and extends what appears in a dimensional decomposition (or reduction) of the bosonic
fields of supergravity.

Dimensional decomposition and field redefinitions We describe now the dimensional decom-
position used to embed 11-dimensional SUGRA in the ExFT framework. We split the 11-dimensional
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coordinates xµ̂ = (xµ, yi), making an (11− d) + d split. The supergravity degrees of freedom are then
similarly decomposed under this split, classified according to their nature from the point of view of
(11 − d)-dimensional spacetime, and then rearranged into multiplets of the exceptional groups Ed(d).
We assume no restriction on the coordinate dependence. This can be viewed as a partial fixing of the
local Lorentz symmetry in which we choose the 11-dimensional vielbein êâµ̂ and hence metric ĝµ̂ν̂ to be

êâµ̂ =

(
|φ|−

1
2(9−d) eaµ 0
Aµ

kφı̄k φı̄i

)
, ĝµ̂ν̂ =

(
|φ|−

1
9−d gµν + φklAµ

kAν
l φikAν

l

φjkAν
k φij

)
, (9.2)

where eaµ is a vielbein for an (11− d)-dimensional (Einstein frame) metric gµν and φı̄i is a vielbein for
a d-dimensional metric φij, with |φ|≡ |det(φij)|. Normally one takes gµν to be Lorentzian, such that
this corresponds to fixing the Lorentz symmetry as SO(1, 10) → SO(1, 10 − d) × SO(d), however we
can also take it to be Euclidean, such that SO(1, 10) → SO(11 − d) × SO(1, d − 1). The latter choice
is relevant for the version of ExFT applicable to the non-relativistic theory.

The ‘Kaluza-Klein vector’ Aµi has a field strength defined by

Fµν
i = 2∂[µAν]

i − 2A[µ|
j∂jA|ν]

i . (9.3)

Letting L denote the d-dimensional Lie derivative, the Kaluza-Klein vector also appears as the connec-
tion in the derivative Dµ = ∂µ−LAµ which is covariant with respect to d-dimensional diffeomorphisms,
using the transformation δΛAµ

i = DµΛi induced by the action of 11-dimensional diffeomorphisms on
(9.2).

For the three-form and its field strength, we define a succession of gauge field components (denoted
by bold font) via

Ĉ3 = Ĉ3 + Ĉ2iDy
i + 1

2
Ĉ1ijDy

iDyj + 1
3!
ĈijkDy

iDyjDyk (9.4)

where Dyi ≡ dyi + Aµ
idxµ, the subscripts on the right-hand side denote the form degree in (11 − d)

dimensions, and we omit the implicit wedge products. Similarly, for F̂4 = dĈ3 we let

F̂4 = F̂4 + F̂3iDy
i + 1

2
F̂2ijDy

iDyj + 1
3!
F̂1ijkDy

iDyjDyk + 1
4!
F̂ijklDy

iDyjDykDyl , (9.5)

The persistence of hats reflects the fact that we still want to take the non-relativistic limit of all
these quantities. Explicit component expressions can be found in appendix 10. We can make similar
redefinitions for the dual six-form and its field strength.

Metric and generalised metrics The metric gµν appearing in (9.2) is directly used as the (11−d)-
dimensional ExFT metric (the generalised diffeomorphism weight −2/(9−d) follows from the conformal
factor in (9.2)).

The generalised metricMMN , or its generalised vielbein, may be defined as an Ed(d) element valued
in a coset Ed(d)/Hd where Hd is the maximal compact subgroup (in the Euclidean case) or a non-
compact version thereof (in the Lorentzian case). Under generalised diffeomorphisms it transforms
as a rank two symmetric tensor of weight zero. It is normally parametrised in terms of the wholly
d-dimensional components of the eleven-dimensional fields, φij and Ĉijk, in a manner consistent with
its transformation under generalised diffeomorphisms. For d ≥ 6, this parametrisation also includes
internal components of the dual-six form. For simplicity, we will restrict to d ≤ 4, in which case the
conventional parametrisation of the generalised metric is given by

MMN = |φ|1/(9−d)

(
φij + 1

2
Ĉi

pqĈjpq Ĉi
kl

Ĉk
ij 2φi[kφl]j

)
. (9.6)

The conformal factor here ensures that |detM|= 1.
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In specific cases, we can find factorisations of the generalised metric leading to simpler expressions.
This includes the SL(3) × SL(2) ExFT. Here, generalised vectors V M = (V i, Vij) transform in the
(3,2) of SL(3)×SL(2), with i, j, . . . three-dimensional. We can dualise Vij using the three-dimensional
epsilon symbol, and define Ṽ i ≡ 1

2
εijkṼjk. Introduce an SL(2) fundamental index, α = 1, 2, and let

V M ≡ V iα with V i1 ≡ V i and V i2 ≡ Ṽ i. In terms of this basis we have a factorisation

MMN =Miα,jβ =MijMαβ , (9.7)

whereMij =Mji with |detMij|= 1, andMαβ =Mβα with |detMαβ|= 1. When φij has Lorentzian
signature, the expressions which reproduce (9.6) are

Mij = |φ|−1/3φij , Mαβ =

(
|φ|1/2−|φ|−1/2Ĉ2 −|φ|−1/2Ĉ

−|φ|−1/2Ĉ −|φ|−1/2

)
, Ĉ ≡ 1

3!
εijkĈijk , (9.8)

Gauge fields and dual degrees of freedom Along with the Kaluza-Klein vector, Aµi, coming
from the metric decomposition (9.2), the p-forms obtained from the decomposition (9.4) of the three-
form fit into Ed(d)-valued multiplets denoted Aµ, Bµν , Cµνρ, . . . . Their field strengths are denoted
Fµν , Hµνρ,Jµνρσ, . . . . To obtain full Ed(d) representations, we have to include here the set of p-forms
obtained by decomposing the dual six-form. This is unsurprising from the point of Ed(d) U-duality
transformations, which mix electric and magnetic degrees of freedom (e.g. M2 and M5 branes) coupling
respectively to p-forms and their duals.

For d = 3, this works as follows [54]. The ExFT gauge fields Aµiα, Bµνi, Cµνρα, Dµνρσi have weights
1/6, 2/6, 3/6, 4/6 respectively, and their field strengths are denoted Fµνiα, Hµνρi, Jµνρσα and Kµνρσλi
(the latter does not appear in the action). Under generalised diffeomorphisms, F iα transforms as a
generalised vector of weight 1/6, while H and J transform via the generalised Lie derivative acting as

LΛHi = Λjβ∂jβHi + ∂iβΛjβHj , LΛJ α = Λjβ∂jβJ α − ∂jβΛjαJ β + ∂jβΛjβJ α . (9.9)

These field strengths obey Bianchi identities:

3D[µFνρ]
iα = εijkεαβ∂jβHµνρk , (9.10)

4D[µHνρσ]i + 3εijkεαβF[µν
jαFρσ]

kβ = ∂iαJµνρσα , (9.11)

5D[µJνρσλ]
α + 10F[µν

iαHρσλ]i = εαβ∂iβKµνρσλi , (9.12)

whereDµ ≡ ∂µ−LAµ . The ExFT one-form can be simply identified asAµM = (Aµ
i, 1

2
εijkCµjk). The two-

form Bµνi transforms in the (3̄,1) of SL(3)× SL(2) and is identified (up to a further field redefinition)
with Ĉµνi. However, rather than give the precise field redefinitions for the potentials, it is simpler
to work at the level of the field strengths. These are all tensors under generalised diffeomorphisms,
meaining in particular that they transform in a particular way under d-dimensional three-form gauge
transformations. This allows us to decompose in terms of manifestly gauge invariant combinations

Fµνi1 ≡ Fµν
i , Fµνi2 ≡

1

2
εijk(F̂µνjk − ĈjklF̂µνl) , Hµνρi ≡ −F̂µνρi , (9.13)

where Fµνi, F̂µνρi and F̂µνjk are gauge invariant and can be exactly identified with the quantities defined
in (9.5) with Fµνi as in (9.3).

The three-form situation is then where it gets interesting. There is a single 8-dimensional three-
form Ĉµνρ obtained from the 11-dimensional one. There is also a single three-form Ĉµνρijk coming from
the 11-dimensional six-form. Together these form an SL(3) singlet and SL(2) doublet, for which the
field strength obeys a self-duality constraint reproducing (in the relativistic case!) the correct duality
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relationship between the field strengths F̂µνρσ and F̂µνρσijk. This duality constraint, which has to be
imposed by hand, involves the eight-dimensional Hodge star acting on the 8-dimensional indices and
the SL(2) generalised metric acting on the SL(2) indices:√

|g|MαβJ µνρσβ = −48κεαβε
µνρσλ1...λ4Jλ1...λ4

β . (9.14)

The coefficient κ is fixed via the self-consistency of (9.14) (in both the cases where gµν has Lorentzian
or Euclidean signature, withMαβ having the opposite) to be κ = ± 1

2·(24)2 , with the choice of sign being
a matter of convention (equivalent to changing the sign of the three-form in eleven dimensions). This
is consistent with decomposing the SL(2) doublet of four-form field strengths as

Jµνρσ1 ≡ F̂µνρσ , Jµνρσ2 ≡ 1
6
εijk(F̂µνρσijk − ĈijkF̂µνρσ) . (9.15)

Thus in general, ExFT treats simultaneously degrees of freedom coming from the three-form with
dual degrees of freedom coming from the six-form, encoding the duality relations between them in its
dynamics.

Dynamics: SL(3)× SL(2) ExFT pseudo-action The ExFT Lagrangian can be uniquely fixed by
the requirement of invariance under the local symmetries (generalised diffeomorphisms, gauge trans-
formations of the tensor hierarchy, and finally (11− d)-dimensional diffeomorphisms). When 11− d is
even, this gives a pseudo-action which must be accompanied by a self-duality constraint such as (9.14).
This includes the case d = 3. The pseudo-action in this case can be written as S =

∫
d8x d6y

√
|g|LExFT

where the Lagrangian has the (quite general) expression

LExFT = Rext(g) + Lkin + Lint +
√
|g|
−1
Ltop , (9.16)

Here, with Dµ = ∂µ − LAµ , we have

Rext(g) =
1

4
gµνDµgρσDνgρσ −

1

2
gµνDµgρσDρgνσ +

1

4
gµνDµ ln gDν ln g +

1

2
Dµ ln gDνgµν , (9.17)

Lkin =
1

4
DµMijDµMij +

1

4
DµMαβDµMαβ

− 1

4
MijMαβFµνiαFµνjβ −

1

12
MijHµνρiHµνρ

j −
1

96
MαβJµνρσαJ µνρσβ , (9.18)

Lint =
1

4
MMN∂MMkl∂NMkl +

1

4
MMN∂MMαβ∂NMαβ −

1

2
MMN∂MMKL∂KMLN

+
1

2
∂MMMN∂N ln|g|+1

4
MMN (∂Mgµν∂Ng

µν + ∂M ln|g|∂N ln|g|) . (9.19)

The topological (Chern-Simons) term can be defined via its variation:

δLtop = κεµ1...µ8

(
− δAµ1

iαεαβJµ2...µ5

βHµ6µ7µ8i

+ 6∆Bµ1µ2i

(
εαβFµ3µ4

iαJµ5...µ8

β − 4
9
εijkHµ3µ4µ5jHµ6µ7µ8k

)
+ 4∆Cµ1µ2µ3

αεαβ
(
Dµ4Jµ5...µ8

β + 4Fµ4µ5

iβHµ6...µ8i

)
− ∂iα∆Dµ1...µ4

iJµ5...µ8

α
)
,

(9.20)

where the ‘improved’ ∆ variation includes by definition contributions of variations of lower rank gauge
fields, for explicit expressions (which we do not require) see [54]. Finally, we must impose the constraint
(9.14) after varying the above pseudo-action.
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9.2 Obtaining the 11-dimensional Newton-Cartan theory via ExFT

In this subsection, we perform a dimensional decomposition of the 11-dimensional MNC variables, and
use this to explain how exceptional field theory describes this theory.

Dimensional decomposition of 11-dimensional Newton-Cartan theory We start with the
11-dimensional coordinates labelled as xµ̂ = (xµ, yi) with µ = 1, . . . , 11 − d and i = 1 . . . , d. We keep
all coordinate dependence on yi throughout. Thus this is a decomposition rather than a reduction. In
terms of the vielbein decomposition (8.16), we take q = d − 3 and n = 11 − d. The flat indices are
a = 1, . . . , 11− d and ı̄ = 1, . . . , d− 3. Explicitly, we take the SO(8) vielbein to have the form

ĥaµ̂ =

(
Ω
− 1

9−d eaµ 0
Aµ

khı̄k hı̄i

)
, ĥµ̂a =

 Ω
1

9−d eµa 0

−Ω
1

9−d eρaAρ
k hiı̄

 , (9.21)

with eaµ an invertible vielbein for an (11 − d)-dimensional metric, gµν = eaµe
b
νδab. We also have to

take
τ̂µ̂
A = (Aµ

iτi
A, τi

A) , τ̂ µ̂A = (0, τ iA) . (9.22)

where τij = τi
Aτj

BηAB, with A = 0, 1, 2 as before. The conformal factor Ω appearing in (9.21) is defined
by

Ω2 = − 1
3!(d−3)!

εi1...idεj1...jdτi1j1τi2j2τi3j3Hi4j4 . . . Hidjd , (9.23)

and related to that of the 11-dimensional theory by Ω̂ = (det e)Ω
− 2

9−d . It is useful to write down the
full transverse and longitudinal metrics:

Ĥµ̂ν̂ =

(
Ω
− 2

9−d gµν +HklAµ
kAν

l HjkAµ
k

HikAν
k Hij

)
, τ̂µ̂ν̂ =

(
Aµ

kAν
lτkl Aµ

kτkj
Aν

kτki τij

)
,

Ĥ µ̂ν̂ =

 Ω
2

9−d gµν −Ω
2

9−d gµρAρ
j

−Ω
2

9−d gνσAσ
i H ij + Ω

2
9−d gρσAρ

iAσ
j

 , τ̂ µ̂ν̂ =

(
0 0
0 τ ij

)
.

(9.24)

In this way all the degenerate structure is encoded in the d-dimensional part of the spacetime, with a
degenerate d-dimensional metric Hij ≡ hı̄ih

̄
jδı̄̄. This ensures that the metric gµν can be identified with

the metric appearing in exceptional field theory, while the degenerate Newton-Cartan metric structure
will appear in the generalised metric. In addition, we redefine the three-form and its field strength
according to (9.4) and (9.5), now without hats:

C3 = C3 + C2iDy
i + 1

2
C1ijDy

iDyj + 1
3!
CijkDy

iDyjDyk , (9.25)

F4 = F4 + F3iDy
i + 1

2
F2ijDy

iDyj + 1
3!
F1ijkDy

iDyjDyk + 1
4!
FijklDy

iDyjDykDyl , (9.26)

where again Dyi ≡ dyi +Aµ
idxµ. We carry out an analogous decomposition for C̃3 and F̃4, and for C6

and F7. Finally, we can consider the Newton-Cartan torsion: with T̂µ̂ν̂A ≡ 2∂[µ̂τ̂ν̂]
A we have

Tij
A ≡ T̂ij

A = 2∂[iτj]
A , Tµi

A ≡ T̂µi
A − AµjT̂ji = Dµτi

A ,

Tµν
A ≡ T̂µν

A − 2T̂[µ|i|
AAν]

i + Aµ
iAν

jT̂ij = Fµν
jτj

A .
(9.27)
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Embedding the limit in ExFT Let’s start by considering the expansions (??) and (??) of the
original 11-dimensional metric and three-form. We make use of the decompositions (9.24) and (9.25)
for the Newton-Cartan variables and three-form appearing in the decomposition, and then use these to
work out the decomposition (9.2) of the 11-dimensional metric and that (9.4) of the three-form. The
potentially singular terms as c → ∞ then appear in the d-dimensional components of the metric and
of the three-form, with

φij = c2τij + c−1Hij , Ĉijk = −c3εABCτi
Aτj

Bτk
C + Cijk + c−3C̃ijk . (9.28)

The metric gµν and Kaluza-Klein vector Aµi appearing in (9.2) are then exactly those appearing in Ĥµν

in (9.24). The redefined form components carrying an (11− d)-dimensional index are all non-singular,
so Ĉµij = Cµij +O(c−3), and so on. One point of danger is that Ĉijk still appears in the field strengths
(9.5) of these fields. However, consulting the more explicit expressions (10.17), one sees that the field
strength FµνM appearing in ExFT in fact involves the combination Fµνij = F̂µνij − ĈijkFµνk, which is
in fact independent of Ĉijk, such that F̂µνij − ĈijkFµνk = Fµνij − CijkFµνk.

For the generalised metric (9.6), inserting the expressions (9.28) one finds that all terms at leading
order in c cancel, and sending c→∞ one has a manifestly finite and boost invariant expression:

MMN = Ω
2

9−d
(
Hij − εABCτ(i|

ACj)klτ
kBτ lC + CiklCjmnH

kmτ ln −εABCτiAτkBτ lC + 2CipqH
p[kτ l]q

−εABCτkAτ iBτ jC + 2CkpqH
p[iτ l]j 2H i[kτ l]j + 2τ i[kH l]j

)
.

(9.29)
The parametrisation (9.29) can be viewed as a non-Riemannian parametrisation of the generalised
metric, and viewed simply as an alternative possibility to taking the usual form (9.6). The reason why
this is a non-Riemannian parametrisation is most clearly seen by looking at the inverse generalised
metricMMN . In the Riemannian case, the parametrisation (9.6) implies that the d × d blockMij is
given by Mij = |φ̂|−1/(9−d)φ̂ij and therefore corresponds to the inverse spacetime metric. Assuming
this block is invertible then uniquely fixes (given the definition of the generalised metric as a particular
coset element obeying certain properties) the rest of the parametrisation. In the non-Riemannian

case, we instead haveMij = Ω
− 2

9−dH ij, which is non-invertible. This leads instead to an alternative
parametrisation. This is exactly as in the DFT case [35], which was generalised to ExFT in [40]. The
expression (9.29) can be checked to be equivalent to the non-Riemannian SL(5) generalised metric
worked out from first principles in [40]. In fact, from this point of view, one need not even go through
the complications of taking the limit, but simply write down (9.29), insert it into the ExFT and study
the resulting dynamics.

Returning to the embedding of the expansion in ExFT, we also need to worry about the singular
pieces in the expansion of the dual gauge field Ĉ6. This inevitably appears in the tensor hierarchy
for all exceptional field theories. From (6.43), we have Ĉ6 ∼ c3C3 ∧ τ ∧ τ ∧ τ + . . . , and so given
the decomposition according to (9.22) and (9.25), any component of Ĉ6 carrying three d-dimensional
indices will be singular, i.e. Ĉµνρijk, Ĉµνijkl, Ĉµijklm, Ĉijklmn. The claim is that, remarkably, all such
singularities cancel automatically thanks to the precise combinations of Ĉ6 and Ĉ3 that appear in
the ExFT fields. For d = 3, 4, this is most straightforwardly checked at the level of the ExFT field
strengths. One sees from (9.15) for SL(3) × SL(2) (and from (11.12) for SL(5)) that the components
of F̂7 always appear in the combinations F̂µνρσijk − ĈijkF̂µνρσ and F̂µνρijkl + 4Ĉ[ijkF̂|µνρσ|l] exactly such
that the singularity coming from Ĉijk cancels that coming from F̂7, which was written down in (6.44).
That the ExFT gauge potentials themselves are non-singular can further be verified by hunting down
the correct field redefinitions that relate the ExFT gauge fields to the 11-dimensional ones. Note that
for d ≥ 6 the components Ĉijklmn are present and appear in the generalised metric itself: we have not
verified explicitly but the expectation would be that it does so in a way that ensures the generalised
metric remains finite.
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Summary From the above we can conclude that the fields used in ExFT are manifestly non-singular
in the non-relativistic limit (equivalently this shows that the fields which are U-duality covariant in
a genuine dimensional reduction are non-singular). We can also view the distinction between the
relativistic and the non-relativistic 11-dimensional theory as being solely governed by the choice of
parametrisation of the generalised metric. Having picked a generalised metric parametrisation, it is then
consistent to directly identify the ExFT gauge fields and metric gµν with the gauge field components
and metric of the decomposed relativistic or non-relativistic theory.

This is summarised in figure 3. The upper triangular half of this diagram corresponds to first
embedding the relativistic fields in ExFT in the usual manner, with a Riemannian parametrisation of
the generalised metric, and then taking the non-relativistic limit giving a non-Riemannian parametri-
sation. The lower triangular half corresponds to first taking the non-relativistic limit for the orig-
inal 11-dimensional fields, and then embedding these into ExFT, giving the same non-Riemannian
parametrisation. In both cases, one needs to make the appropriate dimensional decomposition of the
fields of the Newton-Cartan theory, corresponding to fixing the local tangent space (non-Lorentzian)
symmetry.

11-d SUGRA ExFT (rel. param)

ExFT (non-
rel. param)

Non-rel SUGRA

Fix Lorentz

Fix non-Lorentz

Non-rel limitNon-rel limit

Figure 3: Relationship between non-relativistic limit and non-relativistic parametrisation of ExFT
.

Inserting the non-Riemannian parametrisation into the ExFT action or equations of motion will then
reproduce the finite action and equations of motion results from taking the limit, after decomposing.
For the action, we calculate this decomposition in appendix 10. What we will show next is that,
remarkably, the ExFT equations of motion also automatically reproduce the Poisson equation (7.41).

Generalised metric and equations of motion

We now take a closer look at the consequences of using the non-relativistic parametrisation of the
generalised metric. We focus on the d = 3 SL(3)×SL(2) ExFT. For the d = 3 Newton-Cartan geometry,
H ij and Hij have rank zero and so are identically zero. The longitudinal metric τij is a three-by-three
matrix and in fact invertible, with Ω2 = − det τ . The resulting non-Riemannian parametrisation of the
generalised metric (9.7) is

Mij = Ω−2/3τij , Mαβ =

(
2ϕ 1
1 0

)
, ϕ ≡ 1

3!
εijkCijk , (9.30)

Comparing (9.30) and (9.8), we can note that (9.30) is the most general possible SL(2) non-Riemannian
parametrisation (up to the sign of the off-diagonal components), as this is completely fixed by requiring
M22 = 0 which prevents us from interpreting that component as the determinant of a standard three-
dimensional spacetime metric.

Normally, the generalised metric Mαβ encodes two degrees of freedom. It is clear that the non-
Riemannian parametrisation given by (9.30) is restricted and is missing one degree of freedom. We
may identify this missing degree of freedom with the overall scale of the longitudinal metric, as the
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latter only appears in the combination |det τ |−1/3τij, which is conformally invariant. This makes the
dilatation invariance trivial in this formulation.

If we insert this parametrisation into the SL(3)× SL(2) pseudo-action, with Lagrangian (9.16), we
find that Lint as defined in (9.19) vanishes, while

1

4
DµMijDµMij +

1

4
DµMαβDµMαβ =

1

4
Dµ(Ω2/3τ ij)Dµ(Ω−2/3τij) . (9.31)

This reproduces exactly the expected terms in the d = 3 case of (10.27) and (10.28).
Notice that the kinetic terms for Mαβ completely drop out. So if we insert the non-relativistic

parametrisation into the action, and then vary with respect to ϕ, we will never find an equation in-
volving DµDµϕ, i.e the Poisson equation. However, instead we can consider the equations of motion of
the generalised metric, which can be evaluated independently of its choice of parametrisation. These
will provide the missing Poisson equation. This is exactly analogous to the situation in DFT, see the
discussions in [26,36]. One has to make a choice about whether you allow the equations of motion that
follow from variations of the generalised metric that do not preserve the non-Riemannian parametrisa-
tion. In both the DFT SNC case, and the present case, there is exactly one such independent variation,
which provides an additional equation of motion beyond what is obtained by varying the fields of the
parametrisation themselves.

Let’s see how this works. Naively, the result of varying the generalised metricMαβ in the action is

δS =

∫
d8x d6Y

√
gδMαβKαβ , (9.32)

with

Kαβ = −1
4

1√
g

(
Dµ(
√
gDµMαβ)−MαγMβδDµ(

√
gDµMγδ)

)
+

1

4
MαγMβδMijFµνiγFµνjδ +

1

96
MαγMβδJµνρσγJ µνρσδ

+ 1
4
Mij

(
∂i(α|Mkl∂j|β)Mkl + ∂i(α|Mγδ∂j|β)Mγδ + ∂i(α|gµν∂j|β)g

µν
)

− 1
2
Mij∂iα∂jβ ln g + 1√

g
∂i(α|(

√
g∂j|β)Mij)

− 1
2
Mij

(
∂i(α|Mkl∂k|β)Mlj + ∂i(α|Mγδ∂jγM|β)δ

)
+ 1

2
√
g
(∂iγ(
√
gMijMγδ∂j(αMβ)δ)−Mγ(αMβ)δ∂jκ(

√
gMijMεγ∂iεMκδ)

− 1
4
√
g
(∂iγ(
√
gMijMγδ∂jδMαβ)−MαγMβδ∂iε(

√
gMijMεκ∂jκMγδ) .

(9.33)

Now, the variation δMαβ cannot be arbitrary but must preserve that |detM|= 1. This ensures that one
gets two rather than three independent equations, corresponding to the usual two degrees of freedom
encoded inMαβ. The true equation of motion taking this into account is:

Rαβ ≡ Kαβ − 1
2
MαβMγδKγδ = 0 . (9.34)

This can be thought of as the vanishing of a generalised Ricci tensor, Rαβ. For the non-Riemannian
parametrisation (9.30), the two independent equations are

R22 = K22 = 0 , R11 − 2ϕR22 = K11 − 2ϕK12 = 0 . (9.35)

Setting ∂i1 ≡ ∂i, ∂i2 = 0, we have explicitly that

K22 = +1
4
MijFµν

iF µνj + 1
96
FµνρσF

µνρσ = 0 . (9.36)
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This is the equation of motion (7.15) arising as the totally longitudinal part of the equation of motion
of the three-form. This is consistent with its appearance here as the equation of motion of ϕ, which is
indeed the totally longitudinal part of the three-form.

The other equation of motion is (after using (9.36))

0 = K11 − 2ϕK12

= − 1√
g

1
6
εijkDµ(

√
ggµνFνijk)

− 1
8
MkmMlnFµνklF

µν
mn + 1

96
FµνρσijkF

µνρσ
lmn

1
3!3!
εijkεlmn

+ 1
4
Mij

(
∂iMkl∂jMkl + ∂igµν∂jg

µν
)
− 1

2
Mij∂iMkl∂kMjl

− 1
2
Mij∂i∂j ln g − 1√

g
∂i(
√
g∂jMij) .

(9.37)

Here we have Fµijk = DµCijk−3∂[iC|µ|jk], having used DµM11 = DµM11−εijk∂iAµjkM12. We can then
identify (9.37) as the Poisson equation for ϕ ≡ 1

6
εijkCijk, as it has the form 1√

g
Dµ(
√
gDµϕ)+ · · · = 0. It

is conjugate to the variation δM11. For the non-Riemannian parametrisation,M11 = 0, so allowing this
variation corresponds to allowing variations that do not respect the parametrisation. In terms of the
expansion ofMαβ in powers of 1/c, this variation is subleading in origin. Finally, one can precisely check
that this equation (9.37) is indeed exactly the Poisson equation (7.41), which we found at subleading
order in the expansion of the relativistic theory, and here is rewritten in terms of ExFT variables after
making the dimensional decomposition of all the fields. (It can be easily checked that the gauge field
terms match, using (10.30) to relate the seven-form components appearing here to those of F̃4, and a
patient calculation shows that inserting the dimensional decomposition of the eleven-dimensional fields
matches perfectly.)

Structure of generalised Ricci tensor Geometrically, Rαβ should be thought of as (the SL(2) part
of) a generalised Ricci tensor. It is a symmetric generalised tensor of weight 0 and obeysMαβRαβ = 0.
When we take the relativistic parametrisation (9.8) of the generalised metric, it can therefore be
parametrised as

Rαβ = 1
2

(
1 Ĉ
0 1

)(
|φ|1/2Rφ RC

RC |φ|−1/2Rφ

)(
1 0

Ĉ 1

)
(9.38)

with Rφ and RC tensors of three-dimensional weight 0, such that the variation of the action leads to

δS ⊃ −
∫

d8x d6y
√
g

(
δ|φ|1/2

|φ|1/2
Rφ + |φ|−1/2δĈRC

)
(9.39)

Let’s examine what happens to the components of Rαβ in the non-relativistic limit. We have |φ|1/2=

Ωc3, Ĉ = −c3Ω + C + c−3C̃. This leads to the expression

Rαβ = 1
2

(
1 C
0 1

)(
c3Ω(Rφ −RC) RC −Rφ

RC −Rφ c−3Ω−1Rφ

)(
1 0
C 1

)
(9.40)

So in principle the independent equations are still RC and Rφ. However, we already know that this
generalised Ricci tensor has no leading parts in c when we take the limit (because none of the ExFT
fields contain singular terms). If we expand

Rφ = c3R(3)
φ + c0R(0)

φ + c−3R(−3)
φ , RC = c3R(3)

C + c0R(0)
C + c−3R(−3)

C , (9.41)

it must be that we have R(3)
φ = R(3)

C , R(0)
φ = R(0)

C , viewed as off-shell identities, and the independent
equations of motion, i.e. those appearing as the actual finite entries of Rαβ, are actually

R(3)
φ = 0 , R(−3)

φ −R(−3)
C = 0 . (9.42)
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The former is conjugate to δM22 and the latter to the δM11 that is forbidden if we insist on keeping
a non-Riemannian parametrisation. We can go back to the variation (9.39) and expand that:

δS = −
∫

d8x d6y
√
g
(
δ ln Ω(Rφ −RC) + Ω−1c−3δCRC

)
, (9.43)

hence the first non-zero variations are

δS = −
∫

d8x d6y
√
g
(
c−3δ ln Ω(R(−3)

φ −R(−3)
C ) + Ω−1δCR(3)

C

)
. (9.44)

We see again that we get the longitudinal equation of motion for the three-form at finite order, and
the extra Poisson equation of motion comes from a subleading variation associated to the variation of
the volume factor Ω, which otherwise has no dynamics associated to it in this formulation.

Generating non-relativistic generalised metrics via U-duality

Non-trivial U-duality transformations act as SL(2) transformations on the generalised metric Mαβ,

via M → M′ = UTMU with detU = 1. Parametrising U =

(
a b
c d

)
the transformation of the

non-relativistic parametrisation (9.30) gives

M′
αβ =

(
2a(aϕ+ c) 2abϕ+ ad+ bc

2abϕ+ ad+ bc 2b(bϕ+ d)

)
, (9.45)

and this remains in the non-relativistic form only if b = 0, or else if ϕ is constant and d = −bϕ. In the
former case, the effect of the transformation is ϕ→ a(aϕ+ c) and so amounts to a scaling and shift of
the three-form.

The genuine non-geometric U-dualities correspond to the SL(2) inversion symmetry with a = d = 0,
bc = −1. If ϕ < 0, this takes us from the non-relativistic parametrisation to a relativistic one with

φij = (− 1
2ϕ

)2/3(det τ)−1/3τij , Cijk = − 1
2ϕ
εijk . (9.46)

These obey |detφ|= C2 which corresponds to a ‘critical’ three-form.
We can apply this to a real supergravity background along the lines of [33,40], namely the M2 brane

solution in the form

ds2 = f−2/3ηijdy
idyj + f 1/3δµνdx

µdxν , Cijk = (f−1 + γ)εijk , (9.47)

where the harmonic function f obeys ∂µ∂µf = 0 and γ is a constant. This has constant exceptional
field theory 8-dimensional metric, gµν = δµν , while

Mij = ηij , Mαβ =

(
−γ(f + 2γ) −(1 + γf)
−(1 + γf) −f

)
. (9.48)

Sending f → 0 corresponds exactly to the original limit (??). Alternatively, we can formally U-dualise
along the yi directions (including time) to obtain a solution with

Mαβ =

(
−f 1 + γf

1 + γf −γ(f + 2γ)

)
. (9.49)

The standard M2 solution has γ = −1 and f = 1 + q
r6 , with r2 ≡ δµνx

µxν . In this case, the generalised
metric (9.49) corresponds to the negative M2 solution [56]:

ds2 = f̃−2/3ηijdy
idyj + f̃ 1/3δµνdx

µdxν , Cijk = (f̃−1 − 1)εijk , f̃ = 1− q
r6 . (9.50)
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This solution has a naked singularity at f̃ = 0 ⇔ f − 2 = 0. Evidently the generalised metric (9.49)
is non-singular everywhere and at f̃ = 0 becomes non-relativistic. This suggests [22] interpreting such
backgrounds as containing a singular locus at which the geometry degenerates to a non-relativistic one.

If we alternatively take γ = 0 then the generalised metric (9.49) has the non-relativistic form
everywhere, with ϕ ≡ −1

2
f . If we now reconsider the equation of motion (9.37) which can only be

found by varying the generalised metric before inserting the parametrisation, then this is exactly the
equation ∇2f = 0 obeyed by the harmonic function. Finally, we can reconstruct the full 11-dimensional
MNC geometry:

τ̂µ̂
A = (0, δi

A) , Ĥ µ̂ν̂ =

(
δµν 0
0 0

)
, C012 = −1

2
f . (9.51)

9.3 Gauge fields and self-duality in SL(3)× SL(2) ExFT

Now let’s look at what happens in the gauge field sector of the SL(3)× SL(2) ExFT. Let’s repeat the
parametrisations (9.13) and (9.15) now for the field strength components of the non-relativistic theory:

Fµνi1 ≡ Fµν
i , Fµνi2 ≡

1

2
εijk(Fµνjk − CjklFµνl) , Hµνρi ≡ −Fµνρi , (9.52)

Jµνρσ1 ≡ Fµνρσ , Jµνρσ2 ≡ 1

6
εijk(Fµνρσijk − CijkFµνρσ) . (9.53)

Then the kinetic terms (9.18) in the SL(3)× SL(2) ExFT pseudo-action (9.16) are

− 1
4
MijMαβFµνiαFµνjβ− 1

12
MijHµνρiHµνρ

j = −1
4
Ω−2/3τijF

µνiεjklFµνkl−
1

12
Ω2/3τ ijFµνρiF

µνρ
j , (9.54)

which matches the corresponding terms in the decomposition (10.27) of the non-relativistic action.
To discuss the three-form gauge field, consider the SL(3)×SL(2) ExFT equation of motion obtained

from the pseudo-action by varying Cµνρα:

Dσ(
√
|g|MαβJ µνρσβ)− 2∂iα(

√
|g|MijHµνρ

j)

− 48κεαβε
µνρσ1...σ5

(
Dσ1Jσ2...σ5

β + 4Fσ1σ2

iβHσ3σ4σ5i

)
= 0 .

(9.55)

After varying, we must also impose the constraint (9.14). This constraint involves the generalised
metric, and so it is sensitive to whether we are describing the relativistic or non-relativistic theory.
However, in either case, using the constraint in the equation of motion of Cµνρ2 in fact produces the
Bianchi identity (9.12) for Jµνρσ1 = Fµνρσ. In the relativistic case, with the Riemannian parametrisation
(9.8) of the generalised metric (or its Euclidean version), we could go on to use the constraint to
eliminate Jµνρσ2 from the equation of motion of Cµνρ2. The result would be the equation of motion of
the three-form Cµνρ following from the decomposition of 11-dimensional SUGRA.

Now let’s consider the situation where the generalised metric admits the non-relativistic parametri-
sation (9.30). In this case, choosing the minus sign for κ, the constraint (9.14) implies that

√
g F µνρσ = − 1

4!
εµνρσλ1...λ4Fλ1...λ4 ,

√
g F µνρσ

ijk = + 1
4!
εµνρσλ1...λ4Fλ1...λ4ijk . (9.56)

So we can no longer eliminate Fµνρσijk in favour of Fµνρσ. This is clearly as expected for the MNC theory
for which the former indeed appears explicitly in the action and equations of motion (note it is related
to F̃µνρσ via (10.30)). We therefore see that the ExFT constraint gives not only the expected constraint
(6.26) that the original four-form field strength becomes self-dual, but also the duality condition with
opposite sign which is obeyed by the dual seven-form (6.47). Thus the SL(3)×SL(2) ExFT contains the
expected degrees of freedom of the non-relativistic theory, and efficiently rearranges them into self-dual
and anti-self-dual parts automatically on the non-Riemannian parametrisation.
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10 Dimensional Decomposition of Non-Relativistic Action for
ExFT

Decomposition of R(0) Consider the part of the scalar curvature R(0) as defined in (6.23) not
involving the longitudinal metric, but just the transverse metrics Ĥµ̂ν̂ and Ĥ µ̂ν̂ and the measure factor
Ω̂. In the dimensional decomposition used in exceptional field theory, the latter two factorise as

Ĥµ̂ν̂ = Uµ̂
ρ̂Uν̂

σ̂H̄ρ̂σ̂ , Ĥ µ̂ν̂ = (U−1)ρ̂
µ̂(U−1)σ̂

ν̂H̄ ρ̂σ̂ , (10.1)

with
Uµ̂

ν̂ =

(
δµ
ν Aµ

j

0 δi
j

)
, H̄µ̂ν̂ =

(
Gµν 0

0 Hij

)
, H̄ µ̂ν̂ =

(
Gµν 0

0 H ij

)
. (10.2)

Here Gµν is the inverse of Gµν , but H ij and Hij are not invertible. The idea is to completely factor out
the matrix U from derivatives of Ĝ. Defining

∂µ̂Ĥν̂ρ̂ = Uµ̂
σ̂Uν̂

λ̂Uρ̂
κ̂∂H σ̂λ̂κ̂ , ∂µ̂Ĥ

ν̂ρ̂ = Uµ̂
σ̂(U−1)λ̂

ν̂(U−1)κ̂
ρ̂∂hσ̂

λ̂κ̂ (10.3)

we have the relatively simple expressions

∂Hµν̂ρ̂ =

(
D̄µGνρ HklD̄µAν

l

HjlD̄µAρ
k D̄µHjk

)
, ∂H iν̂ρ̂ =

(
∂iGνρ Hkl∂iAν

l

Hjl∂iAρ
k ∂iHjk

)
(10.4)

∂Hµ
ν̂ρ̂ =

(
D̄µG

νρ −GνσD̄µAσ
k

−GρσD̄µAσ
j D̄µH

jk

)
, ∂H i

ν̂ρ̂ =

(
∂iG

νρ −Gνσ∂iAσ
k

−Gρσ∂iAσ
j ∂iH

jk

)
(10.5)

where D̄µ ≡ ∂µ − Aµi∂i. For instance, consider the following terms in the scalar curvature:

1
4
H̄ µ̂ν̂∂H µ̂ρ̂σ̂∂H ν̂

ρ̂σ̂ − 1
2
H̄µν∂Hµ

ρσ∂Hρνσ . (10.6)

A fairly straightforward calculations shows that these equal

1
4
GµνDµGρσDνG

ρσ − 1
2
GµνDµG

ρσDρGνσ − 1
4
GµνGρσHijFµρ

iFνσ
j + 1

4
GµνDµHijDνH

ij

+ 1
4
H ij(∂iGρσ∂jG

ρσ + ∂iHkl∂jH
kl)− 1

2
H ij∂iH

kl∂kHjl

− 1
2
(δik +H ijHjk)D̄µAν

k∂iG
µν +GµνH ijHjk∂lAµ

k∂iAν
l

(10.7)

where Fµνi ≡ 2D̄[µAν]
i, Dµ = ∂µ − LAµ , and acting on Gµν and Gµν , we have Dµ = D̄µ.

Next, consider the part of R(0) that involves τ :

1
4
Ĥ µ̂ν̂∂µ̂τ̂ρ̂σ̂∂ν̂ τ̂

ρ̂σ̂ + 1
4
τ̂ µ̂ν̂∂µ̂τρ̂σ̂∂ν̂Ĥ

ρ̂σ̂ − 1
2
τ̂ µ̂ν̂∂ν̂H

ρ̂σ̂∂ρ̂τ̂µ̂σ̂ − 1
2
Ĥ µ̂ν̂∂ν̂ τ̂

ρ̂σ̂∂ρ̂τ̂µ̂σ̂ (10.8)

Similar calculations to above give

1
4
GµνDµτijDντ

ij + gµντ ikτkj∂iAµ
l∂lAν

j − 1
2
τ ikτkjD̄µAν

k∂iG
µν

+ 1
4
H ij∂iτkl∂jτ

kl + 1
4
τ ij∂iτkl∂jH

kl − 1
2
τ ij∂jH

kl∂kτil − 1
2
H ij∂jτ

kl∂kτil
(10.9)

The terms involving τ ikτkj on the first line here combine with the terms involving H ikHkj in the last
line of (10.7) and sum up to give δij = H ikHkj + τ ikτkj, after which point the rest of the calculation
proceeds identically to that normally used in exceptional field theory.

Finally one has the terms

− Ḡµ̂ν̂ ∂̄µ̂ ln Ω̂ ∂̄ν̂ ln Ω̂ + 2∂̄µ̂ ln Ω̂ ∂Gν̂
µ̂ν̂ − ∂µ̂∂ν̂Ĝµ̂ν̂ − Ĝµ̂ν̂∂µ̂∂ν̂ ln Ω̂ (10.10)
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where Ω̂ has weight 1, and in the final two terms ∂̄µ ≡ D̄µ, ∂̄i ≡ ∂i. Note Dµ ln Ω̂ = D̄µ ln Ω̂−∂iAµi. We
let Ω̂ = Ω

√
|G|, where Ω has weight 1 under internal diffeomorphisms. Straightforward manipulations

allow one to rewrite (10.10) in the decomposition and combine with (10.7) and (10.9) After dropping
a total derivative, the final result is:

R(0)(Ĥ, τ̂) = Rext(G) +R(0)(H, τ)− 1
4
Fµν

iFρσ
jGµρGνσHij

+ 1
4
Gµν(DµHijDνH

ij +DµτijDντ
ij +Dµ ln Ω2Dν ln Ω2)

+ 1
4
H ij(∂iGµν∂jG

µν + ∂iln|G|∂jln|G|)
(10.11)

where
Rext(g) =1

4
GµνDµGρσDνG

ρσ − 1
2
GµνDµG

ρσDρGνσ − 1
4
GµνDµ ln|G|Dν ln|G|

−Dµ ln|G|DνG
µν −GµνDµDν ln|G|−DµDνG

µν ,
(10.12)

R(0)(H, τ) = +1
4
H ij∂iτkl∂jτ

kl + 1
4
τ ij∂iτkl∂jH

kl − 1
2
τ ij∂jH

kl∂kτil − 1
2
H ij∂jτ

kl∂kτil

+ 1
4
H ij∂iHkl∂jH

kl − 1
2
H ij∂jH

kl∂kHil − 1
4
H ij∂iln Ω2∂jln Ω2

− ∂iln Ω2∂jH
ij − ∂i∂jH ij −H ij∂i∂jln Ω2 .

(10.13)

The measure factor is Ω̂ = Ω
√
|G|. To obtain an Einstein frame action, we let

Gµν = Ω
− 2

9−d gµν . (10.14)

Gauge fields The compact expressions (9.4) and (9.5) are equivalent to

Cµ̂ν̂ρ̂ = (U−1)λ̂1
µ̂(U−1)λ̂2

ν̂(U
−1)λ̂3

ρ̂Cλ̂1...λ̂3
, Fµ̂ν̂ρ̂σ̂ = (U−1)λ̂1

µ̂(U−1)λ̂2
ν̂(U

−1)λ̂3
ρ̂(U

−1)λ̂4
σ̂Fλ̂1...λ̂4

,
(10.15)

giving in components

Cijk ≡ Cijk , Cµij ≡ Cµij − AµkCijk ,
Cµνi ≡ Cµνi − 2A[µ

jCν]ij + Aµ
jAν

kCijk ,

Cµνρ ≡ Cµνρ − 3A[µ
iCνρ]i + 3A[µ

iAν
jCρ]ij − AµiAνjAρkCijk ,

(10.16)

Fmnpq = 4∂[mCnpq] , Fµmnp = DµCmnp − 3∂[mC|µ|np]

Fµνmn = 2D[µCν]mn + Fµν
pCpmn + 2∂[mC|µν|n] ,

Fµνρm = 3D[µCνρ]m + 3F[µν
nCρ]mn − ∂mCµνρ ,

Fµνρσ = 4D[µCνρσ] + 6F[µν
mCρσ]m ,

(10.17)

where Fµνi is as defined in (9.3). The original Bianchi identity dF4 = 0 becomes a set of equations

DµFmnpq = 4∂[mFnpq] ,
2D[µFν]mnp = −3∂[m|Fµν|np] − FµνqFqmnp ,
3D[µFνρ]mn = 2∂[m|Fµνρ|n] + 3F[µν

pFρ]pmn ,
4D[µFνρσ]m = −∂mFµνρσ + 6F[µν

pFρσ]mp ,
5D[µFνρσλ] = 10F[µν

mFρσλ]m .

(10.18)

The above formulae are applicable to any dimensional reduction. In particular for the 11-dimensional
MNC theory they allow us to easily decompose the terms in the action (6.27). For example, using the
Einstein frame metric to raise indices, the kinetic terms for the field strength are:

− 1
12
Ĥ µ̂1ν̂1Ĥ µ̂2ν̂2Ĥ µ̂3ν̂3 τ̂ µ̂4ν̂4Fµ̂1µ̂2µ̂3µ̂4Fν̂1ν̂2ν̂3ν̂4

= − 1
12

Ω6/(9−d)τ ijF µνρ
iFµνρj − 1

4
Ω4/(9−d)H ijτ klFµνikF

µν
jl

− 1
4
Ω2/(9−d)H ijHklτ pqFµikpF

ν
jlq − 1

4
H ijHklHmnτ pqFikmpFjlnq .

(10.19)
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Similar manipulations apply to the rest of the action. Let us also indicate how the factorisation applies
to an equation of the form ∂σ̂X

µ̂ν̂ρ̂σ̂ = Θµ̂ν̂ρ̂ where X has weight 1, and both X and Θ admit a
factorisation via U−1 in terms of quantities X̄ and Θ̄ independent of bare Aµi. This is of course the
form of the gauge field equation of motion (6.21). After decomposing, one has the simple expression

DσX̄
µ̂ν̂ρ̂σ + ∂lX̄

µ̂ν̂ρ̂l + 3
2
Fκλ

lδ
[µ̂
l X̄

ν̂ρ̂]κλ = Θ̄µ̂ν̂ρ̂ . (10.20)

Constraint The constraint (6.26) decomposes in terms of the redefined strengths:

√
gΩ

6
9−d gµ1ν1 . . . gµ4ν4Fν1...ν4 = − 1

4!
εµ1...µ4ν̂1...ν̂4ijk 1

6
εABCτi

Aτj
Bτk

CFν̂1...ν̂4 ,

√
gΩ

4
9−d gµ1ν1 . . . gµ3ν3H ijFν1ν2ν3j = − 1

4!
εµ1...µ3iν̂1...ν̂4pqr 1

6
εABCτp

Aτq
Bτr

CFν̂1...ν̂4 ,

√
gΩ

2
9−d gµ1ν1gµ2ν2H i1j1H i2j2Fν1ν2j1j2 = − 1

4!
εµ1µ2i1i2ν̂1...ν̂4pqr 1

6
εABCτp

Aτq
Bτr

CFν̂1...ν̂4 ,√
ggµ1ν1H i1j1 . . . H i3j3Fνj1j2j3 = − 1

4!
εµi1...i3ν̂1...ν̂4pqr 1

6
εABCτp

Aτq
Bτr

CFν̂1...ν̂4 ,

√
gΩ
− 2

9−dH i1j1 . . . H i4j4Fj1j2j3j4 = − 1
4!
εi1...i4ν̂1...ν̂4pqr 1

6
εABCτp

Aτq
Bτr

CF̂ν̂1...ν̂4 .

(10.21)

For instance, when d = 3 only the first of these is non-zero, giving:
√
gΩgµ1ν1 . . . gµ4ν4Fν1...ν4 = − 1

4!
εµ1...µ4ν1...ν4ijk 1

6
εABCτi

Aτj
Bτk

CFν1...ν4 ,

= − 1
4!
εµ1...µ4ν1...ν4ΩFν1...ν4 .

(10.22)

When d = 4 only the first two are non-zero:

√
gΩ

6
5 gµ1ν1 . . . gµ4ν4Fν1...ν4 = − 1

3!
εµ1...µ4ν1...ν3lijk 1

6
εABCτi

Aτj
Bτk

CFν1ν2ν3l ,

√
gΩ

4
5 gµ1ν1 . . . gµ3ν3H ijFν1ν2ν3j = − 1

4!
εµ1...µ3iν1...ν4pqr 1

6
εABCτp

Aτq
Bτr

CFν1...ν4 ,
(10.23)

or if we take 1
6
εijklεABCτi

Aτj
Bτk

Chl = Ω these are

√
gΩ

1
5 gµ1ν1 . . . gµ4ν4Fν1...ν4 = 1

3!
ηεµ1...µ4ν1...ν3hlFν1ν2ν3l ,

√
ggµ1ν1 . . . gµ3ν3H ijFν1ν2ν3j = 1

4!
ηεµ1...µ3ν1...ν4hiΩ

1
5Fν1...ν4 .

(10.24)

Here H ij = hihj (as it has rank 1), and so both of these are equivalent.

Result Putting everything together, the dimensional decomposition of the finite action S(0) is:

S(0) =

∫
d11−dx ddy

√
g(Rext(g) + Lkin + Lint + LF̃ +

√
g−1LCS) . (10.25)

Here, using gµν to raise (11− d)-dimensional indices, we have

Rext(g) =
1

4
gµνDµgρσDνg

ρσ − 1

2
gµνDµg

ρσDρgνσ +
1

4
gµνDµ ln gDν ln g +

1

2
Dµ ln gDνg

µν , (10.26)

Lkin = 1
4
(DµH

ijDµHij +Dµτ
ijDµτij − 1

9−dDµ ln Ω2Dµ ln Ω2) + 1
2
Dµτk

AτA
kDµτl

BτB
l

+ 1
2
H ijFµiklεABCD

µτj
Aτ kBτ lC − 1

4
H ijHklτ pqFµikpF

µ
jlq

+ 1
4
Ω

2
9−d (− FµνiF µνjHij + FµνklF

µνmεABCτ
A
mτ

kBτ lC −H ijτ klFµνikF
µν
jl)

− 1
12

Ω
4

9−d τ ijFµνρiF
µνρ

j

(10.27)
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and

Ω
2

9−dLint = 1
4
H ij (∂ig

µν∂jgµν + ∂i ln g∂j ln g) + 1
2
Ω

2
9−d∂i(H

ijΩ
− 2

9−d )∂j ln g

+ 1
4
H ij∂iτkl∂jτ

kl + 1
4
τ ij∂iτkl∂jH

kl − 1
2
τ ij∂jH

kl∂kτil − 1
2
H ij∂jτ

kl∂kτil

+ 1
4
H ij∂iHkl∂jH

kl − 1
2
H ij∂jH

kl∂kHil

+ 1
4

d−7
(9−d)2H

ij∂i ln Ω2 ∂j ln Ω2 − 1
9−d∂i ln Ω2 ∂jH

ij

− 1
4
H ijHklHmnτ pqFikmpFjlnq + 1

4
H imHjnFijklεABCTmn

Aτ kBτ lC

+ 1
2
H ijTik

Aτ kATjl
Bτ lB .

(10.28)

The term LF̃ consists of a sum of contractions of F̃µνρσ, F̃µνρi, etc. (following analogous redefinition of
the components) with the constraints as decomposed in (10.21). For instance, when d = 3,

LF̃ = − 1
4!
F̃µ1...µ4(

√
gΩgµ1ν1 . . . gµ4ν4Fν1...ν4 + 1

4!
εµ1...µ4ν1...ν4ΩFν1...ν4) , (10.29)

In this case the relationship between the dual seven-form field strength and F̃µνρσ gives

1
6
εijkFµ1...µ4ijk = Ω(F̃µ1...µ4 + 1

4!

√
gεµ1...µ4ν1...ν4F̃

ν1...ν4) . (10.30)

When d = 4,

LF̃ = − 1
3!

(
F̃µ1µ2µ3ih

i − Ω1/5ελ1...λ4σ1...σ3 1
4!

1√
g
gσ1µ1 . . . gσ3µ3F̃λ1...λ4

)
×

×
(
√
gΩ

4
5 gµ1ν1 . . . gµ3ν3hjFν1ν2ν3j − Ω 1

4!
εµ1...µ3ν1...ν4Fν1...ν4

)
,

(10.31)

Using (6.46) we can rewrite (10.31) in terms of the dual seven-form field strength directly as

LF̃ = + 1
3!4!
Fµ1...µ3ijklε

ijkl

(
√
gΩ−

1
5 gµ1ν1 . . . gµ3ν3hjFν1ν2ν3j − 1

4!
εµ1...µ3ν1...ν4Fν1...ν4

)
. (10.32)

Finally, the Chern-Simons term can be worked out by taking wedge products of (9.5) and (9.4), we do
not display this explicitly.

11 The SL(5) ExFT and its Non-Relativistic Parametrisation
In the d = 4 case, more of the degenerate Newton-Cartan structure is preserved.

Elements of SL(5) ExFT For d = 4, generalised vectors V M = (V i, Vij) transform in the 10 of
SL(5), with i, j, . . . now four-dimensional. This representation is the antisymmetric representation,
and we can see this more clearly as follows. LetM,N , . . . denote fundamental five-dimensional indices
of SL(5). Then we can equivalently write a generalised vector as carrying an antisymmetric pair of
such indices, V M ≡ VMN = −V NM, and on writing M = (i, 5) we can identify V i5 ≡ V i, and
V ij ≡ 1

2
εijklVkl. The generalised Lie derivative acting on vectors of weight λV is explicitly

LΛV
MN = 1

2
ΛPQ∂PQV

MN + 2∂PQΛP[MV N ]Q + 1
2
(1 + λV + ω)∂PQΛPQVMN . (11.1)

The section condition is εMNPQK∂MN∂PQ = 0, and below we work with the M-theory solution, where
splitting M = (i, 5) the derivatives ∂ij are viewed as identically zero, and the derivatives ∂i5 are
identified with the 4-dimensional partial derivatives.
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In this case, the generalised metric admits a factorisation

MMN ,PQ = −(mMPmQN −mMQmPN ) (11.2)

where the ‘little metric’mMN is symmetric and has unit determinant. The overall sign in this expression
needed for the ExFT action to reproduce SUGRA correctly when we include timelike signatures in the
generalised metric, according to the conventions of [40].

The gauge fields, AµM , BµνM, CµνρM and DµνρσM have weights 1/5, 2/5, 3/5 and 4/5 respectively,
with field strengths denoted FµνM , HµνρM, JµνρσN and KµνρσλM . Under generalised diffeomorphisms,
FM transforms as a generalised vector of weight 1/5, while H and J transform via the generalised Lie
derivative acting as

LΛHM = 1
2
ΛPQ∂PQHM +HP∂MQΛPQ , LΛJM = ∂PQ(1

2
ΛPQJM)− ∂PQΛPMJ Q . (11.3)

They obey Bianchi identities:

3D[µFνρ]
MN = 1

2
εMNPQK∂PQHµνρK , (11.4)

4D[µHνρσ]M + 3
4
εMNPKLF[µν

NPFρσ]
KL = ∂NMJµνρσN , (11.5)

5D[µJνρσλ]
M + 10F[µν

MNHρσλ]N = 1
2
εMNPQK∂NPKµνρσλQK . (11.6)

The dynamics follow from the variation of an action S =
∫

d7x d10yLExFT where LExFT has the same
form as (9.16), with Rext again as defined in (9.17), and [65]

Lkin = + 1
12
DµMMNDµMMN − 1

4
MMNFµνMFµνN − 1

12
mMNHµνρMHµνρ

N (11.7)

Lint(m, g) = 1
12
MMN∂MMKL∂NMKL − 1

2
MMN∂MMKL∂KMLN + 1

2
∂MMMN∂N ln|g|

+ 1
4
MMN (∂Mgµν∂Ng

µν + ∂M ln|g|∂N ln|g|) .
(11.8)

The topological term can be defined via its variation (again up to a choice of sign equivalent to changing
the sign of Ĉ3 in eleven-dimensional SUGRA):

δLtop = − 1
6·4!
εµ1...µ7

(
2δAµ1

MNHµ2µ3µ4MHµ5µ6µ7N + 6Fµ1µ2

MN∆Bµ3µ4MHµ5µ6µ7N

∂NM∆Cµ1µ2µ3

NJµ4...µ7

M
)
.

(11.9)

We refer to the original paper [65] or the review [45] for explicit details.

Review of 11-dimensional SUGRA embedding We start with the little metric, mMN . The
parametrisation reproducing (9.6) is

mMN = |φ|1/10

(
|φ|−1/2φij −|φ|−1/2φikĈ

k

−|φ|−1/2φjkĈ
k |φ|1/2(−1)t + |φ|−1/2φklĈ

kĈ l

)
, Ĉi ≡ 1

3!
εijklĈjkl . (11.10)

For the gauge fields, we can again identify AMµ = (Aµ
i, Ĉµij). However, we already require dualisations

when treating the two-forms. We get four 7-dimensional two-forms, Ĉµνi and a single three-form Ĉµνρ.
The latter can be dualised into an extra two-form, C̃µν (identifiable with the components Ĉµνijkl of the
six-form in eleven-dimensions) such that BµνM ∼ (Ĉµνi, C̃µν) gives a five-dimensional representation
of SL(5). Meanwhile, we can view Ĉµνρ together with the four four-forms Ĉµνρijk as comprising the
conjugate five-dimensional representation. The equations of motion of the SL(5) ExFT then imply
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that the field strengths of these two- and three-forms are related by duality. This involves the seven-
dimensional Hodge star acting on the seven-dimensional indices and the generalised metric acting on
the SL(5) indices: √

|g|mMPHµνρ
P = − 1

4!
εµνρσ1...σ4Jσ1...σ4

M (11.11)

Again, the field strengths are all tensors under generalised diffeomorphisms, we may make the (usual)
identifications consistent with the Bianchi identities [45]

Fµνi5 = Fµν
i , Fµνij = 1

2
εijkl(F̂µνkl − ĈklmF̂µνm) ,

Hµνρi = −F̂µνρi , Hµνρ5 = − 1
4!
εijkl(F̂µνρijkl − 4F̂µνρiĈjkl) ,

Jµνρσ5 = −F̂µνρσ , Jµνρσi = + 1
3!
εijkl(F̂µνρσjkl − ĈjklF̂µνρσ) .

(11.12)

Generalised metric The distinction between Riemannian and non-Riemannian parametrisations
can be seen at the level of the unit-determinant five-by-five little generalised metric. For an M-theory
parametrisation, this can be written as:

mMN =

(
mij mi5

mj5 m55

)
, m55 det(mij)− 1

6
mi5mj5ε

iklmεjpqrmkpmlqmmr = 1 . (11.13)

If det(mij) 6= 0 this leads to the Riemannian parametrisation (11.10) encoding a four-dimensional
metric, gij, and a three-form, Ĉijk. However, we can also have det(mij) = 0 with mij of rank 3 and
this leads to a non-Riemannian parametrisation which was worked out in [40]. We can rediscover this
parametrisation by taking the non-relativistic limit of (11.10) using (9.28). The resulting expression
for mMN is

mMN = Ω−4/5

(
τij

1
6
Hikε

klmnεABCτl
Aτm

Bτn
C − τikCk

1
6
Hjkε

klmnεABCτl
Aτm

Bτn
C − τjkCk τijC

iCj − 1
3
εjklmεABCHijτk

Aτl
Bτm

CCi

)
, (11.14)

in terms of four-dimensional Newton-Cartan variables and Ci ≡ 1
3!
εijklCjkl. The unit determinant

constraint implies that
− 1

3!
εi1...i4εj1...j4τi1j1τi2j2τi3j3Hi4j4 = Ω2 , (11.15)

which is the definition of Ω2 in this case. As Hij has rank 1, we can introduce a projective vielbein hi
such that Hij = hihj and we take

1
6
εijklεABCτi

Aτj
Bτk

Chl = Ω , (11.16)

choosing to fix an arbitrary sign (by sending τiA → −τiA if necessary) which could appear here (Ω is
assumed positive). Then (11.14) can be written as

mMN = Ω−4/5

(
τij −Ωhi − τikCk

−Ωhj − τjkCk τijC
iCj + 2ΩhiC

i

)
, (11.17)

which in this form can be checked to correspond to the parametrisation written down in [40] from first
principles. Note that the boost invariance, acting as

δhi = hjΛj
AτiA , δCi = −ΩΛj

Ahjτ iA , τ iAΛi
B = 0 , (11.18)

corresponds to a shift symmetry of the parametrisation (11.17) pointed out in [40]. This generalises
the Milne shift redundancy of the DFT non-Riemannian parametrisation [35]. Here we introduced the
inverse vielbeins hi and τ iA obeying the obvious relations

hih
i = 1 , τ iAτj

A + hihj = δij , τ iAhi = 0 τi
Ahi = 0 , τ iAτi

B = δBA . (11.19)
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The generalised metric in the 10 × 10 representation followng from the little metric (11.14) can be
seen to take the form (9.29), after rewriting in the basis where generalised indices run over vector and
two-form indices, and using the identities

εi1...i3kεj1...j3lτkl = −3! Ω2(τ j1[i1τ i2|j2|H i3]j3 + τ j2[i1τ i2|j3|H i3]j1 + τ j3[i1τ i2|j1|H i3]j2) ,

εi1...i3kεj1...j3lHkl = −3! Ω2τ i1[j1|τ i2|j2|τ i3|j3] .
(11.20)

It is useful to record the explicit expression for the inverse little metric:

mMN = Ω4/5

(
τ ij − 2Ω−1h(iCj) −Ω−1hi

−Ω−1hj 0

)
. (11.21)

Clearly, variations δmMN with δm55 6= 0 do not preserve this parametrisation. This means that if
we look at the equations of motion RMN = 0 of the generalised metric, we expect that R55 = 0
provides an additional equation of motion that we would not find by varying the action evaluated on
the non-relativistic parametrisation.

Field strengths and self-duality in SL(5) ExFT Our field strengths (11.12) are now

Fµνi5 = Fµν
i , Fµνij = 1

2
εijkl(Fµνkl − CklmFµνm) ,

Hµνρi = −Fµνρi , Hµνρ5 = − 1
4!
εijkl(Fµνρijkl − 4FµνρiCjkl) ,

Jµνρσ5 = −Fµνρσ , Jµνρσi = + 1
3!
εijkl(Fµνρσjkl − CjklFµνρσ) .

(11.22)

The kinetic terms (11.7) in the SL(5) ExFT action are:

−1
4
MMNFµνMFµνN − 1

12
mMNHµνρ

MHµνρN

= −1
4
Ω2/5

(
HijF

µνiFµν
j − εABCτiAτBjτCkF µνiFµνjk + τ iCτ

jCHklF µν
ikFµνjl

)
− 1

12
Ω4/5τ ijF µνρ

iFµνρj + 1
6
Ω−1/5hiF µνρ

i
1
4!
εjklmFµνρjklm

(11.23)

which match exactly the corresponding terms in (10.27) and (10.31), including the appearance of
components of the dual seven-form field strength.

We see again that the ExFT description automatically contains the correct dual fields to reproduce
the non-relativistic action immediately. It’s worthwhile to go into some detail about the appearance
of dual fields in the relativistic case. As mentioned above, the decomposition of the 11-dimensional
three-form in the (7 + 4)-dimensional split produces four two-forms, Ĉµνi and a single three-form, Ĉµνρ.
We exchange the latter for an additional two-form, Ĉµν , in order to obtain the five-dimensional SL(5)

multiplet BµνM = (Ĉµνi, Ĉµν). This is normally done by introducing the two-form into the action as a
Lagrange multiplier enforcing the Bianchi identity for F̂µνρσ. When this is done, the terms involving
F̂4 in the action are schematically F̂4 ∧ ?7F̂4 − Ĉ2 ∧ (dF̂4 + . . . ) + F̂4 ∧X3, where X3 denotes whatever
appears alongside F̂4 in the decomposition of the Chern-Simons term. Integrating by parts one defines
a field strength H3 ∼ dĈ2 + X3 and treating F̂4 then as an independent field, one can integrate that
out of the action to produce a kinetic term for H3. The latter is then the M = 5 component of the
ExFT field strength HµνρM, and in this way the ExFT action matches the partially dualised SUGRA
action.

In the non-relativistic theory, there is already no kinetic term for F4 in the decomposed action, as
seen from (10.27). It only appears (linearly) in the constraint term (10.31), schematically in the form
F4 ∧ (?7F̃4 + F̃3ih

i). So instead if we carry out the same procedure, we find that F4 equation of motion
sets H3 = ?7F̃4 + F̃3ih

i, which in this case exactly corresponds to the relationship between the dual
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seven-form and F̃4 as expressed by (6.46). Hence now it is this H3 that we identify with Hµνρijkl via
the above arguments. All this exactly mirrors what happened for the SL(3)× SL(2) case.

We finish with a brief look at the equations of motion. The field strength Jµνρσ of the gauge field
Cµνρ only appears in the topological term. This gauge field also appears in the field strength Hµνρ. Its
equation of motion has the form ∂MN θ

µνρN = 0 where

θµνρM ≡ √gmMPHµνρ
P + 1

4!
εµνρσ1...σ4Jσ1...σ4

M . (11.24)

Meanwhile the equation of motion of BµνM is

Dρ(
√
gmMNHµνρ

N ) + 1
8
εMPQKL∂PQ(

√
gMKL,K′L′FµνK

′L′)− 2
4!
εµνλ1...λ5Fλ1λ2

MNHλ3...λ5N = 0 . (11.25)

The M = 5 component combines with the M = 5 component of the Bianchi identity (11.6) to give
Dρθµνρ5 = 0. Hence we integrate and set θµνρM = 0. Let’s examine the content of this constraint.
Firstly, the θµνρ5 component implies

Ω−1/5√ghjF µνρ
j − 1

4!
εµνρσ1...σ4Fσ1...σ4 = 0 (11.26)

This is the 11-dimensional self-duality constraint (6.26) on the transverse part of the four-form field
strength, here decomposed as in (10.23). Secondly, setting θµνρi − Ciθµνρ5 = 0 and projecting gives

√
gΩ−1/5F µνρ

ijkl + 1
4!
εµνρσ1...σ44h[i|Fσ1...σ4|jkl] = 0 ,

√
gΩ4/5τ iAF µνρ

i − 1
4!
εµνρσ1...σ4τAi

1
3!
εijklFσ1...σ4jkl = 0 .

(11.27)

The first of these is part of the self-duality condition (6.47) obeyed by the totally longitudinal part of
the dual-seven form. The second is part of the duality between the partly longitudinal four-form and
the rest of the seven-form. We see again that the ExFT rearrangement of degrees of freedom exactly
captures the novel features of the eleven-dimensional non-relativistic limit.

12 The Extremal Nature of Exotic Branes Actions
In this research article, assuming the existence of some isometry directions, we construct effective
actions for various mixed-symmetry tensors that couple to exotic branes. We consider the cases of
the exotic 52

2-brane, the 16
4-brane, and the Dp7−p-brane, and argue that these exotic branes are the

magnetic sources of the non-geometric fluxes associated with polyvectors βij, βi1···i6 , and γi1···i7−p ,
respectively. As it is well-known, an exotic-brane background written in terms of the usual background
fields is not single-valued and has a U -duality monodromy. However, with a suitable redefinition of the
background fields, the U -duality monodromy of the exotic-brane background simply becomes a gauge
transformation associated with a shift in a polyvector, which corresponds to a natural extension of the
β-transformation known in the generalized geometry. Here we study the case of exotic super p-brane.
The contribution of the boundary terms in the variation of Sp is given by

δSp|Γ=

∮
dsµρ

µY ΛGΛΞδY
Ξ, (12.1)

where dsν = 1
p!
ενµ1µ2...µpdSµ1µ2...µp . Here, we consider the variational problem with the fix initial (τ = τi)

and final (τ = τf ) data, so the integral along the super p-brane profile for τ = (τi, τf ) does not contribute
to δSp|Γ ∫

sτ

dsτρ
τY ΛGΛΞδY

Ξ|τfτi = 0. (12.2)
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As a result, the variation δSp|Γ is filled out by the integrals along the p-dimensional boundaries of the
brane worldvolume containing the τ -direction

δSp|Γ= Σi=p
i=1

∫
si

dsiρ
iY ΛGΛΞδY

Ξ|σi=πσi=0 . (12.3)

In the case of variational problem with free ends, when the field variations on the p-brane boundaries
are arbitrary, the vanishing of these hypersurface terms in δSp|Γ gives the super p-brane boundary
conditions. As shown in the current literature, the Wess-Zumino term of the 52

2(34567, 89)-brane
action (smeared in the isometry directions, x8 and x9) can be written as

S
52

2
WZ = −µ52

2
n89

∫
M6×T 2

89

ιβ
(8)
89 ∧

dx8 ∧ dx9

(2πR8)(2πR9)
= −

µ52
2
n89

(2πR8)(2πR9)

∫
M6×T 2

89

β
(8)
89

= −µ52
2

∫
β

(8)
89 ∧ δ89(x−X(ξ)) (n89: number of the 52

2(34567, 89)-branes)(
δp1···pn(x−X(ξ)) ≡ np1···pn δ2(x−X(ξ))

(2πRp1) · · · (2πRpn)
dx1 ∧ dx2 , np1···pn ∈ Z

)
,

(12.4)

where we usedM6 the worldvolume of the 52
2-brane, and the Ramond-Ramond fields and the worldvol-

ume gauge fields are turned off for simplicity. Now, let us consider the dual action which additionally
includes the Wess-Zumino term

S[ g̃ij, φ̃, β
(8)
ij ] =

1

2κ2
10

∫ [
e−2φ̃ (∗̃ R̃ + 4 dφ̃ ∧ ∗̃ dφ̃)− 1

4
e2φ̃ g̃ik g̃jlQ

(9)
ij ∧ ∗̃Q

(9)
kl

]
− µ52

2

∫
1

2
β(8)
pq ∧ δpq(x−X(ξ)) .

(12.5)

Taking a variation with respect to β(8)
pq , we obtain the following equation of motion:

1

2κ2
10

dQ(1)pq =
µ52

2

(2πRp)(2πRq)
npq δ2(x−X(ξ)) dx1 ∧ dx2 . (12.6)

From (12.6), we conclude that the current for the 52
2(n1 · · ·n5,m1m2)-brane (in the absence of the

Ramond-Ramond fields) is given by

∗̃ j52
2(n1···n5,m1m2) =

(2πRm1)(2πRm2)

2κ2
10 µ52

2

dQ(1)m1m2 . (12.7)

According to the Wess-Zumino term of the 52
3(34567, 89)-brane action (smeared in the isometry

directions, x8 and x9) is written as

S
52

3
WZ = −µ52

3

∫
γ

(8)
89 ∧ δ89(x−X(ξ)) , (12.8)

where the B-field, the Ramond-Ramond 0- and 4-forms, and the worldvolume gauge fields are turned
off for simplicity, and δ89(x−X(ξ)) is defined in (12.4). As in the case of the 52

2-brane, if we consider
the action

S[ g̃ij, φ̃, γ
(8)
ij ] =

1

2κ2
10

∫ [
e−2φ̃ (∗̃R̃ + 4 dφ̃ ∧ ∗̃ dφ̃)− 1

4
e4φ̃ g̃ik g̃jl P

(9)
ij ∧ ∗̃P

(9)
kl

]
− µ52

3

∫
1

2
γ(8)
pq ∧ δpq(x−X(ξ)) ,

(12.9)
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and take a variation with respect to γ(8)
pq , we obtain the Bianchi identity for the P -flux with a source

term:

1

2κ2
10

dP (1)pq =
µ52

3

(2πRp)(2πRq)
npq δ2(x−X(ξ)) dx1 ∧ dx2 . (12.10)

As in the case of the β-supergravity, we can further find a solution corresponding to the (Euclidean)
background of an instanton that couples to γij electrically. The explicit form of the background fields
is presented.

We have presented various actions with the following form:

S[g̃ij, φ̃, Ai1···i7−p ] =
1

2κ2
10

∫ [
e−2φ (∗̃ R̃+4 dφ∧∗̃ dφ)− e2 (α+1) φ̃

2 (7− p)!
g̃i1j1 · · · g̃i7−pj7−p Q(1) i1···i7−p∧∗̃Q(1) j1···j7−p

]
,

(12.11)
where Q(1) i1···i7−p ≡ dAi1···i7−p is a non-geometric flux of which an exotic brane acts as the magnetic
source, and α is an integer. A list of non-geometric fluxes and their magnetic/electric sources.

The equations of motion are given by

R̃ + 4(∇̃i∂iφ̃− g̃ij ∂iφ̃ ∂jφ̃) + (α+1) e2 (α+2) φ̃

2 (7−p)! Qij1···j7−p Qij1···j7−p = 0 , (12.12)

R̃ij + 2∇̃i∂jφ̃− e2 (α+2) φ̃

2 (7−p)!

(
Qik1···k7−p Qjk1···k7−p − (7− p)Qk1

k2···k7−p Qk1
jk2···k7−p

−α+2
2
Qkl1···l7−p Qkl1···l7−p g̃ij

)
= 0 , (12.13)

dQ(9)
i1···i7−p = 0 , Q(9)

i1···i7−p ≡ e2 (α+1) φ̃ g̃i1j1 · · · g̃i7−pj7−p ∗̃ Q(1) j1···j7−p ≡ dA(8)
i1···i7−p . (12.14)

If we regard the dual potential A(8)
i1···i7−p as a fundamental field, the dual action is given by

S[g̃ij, φ̃, A(8)
i1···i7−p ] =

1

2κ2
10

∫ [
e−2φ (∗̃ R̃ + 4 dφ ∧ ∗̃ dφ)

− e2 (α̃+1) φ̃

2 (7− p)!
g̃i1j1 · · · g̃i7−pj7−p dA(8)

i1···i7−p ∧ ∗̃ dA(8)
j1···j7−p

]
,

(12.15)

where we defined α̃ ≡ −α− 2 . We can add the Wess-Zumino term of the exotic p7−p
−α -brane extending

in the xr1 , · · · , xrp-directions and smeared over the xs1 , · · · , xs7−p-directions:

SWZ = −µp7−p
−α

∑
s1,···,s7−p

∫
Mp+1×T 7−p

s1···s7−p

ns1···s7−p

(7− p)!
ιA(8)

s1···s7−p ∧
dxs1 ∧ · · · ∧ dxs7−p

(2πRs1) · · · (2πRs7−p)

= −µp7−p
−α

∫
1

(7− p)!
A(8)

s1···s7−p ∧ δ
s1···s7−p(x−X(ξ)) . (12.16)

Then, taking variation, we obtain the following Bianchi identity as the equation of motion:

d2As1···s7−p = 2κ2
10 µp7−p

−α

ns1···s7−p

(2πRs1) · · · (2πRs7−p)
δ2(x−X(ξ)) dx1 ∧ dx2 . (12.17)

If we choose ns1···s7−p = 1 and integrate the equation, we obtain

σ =

∫
d2As1···s7−p =

2κ2
10 µp7−p

−α

(2πRs1) · · · (2πRs7−p)
, (12.18)
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where we used As1···s7−p = ρ1 . From this relation and the value of σ given, we can confirm that µp7−p
−α

is indeed equal to the tension of the exotic brane:

µp7−p
−α

=
σ (2πRs1) · · · (2πRs7−p)

(2πls)7 ls g2
s

=
Mp7−p

−α

(2πRr1) · · · (2πRrp+1)
, (12.19)

where we used 2κ2
10 = (2πls)

7 ls g
2
s . It will be also important to investigate a reformulation of

the effective worldvolume theory of exotic branes by using the newly introduced background fields
(g̃ij, φ̃, Ai1···i7−p). More generally, it will be important to find a manifestly U -duality covariant formu-
lation for the effective worldvolume theory of exotic branes.

13 Wess-Zumino Actions of Exotic Branes
We considered the general solutions of the equations of motion in the simple model of closed and open
tensionless superstring and exotic p-branes. Using the OSp(1, 2M) invariant character of the differential
one-form Y ΛGΛΞdY

Ξ and two-form dY ΛGΛΞdY
Ξ one can construct more general OSp(1, 2M) invariant

super p-brane actions with enhanced supersymmetry. At first, we note that the closed 2n-differential
form Ω2n = (GΛΞdY

Λ ∧ dY Ξ)n

Ω2n = d ∧ Ω(2n−1) ≡ GΛ1Ξ1dY
Λ1 ∧ dY Ξ1 ∧ ... ∧GΛnΞndY

Λn ∧ dY Ξn (13.1)

which is not equal to zero, because of the symplectic character of the supertwistor metric GΛΞ, can be
used to generate the Dirichlet boundary terms for the open super p-brane (p = 2n − 1) described by
the generalized action

S = S2n−1 + β(2n−1)

∫
M2n

Ω2n. (13.2)

Similarly to the open superstring case, the Wess-Zumino integral in (13.2) is transformed to the integral
along the (2n− 1)-dimensional boundary M2n−1 of the super (2n− 1)-brane worldvolume∫

M2n

Ω2n =

∮
M2n−1

GΛ1Ξ1Y
Λ1 ∧ dY Ξ1 ∧ ... ∧GΛnΞndY

Λn ∧ dY Ξn . (13.3)

The sufficient conditions for the vanishing of the variations of the integral (13.3) with the fix initial
and final data are the conditions

∂τY
Λ(τ, σ)|σi=0,π= 0, (i = 1, 2, ..., 2n− 1) (13.4)

generalizing the Dirichlet boundary condition. Therefore, this open super p-brane is described by the
pure static solution

Y Λ(τ, σ) = Y Λ
0 (σi), (i = 1, 2, ..., 2n− 1) (13.5)

generalizing the superstring static solution. On the other hand the integrals (13.3)

S(2n−2) = β(2n−2)

∫
M2n−1

Ω2n−1,

Ω2n−1 ≡ GΛ1Ξ1Y
Λ1dY Ξ1 ∧ ... ∧GΛnΞndY

Λn ∧ dY Ξn (13.6)

can be considered as the OSp(1, 2M) invariant actions for the new models of super p-branes (p = 2n−2)
with enhanced supersymmetry. For n = 1 we get the known action for superparticles, but for n = 2, 3
we find the new actions for the supermembrane

S2 = β2

∫
M3

Ω3 = β̃2

∫
dτd 2σ εµνρY Λ∂µYΛ∂νY

Ξ∂ρYΞ, (13.7)
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or a domain wall in the symplectic superspace, and for the super four-brane

S4 = β4

∫
M5

Ω5 = β̃4

∫
dτd 4σ εµνρλφY Λ∂µYΛ∂νY

Ξ∂ρYΞ∂λY
Σ∂φYΣ. (13.8)

When the Wess-Zumino terms are considered as the boundary terms generating the Dirichlet bound-
ary conditions for the superstring and super p-branes (13.4) the breaking of the Weyl symmetry is
localized at the boundaries. It shows that the spontaneous breaking of the OSp(1, 2M) symmetry on
the boundaries is accompanied by the explicit breakdown of the Weyl gauge symmetry on the bound-
aries. Because the Dirichlet boundary conditions are associated with the Dp-branes attached on their
boundaries, a question on the action of Dp-branes in the symplectic superspaces considered here ap-
pears. It implies the correspondent generalization of the proposed Wess-Zumino actions. One of the
posssible generalizations is rather natural and is based on the observation that the Weyl invariance of
the considered Wess-Zumino actions may be restored by the minimal lengthening of the differentials
d → D = (d − A), where the worldvolume one-form A is the gauge field associated with the Weyl
symmetry. The covariant differentials DY Σ are homogeneously transformed under the Weyl symmetry
transformations

(DY Σ)′ ≡ ((d− A)Y Σ)′ = eλDY Σ, A′ = A+ dλ. (13.9)

Then the generalized OSp(1, 2M) invariant two and one-forms

(eφDY ΣGΣΞDY
Ξ)′ = eφDY ΣGΣΞDY

Ξ,

(eφY ΣGΣΞDY
Ξ)′ = eφY ΣGΣΞDY

Ξ (13.10)

become the invariants of the Weyl symmetry also, where the compensating scalar field φ, with the
transformation low

φ′ = φ− 2λ, (13.11)

was introduced. Then the closed 2n-differential form Ω2n = (GΛΞdY
Λ ∧ dY Ξ)n may be changed by the

Weyl invariant 2n-differential form Ω̃2n = (eφGΛΞDY
Λ ∧DY Ξ)n

Ω̃2n ≡ enφGΛ1Ξ1DY
Λ1 ∧DY Ξ1 ∧ ... ∧GΛnΞnDY

Λn ∧DY Ξn , (13.12)

and Ω2n−1 by Ω̃2n−1

Ω̃2n−1 ≡ enφY Λ1 ∧DYΛ1 ∧ ... ∧DY Λn ∧DYΛn . (13.13)

As a result, the actions (13.3) is transformed to the new super (2n− 1)-brane action

S̃(2n−1) = β(2n−1)

∫
M2n

Ω̃2n = β(2n−1)

∫
enφGΛ1Ξ1DY

Λ1 ∧DY Ξ1 ∧ ... ∧GΛnΞnDY
Λn ∧DY Ξn (13.14)

invariant under the OSp(1, 2M) and Weyl symmetries. Respectively, the action

S̃(2n−2) = β(2n−2)

∫
M2n−1

Ω̃2n−1 = β(2n−2)

∫
enφY Λ1 ∧DYΛ1 ∧ ... ∧DY Λn ∧DYΛn (13.15)

will describe a new OSp(1, 2M) and Weyl invariant super (2n− 2)-brane.
These actions may be presented in the Dp-brane like form

S̃p = β̃p

∫
dτd pσ e

(p+1)
2

φ
√
|det[(∂µ − Aµ)Y ΛGΛΞ(∂ν − Aν)Y Ξ]|, (p = 2n− 1), (13.16)

where β̃p is theDp-brane tension. We generalized this model to the higher orders in the derivatives of the
Goldstone fields and constructed the new Wess-Zumino like actions supposed to describe tensile exotic

67



p-branes. It was shown in deep detail, that the bosonic couplings described above were consistent with
all the linear couplings of closed superstring background fields with higher-dimensional supergravity
theory including exceptional degrees of freedom of multiple D-branes. These couplings were originally
computed in the current literature and then extended to Dp-branes with using T-duality symmetries.
We will review the illustration of the general formalism with presentation of the Wess-Zumino term for
multiple D-branes that is required to do such matching

SWZ = ΞΣ

∫
Tr

[
P ∧ (D(R) + ∆(ΞΣ)

(
D(V ) ∧B

)
−∆(ΞΣ)

(
D(U) ∧B +

1

2
D(R) ∧B ∧B

)
−∆(ΞΣ)

(
D(Z) +D(T ) ∧B +

1

2
D(V ) ∧B ∧B +

1

6
D(R) ∧B ∧B ∧B

)
∧ B ∧D(Z)

−∆(ΞΣ)

(
D(Z) +

1

2
D(T ) ∧B +

1

6
D(R) ∧B ∧B +

1

24
D(Z) ∧B ∧B ∧B

)
∧ B ∧D(Z)

+∆(ΞΣ)

(
D(U) ∧G+D(U) ∧G ∧K (R) −D(T ) ∧K(R) −D(T ) ∧K(R) ∧G ∧K(T )

)
+∆(ΞΣ)

(
D(T ) +B ∧D(V ) −D(V ) ∧K(R) ∧G− B ∧G+ D(V ) ∧K(R)

)
∧K (V )

−(D(W ) +D(S) ∧B) +B ∧ L(Z) +D(S) ∧B −B ∧ L(R) ∧G+ D(S) ∧G ∧ L(W )

−∆(ΞΣ)
(
B −D(Z) ∧D(S) ∧ L (W ) ∧ L(V )

)
+

(
B (X ) − 1

2
B ∧D(Z) ∧D(S) ∧ L(Z)

)
+
(
D(W ) +D(S) ∧B

)
∧ L (R) +

(
D(W ) +D(S) ∧B ∧ L (W ) ∧ L(V )

)
∧ L (Z) ∧G

+
(

D(W ) +D(S) ∧B ∧ L (R ) ∧G+ D(W ) +D(S) ∧B ∧ L (Z) ∧ L (R) ∧G
)
∧ L (W )

−∆(ΞΣ)
(

D(W ) +D(S) ∧B − B ∧ L (R ) + B ∧ L (R ) ∧G + D(S) ∧ B ∧G
)
∧ L (R )

+
(
D(W ) +D(S) ∧B

)
∧ L (R) +

(
D(W ) +D(S) ∧B ∧ L (W ) ∧ L(V )

)
∧ L (Z) ∧G

+
(

D(W ) +D(S) ∧B ∧ L (R ) ∧G+ D(W ) ∧B ∧ L (Z) ∧G
)
∧ L (W ) ∧ L (V )

]
(13.17)

14 The Higher Dimensional Effective Actions of Supergravity
with Fundamental Newton-Cartan Membranes

In the current consideration and review, we aim to build a higher dimensional theory of exceptional
supergravity with included backgrounds, superstrings and fundamental supermembranes existing in
D-dimensional spacetime supermanifolds. In addition, there is a real hope of exploring the inter-
play between higher-dimensional supergravities, superstrings and membrane theory. These are strong
motivations to understand the fundamental nature including extremal interactions of supergravity the-
ories plus their associated theoretical framework and mathematics more deeply. In this Chapter, we
describe the construction of higher-dimensional effective actions of exceptional supergravity in back-
grounds with superstrings and membrane models in the variant of bulk and brane systems. The special
type low-energy effective interactions in D-spacetime dimensions are considered included in supergrav-
ity backgrounds with the participation of superstrings together in superfield representations for the
construction of global dual symmetries presented in the theoretical framework.

The higher-dimensional effective action of bulk and brane system is

ST =

∫
dDx
√
−GRLBULK +

∫
dDx
√
−GRLBRANE (14.1)
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The local moduli space M̃T for the special higher-dimensional supergravity with an exceptional
bulk and brane system is

M̃T (∆[Ξ]) ↪→
{
M̃VM(∆[Ξ])⊗ M̃TM(∆[Ξ])⊗ M̃HM(∆[Ξ])

}
⊕ M̃BRANE(∆[Ξ]) (14.2)

Analogous to the previous solutions we present the higher-dimensional effective action of an excep-
tional supergravity with a Newton-Cartan fundamental membrane

SD−MNC  SD + ∆N
(

ΠA
)
SMNC  

∫
dDx
√
−GRLSUGRA + ∆N

(
ΠA
)∫

dDx
√
−GRLMNC (14.3)

The bulk and brane system in the supergravity moduli space is combination of the bulk lagrangian
LB, brane LBR, hidden brane lagrangian LHBR and the brane fields coupling action LBFC expressed
with the equation

SMD =

∫
dDx
√
−GRLB +

∫
dDx
√
−GRLBR +

∫
dDx
√
−GRLHBR +

∫
dDx
√
−GRLBFC (14.4)

The main goals of this article are to clarify, on general superstring-theoretical grounds, which duality
symmetry we should expect for the effective spacetime theory of the massless fields to any higher order
and to exhibit this symmetry in a manifest form. We shall consider a general set of external states
subject to the condition of independence of the D spatial coordinates, we shall work in a special
supergravity background left invariant by a large subset of the duality symmetries.

The background solution of the field equation for the metric depends essentially on the presence of
the leading quantum correction to the CJS action, so the presence of that term has to be taken into
account in studying the Kaluza-Klein modes of the metric. Then we have the tensor

∆I
J
K ↪→ Γ̄I

J
K − ΓI

J
K ↪→ ¯̄G

JL
(DIΣKL +DKΣIL −DLΣIK) (14.5)

where the standard Christoffel connection is ΓI
J
K = 1

2
GJL (DIGLK +DKGLI −DLGIK), and the modi-

fied Riemann tensor for the metric GIJ is defined by

¯̄RIJ
K
L ↪→ RIJ

K
L +DI∆J

K
L −DJ∆I

K
L + ∆I

K
M∆J

M
L −∆J

K
M∆I

M
L, (14.6)

We then find

ΞΣ
¯̄R ↪→ ΞΣ

¯̄G
IJ ¯̄RKI

K
J  ΞΣ

(
R+ ΣIIR− 2ΣIJRIJ + 2ΣIKΣKJRIJ + 2ΣIKΣJLRIJKL

−2ΣKKΣIJRIJ − ΣIJΣJIR+
1

2
ΣIIΣJJR−DKΣIJDKΣIJ + 2DIΣIKDJΣJK

−2DIΣIJDJΣKK +DKΣIIDKΣJJ + 2 ΞΣΣIKΣJLRIJRIJKL −DADBPCD
−2RABCDPCD +

1

2
HACEFHBDEFPCD −

1

2
GABHCEFGHDEFGPCD

−1

2
ΞΣΣIMΣJNHIJKLHMNKL + ΞΣΣNN [BΛ]∆ξ

+ ΞΣΣKK [BΛ]∆η

)
, (14.7)

where designation  means up to the addition of total derivative terms, and the identity used in the
previous expression is

ΞΣDIΣJKDJΣIK  ΞΣDIΣIKDJΣJK − ΞΣΣIKΣKJRIJ + ΞΣΣIKΣJLRIJKL

−ΞΣDIΣJKDIΣJK + 2 ΞDIΣIKDJΣJK − 2 ΞΣDIΣIJDJΣKK

+ΞΣDIΣJJDIΣKK + 2 ΞΣΣIKΣJLRIJRIJKL

−1

2
ΞΣΣIMΣJNHIJKLHMNKL (14.8)
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The new definition of the three-form field strength is

HµνM = ∂µBνM − ∂νBµM + 3ΛMNPVNµVP ν + 4∆P
MNB[µPVNν] + 4ΩI

MNA
I

[µVNν]

−1

2
AIµF Iνλ −

1

2
VMµHνλM −

1

2
BµMVMνλ +

1

2
ΛMNPVMµVNνVP λ

−ΩI
MNA

I
µVMνVNλ −∆M

NPBµMVNνVP λ −AIMF Iµν − PMNVNµν

−1

2
F IµνAIM +

1

2
AIµ∂νAIM +

1

2
AIµΩI

MN +
1

2
AIP∆P

MN (14.9)

The elegant extension allows that the deformed gauge transformations indeed lead to the required
non-abelian gauge transformations in the higher-dimensional construction of heterotic supergravity.
The commutator of two deformed gauge transformations of the vector VM is given by the equation

[∆ξΞ ,∆ξΣ ]VM = ∆ξΞ(ξNΣDNVM + (DMξΣN −DNξMΣ )VN − ξKΣ ΓMKNVN)

+L̂ξΞΣ
VM − ξNΞΣΓMNKVK − (Ξ↔ Σ)

= [L̂ξΞ , L̂ξΣ ]VM − ξNΣDN(ξKΞ ΓMKPVP )− (DMξΣN −DNξMΣ )ξKΞ ΓNKPVP

−ξKΣ ΓMKN(ξPΞDPVN + (DNξΞP −DP ξNΞ )VP − ξPΞ ΓNPQVQ)

+L̂ξΞΣ
VM − ξNΞΣΓMNKVK − (Ξ↔ Σ) . (14.10)

We build this exclusive section by introducing the modified or deformed gauge transformations.
Each O(D,D) index will give rise to rotation with the structure constants ΓMNK . The O(D,D) indices
make the transformation properties exhibit and in the general case manifest. For an O(D,D) vector
VM and an O(D,D) elements including in the transformation we get elegant expressions with the
solutions. The transformation of HI

J in involves an operation similar to generalized Lie derivative
differs from the conventional Lie derivative by terms that involve explicitly the O(D,D) metric in
heterotic supergravity. For multiple indices the gauge transformation with generalized Lie derivative
is defined and constructed as

∆ξHI
J = L̂ξ ĜIJ = ξKDKHI

J −DP ξI HPJ +
(
DJξP −DP ξI

)
HI

P + ξKDkHI
J

−DKξI HK
J +DJξK HI

K +DJ ξ̃K HIK +DJξBHI
B −DK ξ̃J HIK + L̂ξHI

J

+
(
DJ ξ̃K −DK ξ̃J

)
HIK +DJξBHI

B + L̂ξ ΞIJ +AIBDJ ΛB +
1

2
FIJAΛA

−1

2

(
ΛADI ΛA − ΛADI ΛA

)
+ ξJDJΛA − ξJDJΛA + ΓMNK

(
ΠPDPΞNΣK

)
−
(

ΞPDPΣN − ΣPDPΞN
)

ΠK
)
− 1

2
ΓNKL

(
ΞKΣLDMΞNΠN − ΠNDM

(
ΞKΣL

)
−1

2
DMΓNKLΞNΣKΠL

)
(14.11)

In the current literature exist various contributions to the modified gauge transformations of the
Γ-dependent terms. The resulting non-covariant terms can be accounted by assigning a fictitious non-
covariant variation of the structure constants to

∆ξΓ
M
NK = −L̂ξ Γ̂MNK = −DMξP ΓPNK −DNξP ΓMPK −DKξP ΓMNP

−ξPΓNPKΞKDNΣM +
1

2
ξPΓNPKΞKDMΣN − ΞNDN

(
ξPΓMPKΣK

)
+

1

2
ΞNDM

(
ξPΓNP

KΣK

)
− ξNΓMNK

[
Ξ,Σ

]K
C
−
(
L̂ξΓMNK

)
ΞNΣK

−ξNΓMNK

[
Ξ,Σ

]K
Γ
− {Ξ↔ Σ} (14.12)
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We construct the associated supergravity background-independent action that is T-duality invariant
and realizes the gauge superalgebra. The action is the sum of a standard action for supergravity,
antisymmetric tensor, and dilaton fields written with ordinary derivatives, a similar action for dual
superfields with dual derivatives, and a mixed term that is needed for gauge invariance. Superstring
field theory provides the constructions of complete gauge-invariant formulation of superstring dynamics
in higher spacetime dimensions around any consistent supergravity curved background, and provides
a platform for studying of the special symmetry called T-duality. The higher-dimensional bulk and
brane action for exceptional supergravity theory, can be organised and the solution is

ST =

∫
dNx dDY

√
|G|
(
REXT (G) + LKIN + LKR + LNS + LGFC + LINT +

√
|G|
−1
LCS

)
+ TP

∫
enφGΛ1Ξ1DY Λ1 ∧ DY Ξ1 ∧ ... ∧GΛnΞnDY Λn ∧ DY Ξn

=

∫
dNx dDY

√
|G|
(

4HMNDMDNΞ−DMDNHMN − 4HMNDMΞDNΞ + 4DMHMN DNΞ

+
1

8
HMNDMHKLDNHKL −

1

2
HMNDMHKLDKHNL −

1

2
ΓMNKHNPHKQDPHQM

)
+

1

4
GMN

(
∂µBνM − ∂νBµM + 3ΛMNPVNµVP ν + 4∆P

MNB[µPVNν] + 4ΩI
MNAI [µVNν]

−AIMF Iµν − PMPVP µν
)(
∂µBνM − ∂νBµM + 3ΛMNPVNµVP ν + 4∆P

MNB[µPVNν]

+ 4ΩI
MNAI [µVNν] −AINF I µν − PNQVQµν

)
+

1

4
GMPGNQ

(
DµMN +AI [MDµAIN ]

)
+

1

4
GMN

(
BµνM −AIMF Iµν − PMPVP µν

)(
BµνN −AINF I µν − PNQVQµν

)
+

1

4
GMPGNQ

(
DµBMN +AI [MDµAIN ]

)(
DµBPQ +AJ [PDµAJQ]

)
+

3

4
GMQGNRGPS

(
ΛMNP + 2AI [MΩI

NP ] − 2PT [M∆G
NP ]

− 1

4
GMNDµGMNGPQDµGPQ +

1

4
DµGMNDµGMN −

1

2
Dµ
(
GMNDµGMN

)
− GMNGPQGRS∆M

PR∆N
QS − 2GMN∆P

MQ∆Q
NP +DµΦDµΦ +

1

4

(
DµGMN

)(
DµGMN

)
− 1

2
GMN

(
DµAIM

)(
DµAIN

)
− 1

4
GMPGNQ

(
DµBMN +AI [MDµAIN ]

)(
DµBPQ

+AJ [PDµAJQ]

)
+

1

4

(
∂µBνλ −

1

2
AIµF Iνλ −

1

2
VMµHνλM −

1

2
BµMVMνλ

+
1

2
ΛMNPVMµVNνVP λ − ΩI

MNA
I
µVMνVNλ −∆M

NPBµMVNνVP λ
)(
∂µBνλ

− 1

2
AIµF Iνλ −

1

2
VMµHνλM − 1

2
BµMVMνλ +

1

2
ΛMNPVMµVNνVPλ

− ΩI
MNA

IµVMνVNλ −∆M
NPBµMVNνVPλ

)
+

1

2
GMNDµAIMDµAIN

+ GMPGNQ
(

ΩI
MN +AIR∆R

MN

)(
ΩI
PQ +AIS∆S

PQ

)
+
(
ξKDKHI

J

−DP ξI HPJ +
(
DJξP −DP ξI

)
HI

P + ξKDkHI
J −DKξI HK

J +DJξK HI
K

+DJ ξ̃K HIK +DJξBHI
B −DK ξ̃J HIK + L̂ξHI

J +
(
DJ ξ̃K −DK ξ̃J

)
HIK

+ TP
∫
enφGΛ1Ξ1DY Λ1 ∧ DY Ξ1 ∧ ... ∧GΛnΞnDY Λn ∧ DY Ξn
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We now rewrite the higher-dimensional supergravity action in a form that is covariant under
O(D,D +K), where K is the dimension of the gauge algebra in the construction. This extremal
action is of the same structural form as that obtained by Scherk-Schwarz compactification of heterotic
supergravity truncated to the Cartan subalgebra. Moreover, it is closely related to that given in the
scientific literature, which considers group manifold reductions of heterotic supergravity including non-
abelian gauge fields and also displays the action with a formal O(D,D +K) symmetry. These are the
situations we have in mind, and we will simply speak of O(D,D +K) as the duality group. We finally
note that the action reduces to that found by Maharana-Schwarz, in which case the theory is properly
invariant under a global O(D,D +K) symmetry.

We apply our universal recipe of the preceding section to write the supergravity corresponding action
based on the moduli superspace construction. For the exceptional case of Membrane Newton-Cartan
fundamental system the appropriate higher-dimensional theory includes special bulk action L̃B(Σ∆̂), the
brane L̃BR (Σ∆̂) and hidden brane lagrangian L̃HBR (Σ∆̂), the brane fields coupling action L̃BFC (Σ∆̂) and
hidden brane couplings term L̃HBC (Σ∆̂). The extremal solution of the higher-dimensional corresponding
action of exceptional supergravity for the Membrane Newton-Cartan fundamental system is

SMNC = ∆̂

∫
Σ∆̂

dDx
√
G∆̂ R∆̂ L̃MNC(Σ∆̂) +

∑
∆̂

{∫
Σ∆̂

dDx
√
−G∆̂L̃B(Σ∆̂) +

∫
Σ∆̂

dDx
√
G∆̂L̃BR (Σ∆̂)

+

∫
Σ∆̂

dDx
√
G∆̂L̃HBR (Σ∆̂) +

∫
Σ∆̂

dDx
√
−G∆̂L̃BFC (Σ∆̂) +

∫
Σ∆̂

dDx
√
G∆̂L̃HBC (Σ∆̂)

}
+ ∆̂

∫
Σ∆̂

dD+1x
√
−GR∆̂

{
TΣ +

1

2
XΣDMΣDMΣ +DMXMΞA

M(X )DNXNΞC
N(X ) BAC(Z)

+
1

2
UΣDMΣDMΣ +DMUMΞA

M(U)DNUNΞC
N(U) DAC(B) +

1

2
ZΣDMΣDMΣ

+ DMZMΞA
M(Z)DNZNΞC

N(Z) PAC(Z) + · · ·
}

(14.13)

We construct a fully consistent and gauge invariant actions in higher-dimensional exceptional su-
pergravity with presence of backgrounds, superstrings and membrane interpretations in D- dimensional
spacetime supermanifolds realized in the theoretical framework. We discuss and surrendered the chal-
lenges involved in the advanced construction of the full higher-dimensional supergravities in modern
and constructive fashion. Our main results are both of purely fundamental and mathematical interest
and lead, from the physical point of view, to the construction of new realistic superstring theories in
supergravity backgrounds. We performed dimensional reduction of the higher-dimensional effective
actions and displayed the expected global symmetry on the reduced theory of exceptional supergrav-
ity. Nowadays, searching for superstrings in supergravity backgrounds directly related to fundamental
supermembranes has become a dogma for the theoretical physicists involved. The future of modern
theoretical and mathematical physics is dependent on the creation of higher-dimensional models in the
theoretical framework used in theories such as supergravity, superstrings and supersymmetric mem-
branes. Based on the methods developed in this advanced research, an alternative to the dimensional
reduction procedure has been presented in exceptional supergravities in D-dimensional spacetime su-
permanifolds with availability of curved backgrounds and a huge number of superfields in the presented
fundamental interactions. We have provided the general technical tools for the computation of higher-
dimensional heterotic supergravity theories with inclusion of supermanifolds, superstrings, backgrounds
plus fundamental bulk and brane systems. The main objectives of the current research in supergravity
theories are associated with the creation of a unified theoretical framework to explain and improving
the current state of knowledge regarding deep understanding of our elegantly designed world.
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15 Conclusion
Beyond the intrinsic interest in obtaining a higher-dimensional perspective on duality, ExFT is a very
powerful tool in understanding the geometry of superstring and M-theory backgrounds, both with a
view towards reductions – where it offers a way to efficiently characterise the properties of geometries
with flux, and leads to new methods to obtain consistent truncations to gauged supergravities in lower-
dimensions and towards expansions as it can be employed to obtain complicated higher-derivative
corrections in an efficient manner. Underlying these successes is the fact that the geometry of ExFT
treats the metric and form-fields of supergravity on the same footing, rearranging all degrees of freedom
into multiplets of Ed(d) in a form which is perfectly adapted to general dimensional reductions but
completely general so that it works regardless of background. Exceptional field theory is by now a
well-developed field with numerous interesting applications and outcrops. The selection of topics in
this review is of course based by the author own interests and ignorances and further by the limitations
of space, for all of which we ask for the understanding and patience of the reader. We hope to be able
to describe the general concepts and technical tools needed to understand and make of ExFT. From a
philosophical point of view, one might then wonder about the nature of geometry in superstring and
M-theory. Is the standard Riemannian geometry that physicists have lived in since Einstein the most
convenient language to capture the features of the backgrounds of superstring theory and M-theory? Is
there a better organisational principle that takes into account the menagerie of p-form gauge fields and
the branes to which they couple? In this review, we will try to answer these questions using exceptional
field theory. In exceptional field theory (ExFT), an Ed(d) symmetry is manifest acting on an extended
or generalised geometry. Depending on how one chooses to identify the physical geometry with the
extended geometry of ExFT, for each d, the Ed(d) ExFT is equivalent to the full 11- or 10-dimensional
maximal supergravities. It therefore provides a higher-dimensional origin of U-duality, in which no
reduction is assumed, and on identifying the novel coordinates of the extended geometry as conjugate
to brane winding modes, ExFT offers a glimpse towards the geometry of M-theory beyond supergravity.

Comparison with the Gomis-Ooguri or SNC superstring The extremal behaviour we found
in eleven-dimensional supergravity can be seen to be extremely similar to that which happens on the
worldsheet for the Gomis-Ooguri or SNC string. This is exactly analogous to the result of the expansion
of the 11-dimensional supergravity action. Here the Wess-Zumino coupling to the B-field plays the role
of the Chern-Simons term, and the singular piece can be cancelled by imposing a sort of twisted self-
duality constraint. Normally one derives the finite part of the supergravity action by rewriting the
action in an equivalent form using auxiliary degrees of freedom, such that the limit can be performed
without singularities. After the limit, one finds these auxiliary degrees of freedom correspond to F̃αA,
and impose the chirality/anti-chirality conditions on the longitudinal degrees of freedom. This is also
what happens in the doubled sigma model approach, which starts with coordinates X and duals X̃,
related by a self-duality constraint involving the generalised metric of double field theory. Taking the
SNC limit in this set-up then leads to the situation as above where the longitudinal X and X̃ are no
longer related, but separately obey chiral/anti-chirality constraints. The doubled sigma model action
then reproduces the finite terms. This then is analogous to the exceptional field theory description of
the limit of 11-dimensional supergravity.

It could be conjectured that the appearance of (self)-duality constraints is a generic feature of non-
relativistic limits of theories with topological or Chern-Simons terms, as a requirement for cancelling
singular terms arising from the topological term against those arising from the kinetic term. Schemat-
ically given a Lagrangian L ∼ F ∧ ?F + F ∧ G with a non-relativistic expansion leading to a term
cnF ? (?F +G), then we would take ?F +G = 0 as a constraint. It would be interesting to explore this
mechanism in other contexts.
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Subleading terms Our derivation of the MNC geometry made use of a field redefinition involving
the parameter c which we then sought to send to ∞ and interpret as a non-relativistic limit. This
could be extended to a full non-relativistic expansion, including first of all further subleading terms in
the metric, with ĝµν = c2τµν + c−1Hµν + c−4Xµν + . . . . It is possible to check that doing so does not
affect the expansion of the action up to order c0, and it would be expected on general grounds [58] that
the first appearance of the first subleading terms simply re-imposes the equations of motion already
encountered (as we saw with C̃3 and the equations of motion of C3). In addition, we could reformulate
the expansion by introducing additional one-form gauge fields (as for this case in [48]), accompanied
by a shift symmetry, such that the three-form Cµνρ does not transform under boosts. The resulting
more general expansion could then be attacked order-by-order without necessarily sending c → ∞ or
truncating as we did. Here it would be interesting to compare with the approach of [53], inputting the
eleven-dimensional three-form as matter. A complicating feature, relative to usual 1/c expansions of
general relativity leading to Newton-Cartan [51, 52, 58] for example, is that the longitudinal vielbein
appears in both the metric and three-form and does so at different orders in c.

Supersymmetry and non-uniqueness of non-relativistic 11-dimensional supergravity We
limited ourselves to an analysis of the bosonic geometry in this paper. The supersymmetric extension
presumably exists and should be constructed. At the level of supersymmetric double and exceptional
field theory, the logic would again be that changing the parametrisation of the generalised vielbein is all
that is needed to arrive at the desired theory, and this seems to be possible without obstacles [57]. Note
that in this paper we started with a non-relativistic expansion tailored to the M2. There should be a
similar expansion based on the M5, in which we have six longitudinal and five transverse directions.
(This should reduce to the dual NSNS six-form expansion discussed in the conclusions of [27].) This
would then give a second non-relativistic version of 11-dimensional supergravity, so although this is the
unique maximal supergravity in eleven dimensions, this uniqueness would then no longer hold in the
non-relativistic setting.

Duality web and branes An obvious goal for which this paper should be useful is the study of
the spacetime actions for the non-relativistic duality web in 11- and 10-dimensions. This can proceed
both by applying standard dimensional reduction and dualisation to our 11-dimensional action, and
by applying similar methods to individual supergravities by taking covariant non-relativistic limits
associated to each p-brane present in the theory. Here, we performed a dimensional reduction to type
IIA, but we did not discuss the expected T-duality relationship to type IIB, for example. Similarly,
there is presumably a heterotic SNC which could be obtained by reducing non-relativistic M-theory on a
longitudinal interval, although it is not immediately obvious what the result of reducing on a transverse
interval should be. Note that the appearance of the original and dual field strength together in the
11-dimensional theory suggests that the appropriate formalism for describing generalisations of Newton-
Cartan geometries in type II should be the formalism where the RR p-forms are treated ‘democratically’
[59], accompanied by a self-duality constraint. Here the double and exceptional field theory formulation
may again prove a useful guide. Beyond the usual suspects, exceptional field theory also offers a way
to handle the vast number of mixed symmetry tensors that appear coupling to exotic branes [60,61]. It
may not be unreasonable to suggest using the E11 ‘master’ ExFT recently constructed in [55], as this
presumably provides scope to construct an infinite number of brane scaling limits. Here there is no need
to artificially split the coordinates and one can work with 11/10-dimensional quantities throughout,
albeit at the obvious price of dealing with a very infinite algebra. The ExFT description in this paper
demonstrates that the non-relativistic theory is also controlled by the same exceptional Lie algebraic
symmetries that appear in the relativistic case. A distinction can be made between these symmetries as
they are used in ExFT and the actual U-duality symmetries present on toroidal reduction. As we saw in
section (9.2), U-duality transformations can ‘rotate’ between relativistic and non-relativistic theories.
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This is also the case for T-duality of non-relativistic strings [16]. A non-trivial U-duality, corresponding
to an SL(2) inversion transformation in the SL(3)× SL(2) case, acts on three directions in spacetime.
To make a systematic study of U-duality of non-relativistic theories, it would therefore be necessary
to consider U-duality transformations acting on 0,1, 2 or 3 longitudinal directions and to check which
of these do or do not take you back to a relativistic theory. The SL(3) × SL(2) ExFT description
of section (9.2) only allowed for U-duality transformations acting on all three longitudinal directions,
while the SL(5) ExFT description presented in appendix 11 would allow for transformations acting on
two or three longitudinal directions. A precise group to consider would then be the E6(6) case which
can accommodate all possible types of U-dualities acting on the MNC geometry, with some subgroup
corresponding to the strict U-duality symmetries of the non-relativistic theory. This analysis is left
for future work. Another interesting question is to understand the consequences of the non-relativistic
limit on the brane spectrum of M-theory and hence also of type IIA, after reducing. The ‘decoupling’
of the transverse components of F4 and the longitudinal components F7 presumably means something
at the level of the M2 and M5 branes coupling to the three- and six-form: the analysis of [62] should
be pertinent here. One could similarly enquire about whether the duality constraint in the type IIA
SNC theory can be seen at the level of the string spectrum resulting from the quantisation of the non-
relativistic superstring [63] Obtaining brane solutions of the non-relativistic theory, whether by directly
solving the equations of motion or using U-duality as in section 9.2, is also an interesting question.
Interestingly, membrane solutions of 11-dimensional SUGRA with transverse self-dual field strength
were constructed in the research literature and perhaps can be adapted or used in the non-relativistic
setting. Even the ‘flat’ spacetime solution may have interesting properties including infinite-dimensional
isometries as for the superstring case. S-duality and T-duality transformations in the general case do
not commute. Combining them, we generate a larger group of dualities of the type II theories. This
is known as U-duality. It is a non-perturbative duality of the type II superstrings on a torus, and
hence also a duality of M-theory. The latter can be motivated by considering the strong coupling limit
of the type IIA superstring. As the IIA superstring coupling goes to infinity, an eleventh dimension
decompactifies, and we are led to conjecture the existence of an 11-dimensional M-theory, which when
compactified on a circle reduces to the IIA superstring in the zero radius limit. The 11-dimensional
radius R11 and Planck length lp are related to the 10-dimensional string coupling constant gs and string
length The action of U-duality on the backgrounds of type IIA superstring theory follow on applying
the reduction rules ??. Then we can further T-dualise to identify the corresponding transformations
in type IIB. In particular, the geometric SL(2) appearing when d = 2, for M-theory on a two-torus,
becomes the S-duality of type IIB. For M-theory on a three-torus, the type IIB S-duality is likewise
embedded in the SL(3) factor of the full U-duality group. Acting in more than three directions, there
are further shift symmetries possible. The U-duality group acting on a d-dimensional torus in M-
theory is then determined to be Ed(d)(Z). This sequence of U-duality symmetries was first found in the
context of reductions of eleven-dimensional supergravity on a torus. They are the global symmetries
of maximal supergravity in n dimensions. As mentioned before, in terms of the supergravity action,
these global symmetry groups are real-valued. This is an important feature of duality: the reduced
supergravity will have a moduli space and there will be a continuous set of symmetries acting on the
moduli that take one vacuum into another inequivalent vacuum. However, an arithmetic subgroup
will leave the reduction space invariant and this will coincide with the duality group when taking into
account quantum charge preservation. Exceptional field theory is by now a well-developed field with
numerous interesting applications and outcrops. The selection of topics in this review is of course based
by the author own interests and ignorances and further by the limitations of space, for all of which
we ask for the understanding and patience of the reader. We hope to be able to describe the general
concepts and technical tools needed to understand and make of ExFT with supergravity and membrane
constructions. After developing the general theory, we will discuss some of the applications mentioned
above and refer to the literature for further details when necessary.

75



References
[1] C. G. Callan, Jr., E. J. Martinec, M. J. Perry and D. Friedan, Strings in Background Fields, Nucl. Phys. B262

(1985) 593–609.

[2] C. Hull and P. Townsend, Unity of superstring dualities, Nucl. Phys. B 438 (1995) 109–137, [hep-th/9410167].

[3] E. Witten, String theory dynamics in various dimensions, Nucl. Phys. B 443 (1995) 85–126, [hep-th/9503124].

[4] E. Cremmer, B. Julia and J. Scherk, Supergravity Theory in Eleven-Dimensions, Phys. Lett. B76 (1978) 409–412.

[5] J. M. Maldacena, The Large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2
(1998) 231–252, [hep-th/9711200].

[6] J. Gomis and H. Ooguri, Nonrelativistic closed string theory, J. Math. Phys. 42 (2001) 3127–3151,
[hep-th/0009181].

[7] U. H. Danielsson, A. Guijosa and M. Kruczenski, IIA/B, wound and wrapped, JHEP 10 (2000) 020,
[hep-th/0009182].

[8] J. Gomis, K. Kamimura and P. K. Townsend, Non-relativistic superbranes, JHEP 11 (2004) 051,
[hep-th/0409219].

[9] J. Gomis, J. Gomis and K. Kamimura, Non-relativistic superstrings: A New soluble sector of AdS(5) x S**5, JHEP
12 (2005) 024, [hep-th/0507036].

[10] R. Andringa, E. Bergshoeff, J. Gomis and M. de Roo, ’Stringy’ Newton-Cartan Gravity, Class. Quant. Grav. 29
(2012) 235020, [1206.5176].

[11] M. H. Christensen, J. Hartong, N. A. Obers and B. Rollier, Torsional Newton-Cartan Geometry and Lifshitz
Holography, Phys. Rev. D 89 (2014) 061901, [1311.4794].

[12] M. H. Christensen, J. Hartong, N. A. Obers and B. Rollier, Boundary Stress-Energy Tensor and Newton-Cartan
Geometry in Lifshitz Holography, JHEP 01 (2014) 057, [1311.6471].

[13] J. Hartong and N. A. Obers, Hořava-Lifshitz gravity from dynamical Newton-Cartan geometry, JHEP 07 (2015)
155, [1504.07461].

[14] C. Batlle, J. Gomis and D. Not, Extended Galilean symmetries of non-relativistic strings, JHEP 02 (2017) 049,
[1611.00026].

[15] T. Harmark, J. Hartong and N. A. Obers, Nonrelativistic strings and limits of the AdS/CFT correspondence, Phys.
Rev. D 96 (2017) 086019, [1705.03535].

[16] E. Bergshoeff, J. Gomis and Z. Yan, Nonrelativistic String Theory and T-Duality, JHEP 11 (2018) 133,
[1806.06071].

[17] T. Harmark, J. Hartong, L. Menculini, N. A. Obers and Z. Yan, Strings with Non-Relativistic Conformal
Symmetry and Limits of the AdS/CFT Correspondence, JHEP 11 (2018) 190, [1810.05560].

[18] J. Gomis, J. Oh and Z. Yan, Nonrelativistic String Theory in Background Fields, JHEP 10 (2019) 101,
[1905.07315].

[19] A. Gallegos, U. Gürsoy and N. Zinnato, Torsional Newton Cartan gravity from non-relativistic strings, JHEP 09
(2020) 172, [1906.01607].

[20] T. Harmark, J. Hartong, L. Menculini, N. A. Obers and G. Oling, Relating non-relativistic string theories, JHEP
11 (2019) 071, [1907.01663].

[21] E. A. Bergshoeff, J. Gomis, J. Rosseel, C. Şimşek and Z. Yan, String Theory and String Newton-Cartan Geometry,
J. Phys. A 53 (2020) 014001, [1907.10668].

[22] C. D. A. Blair, A worldsheet supersymmetric Newton-Cartan string, JHEP 10 (2019) 266, [1908.00074].

[23] Z. Yan and M. Yu, Background Field Method for Nonlinear Sigma Models in Nonrelativistic String Theory, JHEP
03 (2020) 181, [1912.03181].

[24] D. Roychowdhury, Probing tachyon kinks in Newton-Cartan background, Phys. Lett. B 795 (2019) 225–229,
[1903.05890].

[25] J. Gomis, Z. Yan and M. Yu, Nonrelativistic Open String and Yang-Mills Theory, JHEP 03 (2021) 269,
[2007.01886].

76

https://doi.org/10.1016/0550-3213(85)90506-1
https://doi.org/10.1016/0550-3213(85)90506-1
https://doi.org/10.1016/0550-3213(94)00559-W
https://arxiv.org/abs/hep-th/9410167
https://doi.org/10.1016/0550-3213(95)00158-O
https://arxiv.org/abs/hep-th/9503124
https://doi.org/10.1016/0370-2693(78)90894-8
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1023/A:1026654312961
https://arxiv.org/abs/hep-th/9711200
https://doi.org/10.1063/1.1372697
https://arxiv.org/abs/hep-th/0009181
https://doi.org/10.1088/1126-6708/2000/10/020
https://arxiv.org/abs/hep-th/0009182
https://doi.org/10.1088/1126-6708/2004/11/051
https://arxiv.org/abs/hep-th/0409219
https://doi.org/10.1088/1126-6708/2005/12/024
https://doi.org/10.1088/1126-6708/2005/12/024
https://arxiv.org/abs/hep-th/0507036
https://doi.org/10.1088/0264-9381/29/23/235020
https://doi.org/10.1088/0264-9381/29/23/235020
https://arxiv.org/abs/1206.5176
https://doi.org/10.1103/PhysRevD.89.061901
https://arxiv.org/abs/1311.4794
https://doi.org/10.1007/JHEP01(2014)057
https://arxiv.org/abs/1311.6471
https://doi.org/10.1007/JHEP07(2015)155
https://doi.org/10.1007/JHEP07(2015)155
https://arxiv.org/abs/1504.07461
https://doi.org/10.1007/JHEP02(2017)049
https://arxiv.org/abs/1611.00026
https://doi.org/10.1103/PhysRevD.96.086019
https://doi.org/10.1103/PhysRevD.96.086019
https://arxiv.org/abs/1705.03535
https://doi.org/10.1007/JHEP11(2018)133
https://arxiv.org/abs/1806.06071
https://doi.org/10.1007/JHEP11(2018)190
https://arxiv.org/abs/1810.05560
https://doi.org/10.1007/JHEP10(2019)101
https://arxiv.org/abs/1905.07315
https://doi.org/10.1007/JHEP09(2020)172
https://doi.org/10.1007/JHEP09(2020)172
https://arxiv.org/abs/1906.01607
https://doi.org/10.1007/JHEP11(2019)071
https://doi.org/10.1007/JHEP11(2019)071
https://arxiv.org/abs/1907.01663
https://doi.org/10.1088/1751-8121/ab56e9
https://arxiv.org/abs/1907.10668
https://doi.org/10.1007/JHEP10(2019)266
https://arxiv.org/abs/1908.00074
https://doi.org/10.1007/JHEP03(2020)181
https://doi.org/10.1007/JHEP03(2020)181
https://arxiv.org/abs/1912.03181
https://doi.org/10.1016/j.physletb.2019.06.031
https://arxiv.org/abs/1903.05890
https://doi.org/10.1007/JHEP03(2021)269
https://arxiv.org/abs/2007.01886


[26] A. Gallegos, U. Gürsoy, S. Verma and N. Zinnato, Non-Riemannian gravity actions from double field theory,
2012.07765.

[27] E. Bergshoeff, J. Lahnsteiner, L. Romano, J. Rosseel and C. Simsek, A Non-Relativistic Limit of NS-NS Gravity,
2102.06974.

[28] E. Cartan, Sur les variétés à connexion affine et la théorie de la rélativité généralisée (première partie), Ann. Éc.
Norm. Super. 40 (1923) 325.

[29] E. Cartan, Sur les variétés à connexion affine et la théorie de la rélativité généralisée (première partie)(suite),
Ann. Éc. Norm. Super. 41 (1924) 1.

[30] W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev. D 47 (1993) 5453–5459,
[hep-th/9302036].

[31] W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826–2837, [hep-th/9305073].

[32] C. Hull and B. Zwiebach, Double Field Theory, JHEP 09 (2009) 099, [0904.4664].

[33] K. Lee and J.-H. Park, Covariant action for a string in ”doubled yet gauged” spacetime, Nucl. Phys. B 880 (2014)
134–154, [1307.8377].

[34] S. M. Ko, C. Melby-Thompson, R. Meyer and J.-H. Park, Dynamics of Perturbations in Double Field Theory \&
Non-Relativistic String Theory, JHEP 12 (2015) 144, [1508.01121].

[35] K. Morand and J.-H. Park, Classification of non-Riemannian doubled-yet-gauged spacetime, Eur. Phys. J. C 77
(2017) 685, [1707.03713].

[36] K. Cho and J.-H. Park, Remarks on the non-Riemannian sector in Double Field Theory, Eur. Phys. J. C 80
(2020) 101, [1909.10711].

[37] K. Kamimura and T. Ramirez, Brane dualities in non-relativistic limit, JHEP 03 (2006) 058, [hep-th/0512146].

[38] R. Andringa, E. A. Bergshoeff, J. Rosseel and E. Sezgin, 3D Newton–Cartan supergravity, Class. Quant. Grav. 30
(2013) 205005, [1305.6737].

[39] E. Bergshoeff, J. Rosseel and T. Zojer, Newton–Cartan (super)gravity as a non-relativistic limit, Class. Quant.
Grav. 32 (2015) 205003, [1505.02095].

[40] D. S. Berman, C. D. A. Blair and R. Otsuki, Non-Riemannian geometry of M-theory, JHEP 07 (2019) 175,
[1902.01867].

[41] D. S. Berman and M. J. Perry, Generalized Geometry and M theory, JHEP 06 (2011) 074, [1008.1763].

[42] O. Hohm and H. Samtleben, Exceptional Field Theory I: E6(6) covariant Form of M-Theory and Type IIB, Phys.
Rev. D89 (2014) 066016, [1312.0614].

[43] O. Hohm and H. Samtleben, Exceptional field theory. II. E7(7), Phys. Rev. D89 (2014) 066017, [1312.4542].

[44] O. Hohm and H. Samtleben, Exceptional field theory. III. E8(8), Phys. Rev. D90 (2014) 066002, [1406.3348].

[45] D. S. Berman and C. D. A. Blair, The Geometry, Branes and Applications of Exceptional Field Theory, Int. J.
Mod. Phys. A 35 (2020) 2030014, [2006.09777].

[46] J. Kluson, Remark About Non-Relativistic p-Brane, Eur. Phys. J. C 78 (2018) 27, [1707.04034].

[47] J. Kluson, Note about Hamiltonian formalism for Newton–Cartan string and p-brane, Eur. Phys. J. C 78 (2018)
511, [1712.07430].

[48] J. Klusoň and P. Novosad, Non-Relativistic M2-Brane, JHEP 06 (2019) 072, [1903.12450].

[49] C. D. A. Blair, Non-relativistic duality and T T̄ deformations, JHEP 07 (2020) 069, [2002.12413].

[50] D. Pereñiguez, p-brane Newton–Cartan geometry, J. Math. Phys. 60 (2019) 112501, [1908.04801].

[51] D. Van den Bleeken, Torsional Newton–Cartan gravity from the large c expansion of general relativity, Class.
Quant. Grav. 34 (2017) 185004, [1703.03459].

[52] D. Hansen, J. Hartong and N. A. Obers, Action Principle for Newtonian Gravity, Phys. Rev. Lett. 122 (2019)
061106, [1807.04765].

[53] D. Hansen, J. Hartong and N. A. Obers, Non-Relativistic Gravity and its Coupling to Matter, JHEP 06 (2020)
145, [2001.10277].

77

https://arxiv.org/abs/2012.07765
https://arxiv.org/abs/2102.06974
https://doi.org/10.1103/PhysRevD.47.5453
https://arxiv.org/abs/hep-th/9302036
https://doi.org/10.1103/PhysRevD.48.2826
https://arxiv.org/abs/hep-th/9305073
https://doi.org/10.1088/1126-6708/2009/09/099
https://arxiv.org/abs/0904.4664
https://doi.org/10.1016/j.nuclphysb.2014.01.003
https://doi.org/10.1016/j.nuclphysb.2014.01.003
https://arxiv.org/abs/1307.8377
https://doi.org/10.1007/JHEP12(2015)144
https://arxiv.org/abs/1508.01121
https://doi.org/10.1140/epjc/s10052-017-5257-z
https://doi.org/10.1140/epjc/s10052-017-5257-z
https://arxiv.org/abs/1707.03713
https://doi.org/10.1140/epjc/s10052-020-7648-9
https://doi.org/10.1140/epjc/s10052-020-7648-9
https://arxiv.org/abs/1909.10711
https://doi.org/10.1088/1126-6708/2006/03/058
https://arxiv.org/abs/hep-th/0512146
https://doi.org/10.1088/0264-9381/30/20/205005
https://doi.org/10.1088/0264-9381/30/20/205005
https://arxiv.org/abs/1305.6737
https://doi.org/10.1088/0264-9381/32/20/205003
https://doi.org/10.1088/0264-9381/32/20/205003
https://arxiv.org/abs/1505.02095
https://doi.org/10.1007/JHEP07(2019)175
https://arxiv.org/abs/1902.01867
https://doi.org/10.1007/JHEP06(2011)074
https://arxiv.org/abs/1008.1763
https://doi.org/10.1103/PhysRevD.89.066016
https://doi.org/10.1103/PhysRevD.89.066016
https://arxiv.org/abs/1312.0614
https://doi.org/10.1103/PhysRevD.89.066017
https://arxiv.org/abs/1312.4542
https://doi.org/10.1103/PhysRevD.90.066002
https://arxiv.org/abs/1406.3348
https://doi.org/10.1142/S0217751X20300148
https://doi.org/10.1142/S0217751X20300148
https://arxiv.org/abs/2006.09777
https://doi.org/10.1140/epjc/s10052-017-5500-7
https://arxiv.org/abs/1707.04034
https://doi.org/10.1140/epjc/s10052-018-5993-8
https://doi.org/10.1140/epjc/s10052-018-5993-8
https://arxiv.org/abs/1712.07430
https://doi.org/10.1007/JHEP06(2019)072
https://arxiv.org/abs/1903.12450
https://doi.org/10.1007/JHEP07(2020)069
https://arxiv.org/abs/2002.12413
https://doi.org/10.1063/1.5126184
https://arxiv.org/abs/1908.04801
https://doi.org/10.1088/1361-6382/aa83d4
https://doi.org/10.1088/1361-6382/aa83d4
https://arxiv.org/abs/1703.03459
https://doi.org/10.1103/PhysRevLett.122.061106
https://doi.org/10.1103/PhysRevLett.122.061106
https://arxiv.org/abs/1807.04765
https://doi.org/10.1007/JHEP06(2020)145
https://doi.org/10.1007/JHEP06(2020)145
https://arxiv.org/abs/2001.10277


[54] O. Hohm and Y.-N. Wang, Tensor hierarchy and generalized Cartan calculus in SL(3) x SL(2) exceptional field
theory, JHEP 04 (2015) 050, [1501.01600].

[55] G. Bossard, A. Kleinschmidt and E. Sezgin, A master exceptional field theory, 2103.13411.

[56] R. Dijkgraaf, B. Heidenreich, P. Jefferson and C. Vafa, Negative Branes, Supergroups and the Signature of
Spacetime, JHEP 02 (2018) 050, [1603.05665].

[57] C. D. A. Blair, G. Oling and J.-H. Park, Non-Riemannian isometries from double field theory, JHEP 04 (2021)
072, [2012.07766].

[58] D. Hansen, J. Hartong and N. A. Obers, Non-relativistic expansion of the Einstein-Hilbert Lagrangian, in 15th
Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity,
Astrophysics, and Relativistic Field Theories, 5, 2019, 1905.13723.

[59] E. Bergshoeff, R. Kallosh, T. Ortin, D. Roest and A. Van Proeyen, New formulations of D = 10 supersymmetry
and D8 - O8 domain walls, Class. Quant. Grav. 18 (2001) 3359–3382, [hep-th/0103233].

[60] J. J. Fernández-Melgarejo, T. Kimura and Y. Sakatani, Weaving the Exotic Web, JHEP 09 (2018) 072,
[1805.12117].

[61] D. S. Berman, E. T. Musaev and R. Otsuki, Exotic Branes in Exceptional Field Theory: E7(7) and Beyond, JHEP
12 (2018) 053, [1806.00430].

[62] J. A. Garcia, A. Guijosa and J. D. Vergara, A Membrane action for OM theory, Nucl. Phys. B 630 (2002)
178–202, [hep-th/0201140].

[63] B. S. Kim, Non-relativistic superstring theories, Phys. Rev. D 76 (2007) 126013, [0710.3203].

[64] M. J. Duff, J. M. Evans, R. R. Khuri, J. X. Lu and R. Minasian, The Octonionic membrane, Phys. Lett. B 412
(1997) 281–287, [hep-th/9706124].

[65] E. T. Musaev, Exceptional field theory: SL(5), JHEP 02 (2016) 012, [1512.02163].

78

https://doi.org/10.1007/JHEP04(2015)050
https://arxiv.org/abs/1501.01600
https://arxiv.org/abs/2103.13411
https://doi.org/10.1007/JHEP02(2018)050
https://arxiv.org/abs/1603.05665
https://doi.org/10.1007/JHEP04(2021)072
https://doi.org/10.1007/JHEP04(2021)072
https://arxiv.org/abs/2012.07766
https://arxiv.org/abs/1905.13723
https://doi.org/10.1088/0264-9381/18/17/303
https://arxiv.org/abs/hep-th/0103233
https://doi.org/10.1007/JHEP09(2018)072
https://arxiv.org/abs/1805.12117
https://doi.org/10.1007/JHEP12(2018)053
https://doi.org/10.1007/JHEP12(2018)053
https://arxiv.org/abs/1806.00430
https://doi.org/10.1016/S0550-3213(02)00175-X
https://doi.org/10.1016/S0550-3213(02)00175-X
https://arxiv.org/abs/hep-th/0201140
https://doi.org/10.1103/PhysRevD.76.126013
https://arxiv.org/abs/0710.3203
https://doi.org/10.1016/S0370-2693(97)01071-X
https://doi.org/10.1016/S0370-2693(97)01071-X
https://arxiv.org/abs/hep-th/9706124
https://doi.org/10.1007/JHEP02(2016)012
https://arxiv.org/abs/1512.02163

	Introduction
	Generalised Metrics, Projectors and the Extremal E8(8) Vacua
	Generalised metrics and diffeomorphisms
	The E8(8) ExFT and its topological phase

	Gauge Invariance of the Pseudo-Lagrangian
	Gauge variation at zeta=0
	Gauge invariance

	Non-Riemannian Backgrounds in O(D,D) DFT
	Generalised metric and coset projectors
	Review of Morand-Park classification

	Riemannian Backgrounds and Exotic Supergravities in SL(5) ExFT
	Fixing the coefficients of the SL(5) ExFT
	M-theory parametrisations
	IIB parametrisations

	Membrane Newton-Cartan Fundamental Limit and Exotic Eleven Dimensional Supergravity
	Setting up the expansion
	Expanding the action

	Equations of Motion and Symmetries
	Equations of motion from expansion
	Dilatations and a `missing' equation of motion
	Boost invariance

	Dimensional Reductions and Type IIA Newton-Cartan
	Type IIA SNC
	Type IIA D2NC

	Dimensional Decompositions and Exceptional Field Theory Description
	Exceptional field theory
	Obtaining the 11-dimensional Newton-Cartan theory via ExFT
	Gauge fields and self-duality in SL(3) SL(2) ExFT

	Dimensional Decomposition of Non-Relativistic Action for ExFT
	The SL(5) ExFT and its Non-Relativistic Parametrisation
	The Extremal Nature of Exotic Branes Actions
	Wess-Zumino Actions of Exotic Branes
	The Higher Dimensional Effective Actions of Supergravity with Fundamental Newton-Cartan Membranes
	Conclusion

