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Abstract

We construct a non-relativistic limit of eleven and ten-dimensional supergravity theories from the point
of view of the fundamental symmetries, the higher-dimensional effective action, and the equations of
motion. This fundamental limit can only be realized in a supersymmetric way provided we impose
by hand a set of geometric constraints, invariant under all the symmetries of the non-relativistic the-
ory, that define a so-called Dilatation-invariant Superstring Newton-Cartan geometry and Membrane
Newton-Cartan expansion. In order to obtain a finite fundamental limit, the field strength of the
eleven-dimensional four-form is required to obey a transverse self-duality constraint, ultimately due to
the presence of the Chern-Simons term in eleven dimensions. The present research consider a non-
relativistic fundamental limit of the bosonic sector of eleven-dimensional supergravity, leading to a
theory based on a Covariant Membrane Newton-Cartan Supergeometry. We further show that the
Membrane Newton-Cartan theory can be embedded in the U-duality symmetric formulation of excep-
tional field theory, demonstrating that it shares the same exceptional Lie algebraic symmetries as the
relativistic supergravity, and providing an alternative derivation of the extra Poisson equation.
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1 Introduction

There has been a growing interest in exploring Newtonian supergravity theories due to their use in
strongly coupled membrane systems and relativistic effective field theories. The construction of New-
tonian gravity, describing the physical gravitational force at non-relativistic level, requires to consider
the so-called Newton-Cartan geometry. Such geometrical framework is necessary to covariantize the
Poisson equation of Newtonian gravity. Nevertheless, a principle action for Newtonian gravity was
recently presented which has required to extend the Bargmann algebra by including three additional
generators. Subsequently, a three-dimensional Chern-Simons (CS) action has been constructed in the
current literature which is invariant under a central extension of the symmetry group that leaves the
recently constructed Newtonian gravity action invariant. The novel symmetry has been denoted as
extended Newtonian algebra and can be recovered by means of a contraction of a bi-metric model
being the sum of Einstein gravity in the Lorentzian and Euclidean signatures. Interestingly, the mat-
ter coupling of the extended Newtonian gravity theory admits backgrounds with non-trivial curvature
whenever matter is present, similarly to the matter-coupled extended Bargmann gravity. The introduc-
tion of a cosmological constant in non-relativistic gravity theories is done considering the Newton-Hooke
symmetry. However, an extension of the extended Newton-Hooke algebra is needed to include a cosmo-
logical constant to the extended Newtonian gravity theory. The novel symmetry is denoted as exotic
Newtonian algebra and can be seen as an enhanced Bargmann-Newton-Hooke algebra. Both extended
and exotic Newtonian gravity theories can be recovered as the non-relativistic limit of the coadjoint
Poincaré @ u (1) and coadjoint AdS @ u(1)* gravity theories. Supersymmetric extensions of three-
dimensional non-relativistic gravity models have been recently approached and subsequently studied
in supergravity. In particular, a CS action based on the supersymmetric extension of the extended
Newtonian algebra has been presented. Although a cosmological constant has been accommodated in
a non-relativistic supergravity theory through the extended Newton-Hooke superalgebra, the possible
supersymmetric extensions of the exotic Newtonian gravity remain unexplored. Unlike bosonic non-
relativistic gravity, the construction of an action based on a non-relativistic superalgebra is non-trivial
and requires the introduction of additional bosonic generators. Furthermore, the non-relativistic limit
is often ambiguous when supercharges are present. One way to circumvent this difficulty is through
the expansion method based on Maurer-Cartan forms and semigroups, which have proved to be useful
to obtain known and new non-relativistic supergravity theories from relativistic ones. We considered
exotic branes as a particular class of non-geometric solutions that can be described within ExFT. Here
we consider a rather different class of backgrounds, namely non-Riemannian backgrounds. Whereas the
solutions in the previous section were characterised by either a lack of a global geometric description,
owing to requiring duality transformations to patch correctly, or a lack of a local geometric descrip-
tion, due to a dependence of coordinates outside of the physical spacetime, the solutions we consider
here are exotic in that they do not admit even local descriptions in terms of an invertible Riemannian
metric. The definition is rather broad and includes various singular limits of the metric that obstruct
its inversion. The key to describing such backgrounds is realising that fact that the generalised metric
can remain regular in such backgrounds, even if the spacetime metric becomes singular, due to the
presence of the off-diagonal terms in the generalised metric that can compensate for it. This fact was
already appreciated where it appeared in the context of the doubled sigma model. Their work was then
extended to a full characterisation of the possible backgrounds that one can obtain in DF'T by solving
the O(D, D) constraints on the generalised metric in generality n terms of the conventional supergravity
description, exotic branes generate backgrounds with non-trivial monodromies. This means that they
are not globally well defined solutions in supergravity and one needs to view the supergravity as being
embedded in a larger theory where the duality group is used to patch together solutions via duality
transformations. One may consider the approach as one which allows us to generate backgrounds of
exotic branes. The exotic duality of a single brane was suggested from the viewpoint of the string



duality groups and their representations. This was also analyzed in by virtue of the E; supergravity
technique. Furthermore, in the framework of other extended supergravity such as [-supergravity and
its extended version, the exotic duality was further investigated. In this work, we would like to confirm
the validity of the exotic duality from the viewpoint of the supersymmetry projection rules, and apply
it to new brane configurations that involve multiple non-parallel exotic branes. They are also called
the higher Kaluza-Klein branes, since the quadratic dependence on the radii in the isometry directions
is similar to the case of the Kaluza-Klein monopole, KK5= 5. For the special case of p = 7, we
frequently denote it by NS7 instead of 73. The duality relation between the standard branes and the
exotic branes is summarized in Superstring theory contains various extended objects such as funda-
mental strings, solitonic five-branes, and Dp-branes. These objects are known to couple to the standard
background fields; the B-field or the Ramond-Ramond fields. If we consider a compactification on a
seven-torus, Ta _,, there arise additional objects, called ezotic branes. The exotic branes can exist only
in the presence of compact isometry directions, just like the Kaluza-Klein monopoles, and have the
tension proportional to ¢g¢ with a = —2,—3, —4. Among them, a 53-brane, which has two isometry
directions, has been well-studied recently. Since the 53 background has a non-vanishing (magnetic)
Q-fluz, we can identify the 53-brane as an object that magnetically couples to a bi-vector field 3%
whose derivative gives the ()-flux. This can be shown more explicitly by writing down the worldvolume
effective action of the 53-brane. In this paper, assuming the existence of some isometry directions,
we construct effective actions for various mixed-symmetry tensors that couple to exotic branes. We
consider the cases of the exotic 53-brane, the 1§-brane, and the Dp;_,-brane, and argue that these
exotic branes are the magnetic sources of the non-geometric fluxes associated with polyvectors 5%,
Biris and it 7-» respectively. As it is well-known, an exotic-brane background written in terms
of the usual background fields is not single-valued and has a U-duality monodromy. However, with a
suitable redefinition of the background fields, the U-duality monodromy of the exotic-brane background
simply becomes a gauge transformation associated with a shift in a polyvector (which corresponds to
a natural extension of the f-transformation known in the generalized geometry). This kind of field
redefinition and the rewriting of the action in terms of the new background fields are the main tasks
of this paper. In spite of the presence of a symmetric structure between the exotic branes and the
usual branes, little is known about the exotic branes, the background fields which couple to the exotic
branes have not been studied in detail, other than the case of the 53-brane. There exists an SL(2,Z)
duality group under which the standard branes of n = 0,1 are mapped to the exotic branes of n = 4,3
and vice versa, and the solitonic branes of n = 2 are mapped to other solitonic branes. This duality
group is a subgroup of the U-duality group in each dimension. This is referred to as the ezotic duality.
Even though the U-duality group in a certain spacetime dimension is different from that of a different
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Figure 1: A family of exotic branes and the duality web.



dimension, any exotic duality is described by SL(2,7Z). This duality is illustrated in
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S Exotic duality between D5-brane and 53-brane. It is remarked that
this Tgg-duality between NS5-brane and 5§—brane is also interpreted as an exotic duality.

The main research interest in this article is to identify the background fields which couple to the
exotic branes and to write down the effective supergravity action for the background fields. For the
52-brane, the relevant background field is a bi-vector 5% which is a function of the standard NS-NS
fields. The effective theory for the (§-field has been constructed in a series of works and is called the
B-supergravity. On the other hand, for the Dp;_,-brane, the relevant background field is expected to
be a (7 — p)-vector "1 7-» whose derivative is called the non-geometric P-fluz, where the v-fields are
introduced in the study of the exceptional generalized geometry, where the relation between mixed-
symmetry tensors and exotic branes is discussed, the effective D5o-brane action is written down and
the D5,-brane is found to couple to a bi-vector v magnetically, and where a possible relation between
the polyvectors v and exotic branes is discussed. However, the definition of the ~-fields and the
effective action for the v-fields are still not fully understood. Our results and those obtained could
be extended to other relativistic superalgebras. Indeed, it seems that the Sgl) semigroup allows to
obtain the respective Newtonian version of a relativistic (super)algebra. In particular, the procedure
used here could be useful in presence of supersymmetry, where the study of the non-relativistic limit is
highly non-trivial. It is interesting to notice that the exotic Newtonian superalgebra can alternatively
be recovered by expanding the enhanced Nappi-Witten superalgebra. Although both methods are
based on the semigroup expansion method, they present subtle differences which could lead to diverse
extensions of our results. Indeed, to obtain diverse Newtonian superalgebras from an enhanced Nappi-
Witten (super)algebra, we need to consider diverse semigroups. On the other hand, the derivation of
various Newtonian (super)algebras by expanding a relativistic superalgebra requires to consider different
original algebras without modifying the semigroup. We first exhibit the supersymmetry projection rules
on the standard branes in type II superstring theories and M-theory. Following the rules, we introduce
the superstring dualities acting on the supersymmetry parameters. Using the superstring dualities,
we write down the rules on various exotic branes. To avoid complications, we do not write down the
concrete derivation of each exotic brane in this section. Next, we apply the supersymmetry projection
rules to certain brane configurations derived from an F-string ending on a D3-brane. Analogous to
the superstring dualities on the mass formulae of branes, we do not seriously consider their global
structures.



2  Generalised Metrics, Projectors and the Extremal Egs) Vacua

2.1 Generalised metrics and diffeomorphisms

The local symmetries of general relativity, double field theory and exceptional field theory can all
be treated in same manner, by defining (generalised) diffeomorphisms associated to a group G. For
general relativity, this group is G = GL(d), for DFT, it is G = O(d,d), and for ExFT, it is Fyaq).
We work with coordinates (X*,YM), where = 1,...,n and Y transform in what we call the R,
representation of G. In DFT and ExFT, we will call the X* coordinates “external” and the Y “internal”
or “extended”, mimicking the language we would use if we reduced to an n-dimensional theory (however
no compactification is assumed or needed to formulate these theories). The R; representation is the
d-dimensional fundamental of GL(d) in the case of general relativity, the 2d-dimensional fundamental
in the case of O(d,d), and for Eyy the representations are listed with the rule is that R; is the
representation whose highest weight is the fundamental weight associated to the rightmost node on the
Dynkin diagram.

We define diffeomorphisms associated to the transformation of the coordinates 6Y ™ = —AM in
terms of a Lie derivative acting on vectors 4 VM = L, VM by
LAVM = MO VM — aPugi™ N L0 AVE + NO A VM (2.1)

where P4 N denotes the projector from R; ® R; onto the adjoint representation, « is a constant
which depends on the group under consideration and A denotes the weight of VM. It is often useful to
expand the projector to obtain an equivalent form of the generalised Lie derivative:

LAVM = ANONTVM — VNG AM 4 YWV L O AR VE (A + w) O ARVM (2.2)

which makes apparent how the structure differs from the ordinary Lie derivative (which is given by the
first two terms). The modification involves the so-called Y-tensor, which is constructed out of group
invariants (for instance, for O(d, d), YV, = n”™Vni,), and also a constant w which can be thought
of as an intrinsic weight. When G = GL(d), clearly YV, = 0 and w = 0.

We could define the ordinary Lie derivative involving two ten-dimensional generalised vectors, but
this would give a GL(10) Lie derivative and not capture the symmetries we want. Instead, let’s think
about the group SL(5). This has the totally antisymmetric invariants eypox and MNPOK A
generalised Lie derivative which preserves these invariants is defined by

1 1
LAWM = SATCOpW M — W 0poA™ME 4 =0poAPSWH, (2:3)

acting on a field WM carrying a single five-dimensional index. The factor of 1/2 in the first term is
inserted to prevent overcounting. Using the Leibniz rule, this implies on a second generalised vector
VMN wwe have:

1 1
,CAVMN _ §APQ(97DQVMN _ 5‘/PQaPQA/\/l/\/

1 1
+ gEMNPQTEKLRSTaPQAKKVRS . gaPQAPQVMNa
or in terms of a single 10-dimensional index M = [MWN], letting VM = VMV AM = AMN e can

write

(2.4)

1
LAVM = ANV — VNONAM + YMN b on AT VE — —on ANV (2.5)
@ 5

letting YMN pg = €MV epgic. The final term with the 1 coefficient is a consequence of choosing to
define an SL(5) rather than GL(5) Lie derivative. In practice it is convenient to eliminate this from
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many expressions by declaring all generalised vectors to have weight —i—% (note this means ), has weight
_l)
=)
The consistency of the theory, in particular closure of the algebra generated by generalised Lie
derivatives, again requires a section condition, which this time takes the form:

MNPAKY ol =0, MVPKY Tl =0, (2.6)

where again W, U’ stand for any quantities in the theory.

The solution of this constraint which returns us to the d-dimensional theory is 9% = 0. Again,
though the requirement i =0 appears to be of the same nature as the Kaluza-Klein truncation
condition, this is really a more stringent condition.

The geometry of general relativity is, of course, described by a metric. Similarly the generalised, or
“extended”, geometry of DFT/ExFT will be described by a generalised metric. We define this to be a
symmetric matrix, My, which is an element of G and so preserves the appropriate invariant tensors.
The generalised Lie derivative of the generalised metric follows from or using the Leibniz
property. It takes the form:

SAMuny = APOp My + 2aPyn™ P 0x A" My p (2.7)

in which the following projector appears:
1
Paun™t = = (8565 — woMary MEE = MY 95 oy MBI (2.8)
or in terms of the adjoint projector,

PMNKL - MMQ]P)adeN(KRML)R . (29)

Note that as the Y-tensor, or equivalently the adjoint projector, is a group invariant it is preserved by
the simultaneous action of M and M~! on all four indices, which can be used to check that Py;n*"
is actually symmetric in both its upper and lower pairs of indices. We can think of equation as
expressing the variation of the generalised metric, in terms of a parameter 0 kAP M )P, wWhich is then
projected from the symmetric tensor product of R; with itself into the space in which M,y lives by
means of Py %L, Generically, M,y is in fact valued in a coset G/H.

We can calculate the trace of the projector to compute the number of independent components of
the generalised metric, i.e. the dimension of the coset G/H in which it lives. In general, we find:

PMNMN = % (dimR1 (dile +1-— 2w) — YMNMN - MMNYMNPQMPQ) . (2.10)
Evidently, in general relativity we have o = 1, and the terms in involving w and the Y-tensor do
not appear. Hence we find Pyny"" = %d(d + 1) which is the number of independent components of a
symmetric matrix and also the dimension of the coset GL(d)/SO(d).

In DFT and ExFT the situation is rather more interesting. Part of the trace is independent
of the generalised metric and follows from representation theory as the Y-tensor can be related to the
projector onto the Ry representation. For d = 4 to d = 6 it is directly proportional to this projector,
and we find that its trace is YMV nv = 2(d — 1)dim Ry. For d = 7, an additional term appears
in the Y-tensor involving the antisymmetric invariant of Er7y (i.e. a projector onto also the trivial
representation) and in this case YMVN = 2(d — 1)dim Ry — dim R, /2. For d = 8, the situation
changes again and the trace does not have quite such a simple expression.

The crucial information about the coset then appears in the very final term in , which we
may single out and define as

1
r = %MMNYMNKLMKL . (211)
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One finds, as summarised, that for all groups except Egs) the trace of the projector gives exactly the
dimension of the usual G/ H coset minus 7. For Eg(s) we obtain the dimension of Egs)/SO(16) plus 2/15
minus 7. It follows that non-zero r, if possible, generically corresponds to parametrisations in which
there are fewer independent components of the generalised metric, signalling a coset G/H of lower
dimension. Information about H can be introduced in the form of a generalised vielbein, E;#, with a
flat index A transforming under H. The generalised metric is then given My ny = Ey* ExPH g, with
the flat metric H ap which is left invariant by local H transformations. Using the group properties of
the generalised vielbein (it must preserve the Y-tensor), it is then possible to explicitly evaluate r, as
we will see below for Fg(g) in section .
We can write the action most compactly by introducing a ten-by-ten representation of the gener-
alised metric
Mun = Maae, vnve = 2mppnmarae - (2.12)

The parametrisation of M ;x resulting is

1 g+ L0y, O Lomne,
M _ 5 (gzk erzlmn oY mn : 213
mun =g 2CL"™ € jumn 2|9|gifegn; (2.13)
where indices on the three-form are raised using ¢%.
This is the direct generalisation of the O(d, d) generalised metric. Using M,y and A, we can then
search for a quantity quadratic in derivatives which is a scalar under generalised diffeomorphisms (up
to terms vanishing by the section condition). The result leads to the action

S = /leX 672A (%MMNﬁMMKLaNMKL — %MMNGMMK%KMLN
24
+ = (O MMV Oy A = MMV O ADNA + MMN Dy 0N A) (2.14)
— OpON M)

However, this does not rule out the possibility of finding alternative parametrisations of the gen-
eralised metric which correspond to new cosets G/H of lower dimension. Indeed, this underlies the
non-Riemannian parametrisations of 35|, which we will review from the perspective of the projector
Py n5F in section , and will appear below in an interesting context for the Eg) ExFT.

Let us now discuss the dynamics of the generalised metric. Its equations of motion follow from the
ExFT action, which is constructed using the requirement of invariance under the local symmetries of
ExFT. These include not only generalised diffeomorphisms but also external diffeomorphisms associated
to transformations of the coordinates X*, and various generalised gauge transformations of gauge fields
that also appear in the theory. The projector then plays a vital role in the equations of motion for
the generalised metric. (Here we are thinking only of the bosonic part of the action: if we include
fermions then we will have to use a projector onto the variation of the generalised vielbein. We will
comment more on this later.) In fact, it was in this context that the projector was first written down
where it was obtained for the groups SL(5) and SO(5,5) by explicitly varying known parametrisations
of the generalised metric. When one varies the action with respect to My, one naively obtains an
expression of the form

05

55 = /5MMNICMN, ICMN =

but the true equations of motion are
Pun™ Kgr =0. (2.16)

The reason for this is that one must insist that the variations of the generalised metric SM™M¥ are still
compatible with G and so we impose this by a projector. In the standard formulation of ExFT, the
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actions do not explicitly impose this and so one needs to include these projectors by hand though it is
equivalent to just calculating the variations of the action subject to G-compatibility.

Now, recalling that the projector depends on My, we might consider whether it is possible to
find a generalised metric such that the projector vanishes:

Pun®t =0, (2.17)

meaning the equations of motion are trivially obeyed. This is evidently a very special possibility.
It corresponds to changing the structure of the theory such that the coset is G/G. Furthermore, as
any variation of the generalised metric must be projected, My ny = Pyun®*0 Mg, there can be no
fluctuations about such a background.

For O(d,d), the “maximally non-Riemannian” background Hy/ny = nan is of this type [35]. This
background is invariant under O(d, d), i.e. it corresponds to a symmetric invariant tensor of the group.
This characterisation is easy to search for in ExF'T, where the symmetric product of R with itself does
not contain the trivial representation for any E,q) except for d = 8. For Eg(s) we have R} = 248, which
is the adjoint representation and there is an obvious symmetric quadratic invariant given by the Killing
form. We will now discuss this ExF'T and what one can say about the non-Riemannian background
where the generalised metric is proportional to the Killing form.

2.2 The Eyg) ExFT and its topological phase
Generalised Diffeomorphisms and the Action

The FEgigy ExFT [44] is based on an extended geometry parametrised by 248 coordinates YM valued
therefore in the adjoint of Eg(s). Denoting its generators as T, we define structure constants fMV
with the convention [T, TN] = — fMN , 7K "and the Killing form by
1 1
MN _ MmNy MP _¢NQ
= _—Te(TTY) = — : 2.18
We freely raise and lower all indices using £ and its inverse sy .
The generalised Lie derivative of an adjoint vector of weight A is explicitly given by

LAVM = ARG VM — 60(Pags)™ kN LONAFVE + X(V)ONAN VM (2.19)

in which we have used the projector onto the adjoint representation (IP’248)M &1, defined by

1
(P248)MKNL = @fMKPfPNL- (2.20)

Alternatively, one can write the part of this transformation involving AM in the form (2.2) involving
the Y-tensor, given here by

A special feature of the Egg) ExFT is that it includes additional gauge transformations which appear
alongside the conventional generalised Lie derivative. Under this extra gauge symmetry, generalised
vectors transform as

SsVM = -3 fEM VN (2.22)

where the gauge parameter >,, is not an arbitrary covector but is constrained as part of the section
condition of the Fgy ExFT. This section condition applies to any two quantities Fj;, I}, which are
said to be “covariantly constrained” meaning that they vanish when their tensor product is projected
into the 1 @ 248 @ 3875 C 248 ® 248, i.e.

MNPy @ Fly =0, fMYEEV@ FL =0, (Psgrs) " unFx @ F) = 0. (2.23)
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These quantities include derivatives, 0y, as usual, the gauge parameters >,,;, and a number of other
gauge parameters and field [44].

This section condition guarantees closure of the algebra of the combined action of generalised
diffeomorphisms and constrained X,; transformations, which we denote by

L(sz) =L+ 0y (224)

The inclusion of the ¥,; transformations is in fact necessary for closure: the algebra based on the
ordinary generalised Lie derivative alone cannot be made to close on its own. The underlying
physical reason for the extra gauge transformation is the appearance of dual graviton degrees of
freedom in the generalised metric of the Egg) ExFT. For further details on these subtleties, we refer
the reader to the original paper |44] or the recent review.

We proceed to discuss the field content of the theory. This consists of the generalised metric, My,
an external metric, g,,, and a pair of gauge fields (A,™, B,r), with B,jcovariantly constrained as
in (2.23). These gauge fields have field strengths (F,,™,G,.,1) whose precise forms can be found in
[44]. All these fields depend on the three-dimensional coordinates X* as well as the 248-dimensional
coordinates YV subject to the section condition. The gauge field A, can be thought of as serving
as a gauge field for generalised diffeomorphisms while B,y is a gauge field for the constrained X,
transformations. We define an improved derivative D, = 8, — L4, ,5,) Which is used in place of J,.
The action for the Egi) ExFT is constructed in [44] and is given by

) 1 1
S = / PPxd**Y /g (R[g] + =——g" D MunDLMMN —V (M, g) + —ﬁcs> (2.25)

240 Vgl

where R|g] is the usual Ricci scalar for the metric 9w, except constructed in terms of D, instead of 0,,.
The two terms at the end are:

1 1
V(M, g) = —%MMN(?MMK%)NMKL + §MMN8MMKL8LMNK

1
+ %fNQPfMSRMPKaMMQKMRLaNMSL (2.26)

1 1
- §aM In|g|Oy MMN — ZMMN (Om In|g|On In|g|+0ng"" On G )

which is usually referred to as the “potential”, taking the point of view of the external three-dimensional
space, and the Chern-Simons term:

1
SCS ~ / d4$/d248Y (./T"M AN QM - §fMNKFM A 8KQN> (227)
4

written here in a manifestly gauge invariant form using the usual construction of an auxiliary space ¥
whose boundary 9X* is the physical three-dimensional space, and where A denotes the usual product
with respect to the external indices, u, v, . ...

Generalised metric and projector

Conventionally, we view the generalised metric as being an element of Egs)/H, with H = SO(16), and
then this coset is parametrised in terms of a spacetime metric and p-form fields. Instead, following the
intuition from the DFT approach of [35] where the generalised metric was defined as a symmetric two
index object obeying the O(d, d) compatibility condition, we will define the Egs) generalised metric by
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the properties that are needed in [44] to ensure the invariance of the action ([2.25)). Thus we define the
Eyz) generalised metric to be the symmetric two index object that obeys the constraints:

Mug My Mpo 59 = — fyunp, My Moy = kun - (2.28)

One can check that the conventional coset parametrisation of M,k obeys these constraints but new
results will follow from a solution to these constraints that does not obey the coset parametrisation. The
full generalised Lie derivative (including the additional transformations involving ¥,,) of the generalised
metric takes the form

1
LiasyMun = A 09p My + 2 - 60Py ™" <3KAP + @fQPKEQ> Mepr, (2.29)

with the projector given simply by

1
Pl = @MMQfQNPfP(KRML)R ‘ (2.30)
The trace is )
Pyn™™ = 5 (5" Mary +248) (2.31)

Now, for the usual Eg)/SO(16) coset, we introduce a generalised vielbein Ey4 such that
EM.A = (EMA, EMIJ) 7 HMNEMAENB — 5AB7 HMNEMIJENKL — _25[[[(5L]J7 (232)

where A is a spinor index corresponding to the 128 of SO(16), and I the 16-dimensional vector rep-
resentation, with Ey/7 = —Ey/! in the 120 of SO(16). The generalised metric is then given by
Muyn = EyAENBoap + %EMUENKLCSIK(SJL and it follows from the defining properties of the vielbein
that kMY Mjyn = 128 — 120 = 8. Thus we find Py ™Y = 128 as expected.

Now we can consider whether there are alternative parametrisations of M, such that Py MY
128. Remarkably, we can immediately write down a choice of M ;n such that Py n*% vanishes iden-
tically, given by

MMN = —KMN - (233)

This is easily checked to be compatible with the defining constraints (2.28)) for M,y (no other multiple
of the Killing form is). The projector then vanishes as fP(5%) = 0.

Restricting to the “topological phase”

Now let us consider what this implies for the equations of motion. On general grounds, as we have
explained, the equations of motion of M ;x itself will be of the form Py n® Ky = 0, where Kyn is
the result of varying the action with respect to M™Y. As the projector vanishes for My v = —Karn,
the equations of motion are trivially obeyed.

Now consider the variation of the other fields in the action. For instance, the equation of motion of
the external metric is:

. 1 - 1
0= R'LLI/ - 59#1/ (R[g] + %gponMMNDUMMN - V(M7g))

1 1 -1
+ 550 DeMan D MY 4 2Tl g0 (x/\g\(ﬁNMMN + MMNgy 1n|g|)) (2.34)

1 -1 1 1
- 5 \% |g| aM( \% |g|MMN)aNguV - §MMNgupaMngaNgaV - EMMNaMaNguV .
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Here ]A%W is defined to be the result of varying ]A%[g] with respect to g,,. Now, when My = —ryn all
terms involving the generalised metric vanish identically, either because D,k n = 0 (as the generalised
Lie derivative appearing in the definition of D, preserves the Killing form) or because of the section
condition kM8, ® Oy = 0. Similarly, the equations of motion of the gauge fields A, M, B, will
involve My only in the form of (derivatives of) D, My, and so the contribution of the generalised
metric to these equations of motion also vanishes identically.

We can conclude that the equations of motion for (g, .4, B.) when My y = —rkpn are those
that are obtained from the truncation of the ExF'T action obtained by setting M,y = —kp/n within
the action, i.e. in this background the dynamics of the resulting fields are governed by:

S = / Az d*®y/|g|Rlg] + /

d*z d**¥Y (]-“M A Gy — %fMNKIM A OGN ) : (2.35)

4

Let us make a short comment about the fermions of the Egig) ExFT. We would expect that after
truncating the generalised metric degrees of freedom that we should also truncate out the internal
fermions. At this point the supersymmetry of the non-Riemannian background is a little mysterious
since usually in ExFT the fermions should transform in a representation of H. What this means
when H = FEjyg) is uncertain but what is apparent is that one cannot just naively insert the condition
Muyny = —kpn into the generalised Killing spinor equations. The realisation of fermions in the non-
Riemannian background has yet to be determined. Note that the variation of the action with respect to
the generalised vielbein, Fj;?, requires a projector to ensure that § Fy;4 is not arbitrary. Evidently this
projector will depend explicitly on the precise form of H (whereas the projector Py acting on vari-
ations of the generalised metric only knew about H implicitly, through the term My nY N o MEL)
and so must be constructed on a case-by-case basis when starting from a particular non-Riemannian
parametrisation of My .

A related technical comment is to note that setting M,y = —kpn is consistent with the invari-
ance of the ExFT action under external diffeomorphisms with parameter £#(X,Y"), which includes a
generalised metric dependent transformation of A, namely

5eAM D MMV g, 0nE" (2.36)

Normally, this requires cross-cancellation between the scalar potential and the other parts of the action.
If this vanishes, V(M = —k, g) = 0, then one might be concerned whether the action is still invariant.
However, when one inspects the calculation in [44] of the variation of the action under these transfor-
mations, one finds that all possible terms that could spoil invariance vanish by the section condition
on setting MMYN = —MN,

3 Gauge Invariance of the Pseudo-Lagrangian

We now show that the F; exceptional field theory pseudo-Lagrangian given is gauge-invariant. For this
we calculate the variation of each term in the pseudo-Lagrangian under generalised diffeomorphisms
and then demonstrate that the combination of these variations vanishes. As always in these checks in
exceptional field theory it is sufficient to show that the non-covariant gauge variation A, vanishes up to
total derivatives. Our proof proceeds in two steps. In order to underline the necessity of including the
fields (s, we first consider the pseudo-Lagrangian for ¢, = 0 and computes its non-covariant gauge
variation. As we shall see there are already many cancellations but some terms are left over. Then we
shall show that these terms are exactly cancelled by the (3/-dependent terms.

3.1 Gauge variation at ( =0

As explained above, we compute first the non-covariant gauge variation of all the pieces of £ at (; = 0.
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First potential term

The first potential term, does not depend on (3; and we can immediately calculate the full non-covariant
gauge variation. A standard exceptional field theory calculation involving the definition of the current
Ju® and the section constraint gives the first step

A¢ [cpoﬁ} = { — T QMMN + TgM poy M7+ fBMT'YMPTaRQMNP} OnOREQ IN"
= MC paCsT™ s MO MPN 03,05 I — 200 (O3 9p € M) (3.1)

In the second step we have used the identity and simplified the terms with a single representation
matrix T and a single inverse M™¥ into a total derivative.

It is worthwhile to remark that the Ej;-representation with index has as lowest component R(As).
When decomposing Fj; with respect to GL(11 —n) x E, the first time this representation enters the
scalar sector is for Fg which is in agreement with the fact that this is the first time the potential term
is not gauge-invariant and also the first time ancillary transformations are needed. We shall show next
how the failure of gauge-invariance of the first potential term involving the index is accounted for by
the second potential term.

Second potential term
The second potential term does not depend on (,; either. Calculating the full non-covariant gauge
transformation yields
Ag [ﬁpotQ} =-M CPaOQgMQMMPNTaRS <3MaR§S + MRUMST3M3T5U> In?
— MC paC oMM MENTI® s MTRO, 0765 TP
= —MC paCosTEg MM MIN 1055 Tn”
— My C™MCIN S o p MO 0N 0rET TN (3.2)

where we have first written out the non-covariant variation A¢J v%. In the next step we have distributed
the parenthesis on the first line and used the identity to cancel the second contribution

(M CpaT?g MPNMSTMRU) CQBMQMaManUJNB
— (WCQaTaPR 77QM77RN77PS) CTBMTUaUaNESJMB =0, (33)

where we split the B index on the first contribution and used the identities to remove the xy” compo-
nent.

The first term we obtain in cancels precisely the contribution from the first potential term. This
cancelation is the same one that ensures the invariance of the potential for any finite-dimensional simply
laced groups. Consistently, the identity that was used in this cancelation is proved using a construction
that generalises to the Kac-Moody algebra e;;. Here, we obtain the combined non-covariant gauge
variation

A Lyt Loot, | = = MigCM O ST Gp MO0 0pe" I — 200 (0w MYT) . (3.4)

Thus, compared to present results where no 1%,y appears, the combination for E;; is not gauge-
invariant and we shall invoke an additional ingredient to arrive at a gauge-invariant pseudo-Lagrangian.
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Kinetic term at ( =0

In order to determine the non-covariant gauge variation of the kinetic term we break it up into the
parts that contain the constrained fields (5, (before variation) and those that do not, beginning with
the latter:

Ag [ﬁkin !g:o]
1 . B .
= Mo (C’JMaTO‘SQMgpMQR + CJMdH"QpMQR) O™ 5P Oy Ope” (3.5)

where we have used the identity to cancel the term in T pdyOnEF from the non-covariant gauge
variations.

Topological term at ( =0

We first compute the non-covariant gauge transformation at (5; = 0. An important first observation
is that the total derivative 115" 9, xn® is not invariant under its non-covariant gauge transformation
up to a total derivative. To compute A¢ = & — L¢ of TzMN0yxn® we need to determine the Lie
derivative of the combined object 93, yn® which is given by

Le(Oxn®) = €7 0p(0nxn®) + OuE 0pxn® + InET Orrxp®
— aPQang(T“%@MXNB + K“%@MJNB). (36)
This not a total derivative. Therefore the non-covariant gauge variation is
Ag [H&MN(?MXN&] = 11" [3M(5§X?v) - Eé(aMXNd)]
= MY [ - TaRPTadgaMaRfPXNﬁ
X ( TR — TsU 0T My pMSE + TV (T30 My p MSE
+ HdQPTBQSMSR> aMaRgijﬁ} (3.7)
where we used the section constraint on Lexy®. The three last terms come from 9y (Agx%) and
therefore do combine into a total derivative, but it will be convenient to distribute the derivative as
above.
The remaining terms in © ;5% just pick up their non-covariant variations. We organise the calcu-

lation by looking first at all terms varying into x and then at terms varying into the current J. The
sum of terms varying into y give

1 B N
Ag |:£top|é‘:0:| ‘X(??g = §HdMN |: — QTO‘RPTaaBaMaprXN/B

% T pOn D€ XS + T 5T o Msp MO 0O xn”
—IL"M TN T, o Msp MR 0y 0rE" XN (38)

where we used the identity on all terms and the fact that the first two vanish using the section constraint.
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The terms whose non-covariant gauge variation contains a current J are
Aé [‘pr’g:o]

1 - . N
— EHdMN |: _ QTO(RPKQOC/B _ QTﬁUQTaQSMUPMSR + 2TaUQTﬁQSMUPMSR

Jo2¢

+ 2M1% p T g M — T ;T p — Ty 5T G Mg p MO — T 511 g p MOF

+ 2K[adm (TaRp + TQSQMSPMQR)} aMaprjN’B

1 } . B s
= §HdMN |: — 2K(aaﬂ)TaRp - Tlgaﬁ*TﬁRp + (2K(aaﬂ)TaSQ + T@aBTBSQ)MSPMQR

- 2TBS(QH(S‘P)S/\/lQR} OnOrE" TN, (3.9)

1 ~ _
= —5Q]JCIMaCJNgTaSQMSPMQRaMaRSPJN'B — HdMNT@S(QHap)SMQRaMaprJN”B,

where in the first step we have used the commutation relation, in the last step we have used the
identities to write the first line in terms of the C-tensors and combined the o and & components into
an @ index.

Combined non-covariant gauge variation at ( =0
Collecting all the terms from above we therefore find
A [L| 4_0] + 20 (aN]angMNP> (3.10)
= —MUCJN 5(C™MaT S @Msp MO — CTMGT1% G M) 010 T
— Y ToN T, 5 o Mg p MR ORET X
— 5QIJCIMaC'JNﬁTaSQMSPMQRaMaprz]Nﬁ — MV T35 QI py s M PR Oy ORET TN

where the first line combines and (| while the remaining lines come from the variation of the

topological term given in and .
So far we have av01ded using any identity that mixes and L(Aj) @ L(A4). The only equation that

does this is the master identity and we shall apply it now to the first line above. Continuing from ({3.10))
we then obtain

Ac[£leo| + 200 (Onpe M)
- —QUC"N <01M T35, Msp MR — CfMdeQPMQR) 001 ORE” TP
+ E(MIJ + QIJ)CINgCJMHQPMQRaMaRfPJNB
— TV TN T 5 0 Mg p MORO OReT Y N
— %QUCIMaCJNﬁT&SQMSPMQRﬁME)RfPJNB — MY TR QT py s MOB0 ORET TN

1 o~
=5 (Mo + Q) C™N 5CTM o p MO0V ORET T

1 - 5 1 i s
- éﬂaMNTaa”TaSQMSPMQRaMaRfPXN’B + 5HgMNTBﬁaHaQPMQRaMaprz]N’B

— M TN T, o Msp MOROy 0ReT Y v — TTaMN TS (11 py s MR ORET TN
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1 = .
= 5(./\/1[] + Q[J)CJM (AgCM)CINBJN'B — 8N(HC~,MNH“RPMRQ8M8Q£P) (3.11)

where we have used the identities to remove most €2;; terms when going to the second equality. The
remaining term can be written as the non-covariant variation of (3; as shown. This result strongly sug-
gests that one might be able to obtain a pseudo-Lagrangian invariant under generalised diffeomorphisms
by adding the relevant (3; dependent terms. This is indeed what we will show next.

3.2 Gauge invariance

In order to demonstrate gauge-invariance of £, we now consider the (3, dependent terms. These appear
in the kinetic term and in the topological term. Their non-covariant gauge variation is given by

1 .
AV [[, - £|<:0] = _E(MIJ + QIJ)CIMaCJN I AeCy
1 ~ -
— 5 (M + Q) (chaTaSQMSP F O™ T8+ CIMHQP>MQR8M835PCJNCN

1 _
= _E(MIJ + Q) CM (AeCar)C™N 5N (3.12)

where in the first step we have written out the non-covariant variations of Jy,, cancelled one term

using the identity to add one vanishing term and group terms together into the non-covariant variation

of F. In the second step we have then applied the master identity twice to cancel the middle line.
Now we can collect all terms contributing to the variation of the pseudo-Lagrangian and obtain

from and
SeL = s (§M£> (3.13)

where we used moreover that the total derivative terms in cancel. We have therefore proved that
the pseudo-Lagrangian is gauge-invariant up to a total derivative as claimed. Note moreover that it
transforms under generalised diffeomorphisms as a density, whereas the non-covariant variation usually
only vanishes up to a total derivative.

4 Non-Riemannian Backgrounds in O(D, D) DFT

In this section we first revisit the possible parametrisations of O(D, D) generalised metrics from the
perspective of the coset projector. We demonstrate how the classification of O(D, D) non-Riemannian
parametrisations of Morand and Park [35] fits into this picture. Then, we will review the explicit details

of these parametrisations and look at some examples which will inspire us in our later study of the
SL(5) ExFT.

4.1 Generalised metric and coset projectors

Let us first recall that the generalised metric of DFT may be defined as a symmetric matrix Hysy
obeying the compatibility condition Hyxn™ FHn = nun with the O(D, D) structure. Tt transforms
under O(D, D) generalised diffeomorphisms generated by a generalised vector AM = (A% )\;) according
to the generalised Lie derivative with the Y-tensor YM¥ po = nMNppg and w = 0. The O(D, D)
section condition N9, ® Oy = 0 may be solved by 9; # 0, 9" = 0, where the doubled coordinates are
yM = (Yﬂffi), After solving the section condition in this way, generalised diffeomorphisms produce
D-dimensional diffeomorphisms generated by A and B-field gauge transformations with parameter \;.
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This leads to the usual parametrisation in terms of the spacetime metric, g;;, in string frame, and the
B-field. The generalised dilaton may then be identified as e =24 = ¢=2%,/|g|, where ® is the spacetime
dilaton. There is an implicit assumption that the D x D block H¥, which is identified with the inverse
spacetime metric, is invertible.

The O(D, D) compatibility condition implies the existence of two projectors

1 _ 1
Pyp = 500+ 0" "Hew) - Py = 500 — " Hew) (4.1)

such the projector Py;n® %, that appears in the generalised Lie derivative of the generalised metric

(2.7)), factorises as
Pyn™t = 2P Py (4.2)

In the usual parametrisation, the trace ™~ %H ,x is zero, and hence Py MY = D2, as expected for the
O(D, D)/O(D) x O(D) coset.

Let us suppose instead that the trace is not necessarily zero. Then, as Py and P} are still
projectors, we can have n™NH ;v = 2y, for some integer y, with —D <y < D, such that PM = D+,
ﬁ% =D —y.

We can define “square roots” of the projectors, namely matrices Vy;4 and V5, where A= 1,..., D+
y, A=1,...D —y. These obey

1
Vaah*BVyp = §(HMN +nun)s  Vaan™ Vg = hag, HM Vi =0M"Vya, (4.3)

- —anA 1 _ _ = _ _
VMAVNBhAB = §(HMN - 77MN) ) VMATIMNVNB = —h*P ) HMNVNA = —UMNVN/L (4-4)

where hap and hjp are respectively (D +vy) x (D +y) and (D — y) x (D — y) diagonal matrices of
signatures (p,q) and (p,q). This is quite general; we will see how different choices of signature allow
for different coset descriptions and constrains (p,q) and (p,q). Constructing a vielbein for the full
generalised metric,

Ex* = Vi, Vi), Hun = Ev Ex®Has, (4.5)
where the 2D x 2D flat metric,
Hus = <h83 BEB) ; (4.6)
is of signature (p + p, g + q) we can check that
AB _ oA Boun _ (BP0
N =EuTENTyT T = ( 0 —hAB> (4.7)

then has signature (p+ ¢, q -+ p). Now, Ey” must be an O(D, D) group element. This means that 745
should have signature (D, D) and so be equivalent (by a choice of basis for the flat indices) to n™¥.
Hence the only possibilities obey p +q@ = D, ¢ + p = D. This means that p — p = ¢ — ¢ = y which
is consistent with the trace being WY Hyny = 7P Hus = p+q — p — ¢ = 2y. Note that the explicit
parametrisation that will be used in the subsequent subsection does not make this component counting
manifest, as it uses variables which are written in a D-dimensionally covariant manner. As a result,
there are shift symmetries present (see below) which complicate the choice of what should be
regarded as the true independent variables. This suggests there ought to be an alternative formulation
which exhibits the coset structure more clearly.
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4.2 Review of Morand-Park classification

Dropping the assumption of the invertibility of the D x D block H% in the normal parametrisation
led to the classification of O(D, D) generalised metrics in [35]. Taking the section condition solution,
0; # 0, 0° = 0, they found that the most general parametrisation of the generalised metric is given by

1 B Ky Xey) — Xov? 1 0

Here both HY and Kj; are symmetric D x D matrices which may be non-invertible, with {X, X}
spanning the kernel of H% and {Y, Y} spanning the kernel of K;;. Both kernels have dimensions n+ 7,
and we index the zero vectors by a =1,...,n and a = 1,...n. Explicitly,

H7X$ =0, HYX!=0, KyY/=0, K;¥]=0. (4.9)
We have some completeness relations which are necessary for the invertibility of Hy;ny, namely
H*Ky +YIX0+ViIXT =60, YiX)=06), YiX'=4, VIX!=0=YiX}, (4.10)

which imply H*K,HY = HY | K, H lelj = K;;. These objects are all tensors under diffeomorphisms
and invariant under B-field gauge transformations. We see that the trace of the generalised metric is no
longer zero, but given by HM y; = 2(n — n), in agreement with the analysis of the previous subsection,
with 0 < n +n < D. Note that X, X and Y,Y are a preferred basis for the zero vectors of H and K.
Any other basis X/, Y, where v = 1,...n + 7, would be such that

Z7 = XY — X3V) = X%0,°Y", (4.11)
where ¢," is conjugate to diag(dy, —55). Thus X, X and Y,Y diagonalise ¢,”. Finally, note there is
also a shift symmetry preserving the parametrisation ([4.8), involving arbitrary parameters b, bia:

Y] =Y! + Hbjq,

Vi Vi 4 Hiby,,
Ki; = Kij = 2X{ K H by — 2X 0K jy HM b + (X g + X bra) HY (X 2y, + X)),
Bij =Bj; — 2X{bjja + 2X[ibja + 2X[5X 5 (Yrbra + Y bra + bra H" bia)

(4.12)

which we can view as eliminating some components of the B-field in the non-Riemannian geometry.

A variety of interesting example have been considered in [35]. For instance, (n,n) = (D,0) corre-
sponds to the maximally non-Riemannian case, Hyny = nyn. When n = n the parametrisations may
be connected by O(D, D) transformations to Riemannian parametrisations. An example, which we will
discuss below, is the (1,1) non-Riemannian metric corresponding to the Gomis-Ooguri limit of string
theory, or to the T-dual of a supergravity solution. The case (n,n) = (D—1,0) gives an ultra-relativistic
(Carroll) geometry, while (n,n) = (1,0) or (0,1) provides a version of non-relativistic Newton-Cartan
geometry. (In this case, the transformation in fact reduces to known non-relativistic trans-
formations termed Milne transformations or Galilean boosts [35].) In general, the non-Riemannian
background can be studied using the doubled sigma model, and it was shown in 35| that the zero
vectors X;® pick out n string target space coordinates which become chiral, while the X;% lead to n
antichiral directions.

5 Riemannian Backgrounds and Exotic Supergravities in SL(5)
ExFT

We will now focus on the SL(5) ExFT, a good testing ground as it is simple enough to allow one to realise
various constructions very explicitly, and simultaneously complex enough to be interesting. Already
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at the level of Riemannian parametrisations, the SL(5) ExFT describes not only the conventional
10- and 11-dimensional supergravities, but exotic variants, with all information about the nature of
the spacetime theory encoded in the generalised metric via the choice of parametrisation. We should
however note that though these exotic variants appear to give valid parametrisations of the ExFT
variables, their role in the full quantum string and M-theory is less clear as they involve spacetimes
of non-Minkowskian signatures, and they are not expected to exist as the low energy limits of fully
fledged variants of string and M-theory, though they may still appear as complex saddle points in the
path integral.

Spacetime decompositions

In general, in order to match exceptional field theory with standard supergravity, it is convenient to
start with an intelligent decomposition of the fields of the latter. For instance, the 11- or 10-dimensional
Einstein frame metric g;; can be decomposed in the following manner (corresponding to a partial fixing
of Lorentz symmetry): splitting the 11- or 10-dimensional index /i = (u, 1), where u is an n-dimensional

index, let
~ |¢|wguu + AukAul¢kl Auk¢kj
ho = , 5.1
9 ( A b 51)
where w is the intrinsic weight appearing in the generalised Lie derivative. For SL(5), w = —1/5.

The ExFT formalism will work regardless of the signatures of the blocks g,, and ¢;;. We will denote
the signature of metrics by (¢,s). Let ¢;; be a d-dimensional metric with signature (¢,s), so that
b= detd = (—1)|¢]. Define e, 5, = [6] 2 iy, €1t = ||~ 1/2piid with both nl~¢ = g = +1.
Then we have €74 = (—1)l¢"% . ¢ilae, .ir, and there are no extra signs in the contractions between
€ with indices up and those with indices down.

As well as the metric, it can be convenient to redefine the components of the gauge fields which
carry the external p, v indices, making use of the field A,°. The details are not important in the present

paper.

The SL(5) ExFT

For SL(5), the representation R; is the antisymmetric 10-dimensional representation; we will write an
R, index M as an antisymmetic pair of five-dimensional indices a, b, so that VM = V® = Vb We
will contract indices with a factor of 1/2, VMW, = 1V *W,,, meaning that 6" y = 201" = gagh — gboe.
The generalised Lie derivative is defined by giving the Y-tensor, which is YMV ;= n®®'ep_, 0., and
the section condition is 7%%@,.04. = 0.

The generalised metric, My, carries a pair of symmetric R; indices. We can also define a “little”
generalised metric in the fundamental five-dimensional representation, such that

Mab,cd = i<macmbd - madmbc) ) (52)

where the overall sign is needed to describe exceptional field theory in the case where the Y™ coordinates
include timelike directions. The little metric is constrained to have unit determinant, det m,, = 1. Note
that it is immediate from this decomposition that eadeeMab,cd = 0 and hence YM¥ roMun = 0, so that
referring to the projector trace Pyy™" in (2.10]) we find that M .q has 14 components, corresponding
to the coset SL(5)/SO(5) (or SL(5)/SO(2,3)). The situation with the sign choice in ((5.2]), meanwhile,
is a little subtle. We choose to fix the sign differently in different parametrisations, such that the
“generalised line element”

GudXHdXY + Myn(dYM + A, dX")(dYN + A,dX") (5.3)

19



when written out in terms of the spacetime metric, gz, (as in (5.1)), and spacetime coordinates,
XA = (X# Y?), always equals
16| gupd X dXY + ... (5.4)

where the ellipsis denotes terms involving dual coordinates. Pullbacks of the expression are used
to construct particle and string actions with target space the extended geometry of ExFT, and the
relative sign between the two terms is fixed by the appropriate notion of gauge covariance under the
ExFT gauge symmetries. As it is M,y that appears in (5.3)), we stress that it is the parametrisation
of this version of the generalised metric which must be considered fundamental, though we will almost
always write down explicit expressions using the more compact notation of the little metric mg,. (Note
we can also express mygy, via my, = énaMNnprMMPMNQ.)

The gauge fields of the SL(5) ExFT appearing in the action are a one-form A,M, two-form, B,,,
with field strength H,,,q., and three-form, C,,,*, whose field strength J,.,,* appears in the Chern-
Simons term but does not have a kinetic term. The equation of motion for C,,,* accordingly amounts
to a duality relation relating it to the degrees of freedom in the other gauge fields. The action is defined
by

N 1 1
S = / d"Xd"Y /] (R[g] + Eg“”DHMMNDVMMN —V(M,g)+ Les
V109l
1 ) (5.5)
- ZQQWQWMMN}—WM‘FPUN a Emab,H#Vpanpb>
where
1 1 1
—V(M,g) = EMMNaMMKLGNMKL — éMMNaMMKLaKMLN + 58MMMN8N ln|g|
1
+ ZMMN (0090 Ong"™ + Opr In|g|On In|g|)
(5.6)

1 1 1
=+ <gmacmbd8abme facdmef + §macmbd8abmef Occmgr + éﬁabm“&;dmbd

1 1
+ §mac 0. 1n|g|+§m“°mbd(6abg””86dguy + Oup In|g|0cq 1n|g|))

and the Chern-Simons term is described in [65].

5.1 Fixing the coefficients of the SL(5) ExFT

We have already seen a truncated form of this theory in the current literature, and described the
tensor hierarchy fields in deep details. Recall we use M, N = 1,...5 to denote five-dimensional funda-
mental indices, while the R; representation of generalised vectors is the 10-dimensional antisymmetric
representation, for which we write a 10-dimensional index M = [MN/] as an antisymmetric pair of
five-dimensional indices.

The field content of the SL(5) exceptional field theory is

{g;wa MMN,PQ) AMMN: BuuMa CuupMa s } . (57)

Here we have the 7-dimensional metric g,,, the generalised metric M po parametrizing the coset
SL(5)/SO(5), plus the tensor hierarchy fields: the one-form A"V, two-form By, v, and C,,,™. The
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corresponding field strengths of the tensor hierarchy fields are .FWMN s Hyuvpm and JWWM. The four-
form D, o mn appears in the definition of jw,pc,M, but drops out of the field equations. Hence this
does not describe additional physical degrees of freedom.

All these fields are taken to depend on the 7-dimensional coordinates, z*, and the 10-dimensional
extended coordinates, Y. The coordinate dependence of the fields on the latter is subject to the
physical section condition which picks a subspace of the exceptional extended space. This section
condition can be formulated in terms of the SL(5) invariant ¢*VP2K

MNPARY nBpo® =0, VPG, Dol =0, (5.8)

where ® and ¥ denote any field or gauge parameter.
It is convenient to decompose the generalised metric as

Mpmnpo = mmpmon — mugmpy (5.9)

where mv is symmetric and has unit determinant. We denote its inverse by m™V.

Then we can write the action ?? specialised to SL(5) as

1
Ssi(s) = / d'zdY /|g| (Rext(g) + ZDﬂmMN DHEmpn

1 1
— gmMpmNQ}_WMN}"WPQ . EmMNHquMHMVPN (5.10)

—1
L. g) + VBT ).
In this case, the internal Lagrangian or potential can be expressed as
1 1
Lin(m,g) = gmMPmNQaMNmmapgmm + §mMPmNQ3MNmm3m>mQL

1 1

+ §aMNmMPaPQmNQ + §mMPaMNmNQaPQ In|g| (5.11)
1

+ gmMPmNQ(aMNg“”(?PQQW + Opmn Inlg|OpoIn|g|) .

It can be explicitly checked that this is a scalar under generalised diffeomorphisms. (This is the direct
generalisation of the miniature SL(5) ExFT we wrote down in with the scalar A there replaced
by the full 7-dimensional metric g,, here.)

The topological term is best represented by writing it in terms of an integral over an auxiliary
8-dimensional spacetime:

1.
Stop = ’i/de dY et <Za~7u1---u4 ® Tpisons — AF iy ® (Hpuspiaps @ Hueums)) ) (5.12)
where the coefficients have been chosen so that its variation is a total derivative

0Stop = 2K / Az dy e Dy, < —46A,, ® (Hugpaps ® Husurus)
—12F 5 @ (ABM4#5 g Huam%) (5.13)
+ (OACupn) ® To)

and coefficient & is determined to be ]
E— 5.14
"l (5.14)
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In we demonstrate this by requiring invariance under 7-dimensional diffeomorphisms.

Kinetic terms are included for the generalised metric and the gauge fields A,, and B,,,. On the other
hand, the field strength 7,,,,, of the gauge field C,,, only appears in the topological term. This gauge
field also appears in the field strength H,,,. We can find its equation of motion:

N M ( |glm™MPH P — 12%6“”p”1"’”4jal...a4M) =0. (5.15)

This implies a duality relation between the gauge field C,,, and the gauge field B,,.
Finally, note that although the four-form D, poan appears in the definition of jWPUM, it does so in

the form 8Dw,pa and consequently drops out of the variation as jwpa only appears accompanied

by d. Specifically, we can integrate by parts and use nllpotency of  to see this.

We will give a sense of the type of calculation involved in verifying the invariance of the ExF'T
invariance under n-dimensional diffeomorphisms, and how this fixes the coefficients in the action. We
will work with the case of SL(5) that we described. We start with the topological term written as an
integral over one dimension higher is:

1A
Stop = H,/dsx dY etr-s (Zgjmmm ® Tisnis — AF s ® (Mg pias ® H#sm#s)) (5.16)
where the coefficients have been chosen so that its variation is a total derivative:

5St0p - 2H/d8x dY@“l--.HS D#l < — 45./4#2 ® (HH3N4P«5 [ ] HN«(S,UJMB)
- 12‘Fﬂzua i (ABIM,US i H%ums) (5'17)
+ (éACuwwz;) b jus---ms) .

Using the definition of e, this is:
05t0p = 25 / d*zdye-# D, ( + 25AM2MN%M3M4M5MHM6H7M8N

+ 6fuz#3MNABM4u5MHu6mu8N (5'18)
+ 8NMAC#2M3M4N\7#5~4L8M> .

The kinetic term for the one- and two-forms are

1

S = —§/d7de \glmapmaro Fu N FHPL (5.19)
1

T A"z AY /| g|m™MN My H P v (5.20)

Recall that

1
0F ™ = 2Dy d AN + S MNP 0poAB i
3 (5.21)
5Huup./\/l = BD[MABWJ}M 4_1 MNPQK(SA[M up QK + aNMAC,uup )
and hence the field equation for C,,, is
1
O M (6 |g|mMP R P, — 2/{6“""01"'04\70—1,_0—4/\4) =0. (5.22)
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Under external diffeomorphisms, we take
5§AMMN _ gofau/\/lj\f + mMPmNQg/,LVaPQSV 7
Aﬁlg;w/\/l = échr;wM ) (523)

1
M / o MN 2 A1 2
Agc,ul/p = ——12 A3l |g|5 €opvpri Aarz Tl HA2 5_/\/’ .

The complete variation of the topological term is then:

0eStop = 2K / d®z dY e+ ( + 25"}}“1MNHW%MM”H%%WN

MP.__NQO
+2m M 291,00 08" Mo s puam H s s pr N

66 Fngs™ Hord Hispopr (5:24)
+ é / @ aY e (V191 TH 5 ) T
The first and third lines here cancel via the Schouten identity. For the second line, we write
N 911 00p Q€ Hpspspa M M st = —[glears . agOp Q€T HI A28 HMAS (5.25)
Then we integrate by parts to obtain the final expression
8¢ Stop = 8k / A% QY /[91E €y unOpa (V/Iglm T HI 2 ) N Qpprarsra
1 (5.26)
s / a*z Y Oy (VIgIE"m P H " ) T
Next, we consider
Oe Mywpm = LeHywpm
- %wwgcm” NP gt Oprpr €7 Fiuy (5.27)
— &N Ty — WGPM (\/mggeauupAl)\Q/\ngQHAlAQA:jQ>

after using the Bianchi identity for H,, 0 to simplify the expression. The final two lines can be viewed
as the anomalous variation of this field strength under the 7-dimensional diffeomorphisms. The very
final line gives:

1
g™ S5 D /d7x dY |g|6mMNHWpM§UaN7D~70WpP

+1 1
612-4!-3!k

(5.28)
/ A"z dY dp ( |glm™MN e ”p/\/> VI191€ €nppprinargm” EH 1223 o

after integrating by parts. The choice of sign is immaterial and we pick the plus sign. Next, we can
consider

1 ag
0eFu™N = LeFu, MV + §€MNPQ’C@PQ§UHJWK + 2Dy, (m™MP N O €7 110 ) - (5.29)
It is straightforward to check that the contribution to the variation of the kinetic term for this field
strength arising from the second term here cancels against the remaining piece coming from the anoma-

lous variation of H,,,u, i.e. the second line in [5.27, This fixes the coefficients of £, and L, relative

23



to each other. With further work, the third term here can be shown to cancel against a term coming
from the variation of the Einstein-Hilbert term, Re.(g), for the metric g,,. This fixes the relative
coefficients of £, and Rex(g). Finally, further anomalous variations from R (g), the kinetic term for
the generalised metric and the internal part of the Lagrangian all conspire to cancel against each other
and fix all relative coefficients (up to the overall scale). We refer the diligent reader to the original
literature to check the precise details.

5.2 M-theory parametrisations

The M-theory solution of the section condition is based on splitting a = (4,5), where ¢ is a four-
dimensional index, and choosing the physical coordinates to be Y = Y% and the dual coordinates to
be Y%, with the section condition solution then provided by 9; # 0, 9;; = 0. Generalised diffeomor-
phisms are generated by A% = (A% AY). The vector A’ is then found to generate four-dimensional
diffeomorphisms, while A% = 1), produces gauge transformations of the three-form. This al-
lows us to parametrise the generalised metric in terms of the internal spacetime metric, ¢;;, and the
internal components of the three-form, Cjj,. It is convenient to turn Cjj; into a vector by defining
v = 5€7MCjy. Then we have:

_ /\|¢|72/5¢zj — ||/ 100
e (—A|¢|1/1%j 62((=1)" + Avw) | (5:30)

This parametrisation incorporates two sign factors. The first of these is (—1)%, which depends on the
number of timelike directions ¢ in ¢;;. This appears in order that the generalised metric parametrise
the correct coset SL(5)/SO(2,3) rather than SL(5)/SO(5), and ensures that the determinant is +1.
Such timelike variants of the classic G/H cosets were analysed. The second sign factor is denoted by
A, and controls the sign of the kinetic term of the three-form, providing an ExFT parametrisation for
exotic variants of 11-dimensional supergravity related to timelike dualities. The parametrisation of the
big generalised metric that we use corresponds to

MGb,Cd - /\<_1)t(macmbd - madmbc)- (531)

Studying the gauge transformations of the ExFT gauge fields in this solution of the section condition,
we find that the obvious components of the 11-dimensional three-form can be identified with certain
components of the ExFT gauge fields, schematically A,7 = 1" C\, By = Chui, Cuvp = Cup. Apart
from the obvious identification A4, = A,", the other components of the gauge fields are related to the
dual 11-dimensional six-form, and can be eliminated from the ExFT action using duality relations. As
a result, one finds by explicit calculation that the ExFT action is equivalent to that of 11-dimensional
supergravity:

1o 1
S = /d“X\/|§| R(§) = A—=F"P Frpos + ——Lcs | - (5.32)
48 VAT

In general we see that A = +1 corresponds to the usual relative sign between the Ricci scalar and F?
term, while A = —1 flips the sign of the F? term. The latter variant of supergravity can be thought
of as the low energy effective action of an exotic M-theory, called M~ theory, of signature (2,9) and
containing M2 branes whose worldvolume has Euclidean signature.

We can summarise some of the sign choices appearing in the little generalised metric , with
reference to figure 2

e The signature of ¢;; is (0,4) and A = +1 so that the signature of mg, is (0, 5), and if the external
metric has signature (1, 6) this describes the usual 11-dimensional SUGRA.
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e The signature of ¢;; is (1,3) and A = +1 so that the signature of mg, is (2, 3), and if the external
metric has signature (0, 7) this describes the usual 11-dimensional SUGRA.

e The signature of ¢;; is (2,2), and A = —1 so that the signature of my,, is (2, 3), and if the external
metric has signature (0, 7) this describes the unusual 11-dimensional SUGRA with signature (2,9)
and wrong sign kinetic term, the low energy limit of the M* theory (see diagram .

e Other choices can correspond to ExFT descriptions of other exotic variants of M-theory.
IA++ HA

\

IIA-+ (IIAg)
(0,10)

x t

HB++ IIB n+-@se) | S , IB~+ (IIB) 1B~ —

+ a1
a, 9) (1,9) (3,7)

t
t T
IIAJr IIA* ITA—— T

(2,8)

\
DFT+ \ M_ (M*) / DFT—
(2,9)

Figure 2: The exotic duality web. Red arrows denote timelike or spacelike reductions from 11 to
10 dimensions. Black arrows denote T-dualities. The dashed arrow in the centre denotes S-duality.
All these theories are described by choosing different parametrisations of exceptional field theory.
The superscript ITA /B** denotes whether, firstly, fundamental strings and, secondly, D-branes have
Lorentzian or Euclidean worldvolumes, and hence determines which gauge fields have wrong sign kinetic
terms. Similarly M* denotes whether M2 branes have Lorentzian or Euclidean worldvolumes. There
are additional versions of these theories with more exotic signatures.

5.3 IIB parametrisations

For the IIB solution of the section condition we split @ = (i, «) where i a three-dimensional index,
and « is a two-dimensional index associated to the unbroken SL(2) S-duality symmetry of IIB. The
physical coordinates are then the three coordinates Y%. It can be convenient to view the i index as
being naturally down, i.e. Y7 = (V;;,Y;*, Y*#), such that the physical coordinates can be defined to
have the usual index position via Y = 77”’?}/

The generalised diffeomorphism parameter A% = (n;;,A¥, A;*, A*?) now produces three-dimensional
diffeomorphisms generated by A?, gauge transformations A;“ of the two-form doublet, and gauge trans-
formations A*? = e Lnk )\, of the four-form singlet.

The generalised metric can be parametrised in terms of the internal metric, ¢;;, the two two-forms
(Cij, Bij) = Ci;* (which we again write as vectors, v’ = %eijijkO‘), and a two-by-two matrix, Hags,
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containing the dilaton ® and RR zero-form C. We write

~(16PP (1) opopd + Hysv0) o[ OH o 0"

Map = ( ‘¢|1/10H67Uj«, ’¢‘—2/5Ha5 ) (5.33)
a1 Co

Haﬁ = 0oFp€ (CO UFJD€_2¢ + COQ) . (534)

Again, we allow for a general distribution of sign factors when the coset is SL(5)/SO(2,3). Here the
signs 0; = + dictate whether the parametrisation corresponds to a set of variants of type IIB, denoted
[IB77?P | where IIB** is the standard IIB, IIB*~ is obtained by a timelike T-dualisation of type IIA,
IIB~ 7 is the S-dual of IIB*~ and is a theory where the fundamental strings have Euclidean worldsheet,
and [IB™~ is obtained by further T-dualities. The subscript on or means that the sign corresponds to
the F1 having Lorentzian/Euclidean worldvolume, while that on op means that the sign corresponds
to D-branes having Lorentzian/Euclidean worldsheets. In this case, the parametrisation of the big
generalised metric that we use corresponds to

Mab,cd = (_l)t(macmbd - madmbc)« (535)

We also identify the gauge fields such that (schematically) A,;; = ni1 A%, Au® = (Cuiy Bui), AP =
gh %nijkC,“-jk and similarly for the higher rank fields. Then the SL(5) ExFT dynamics are equivalent
to those following from the type pseudo-IIB action of the form

1.5 1
S == /dloX \/ |§| (R(g) + ZQ“”@,;HW%HM — —O'DO'FHaﬂFﬂpﬁaF“Vpﬁ

12
1 oo 1
O'DO'FFA F’ul'"l%—l—

4.5l H1..-p5 \/@

which matches the Einstein frame action exactly for the type I1IB?#72 supergravities [56]. We see
that the choice of signs op,op will determines which kinetic terms come with the wrong sign. When
or = —1, the NSNS B-field does, while when op = —1 the RR two-form does.

(5.36)

ﬁcs>,

6 Membrane Newton-Cartan Fundamental Limit and Exotic
Eleven Dimensional Supergravity

6.1 Setting up the expansion

Metric We start by writing the 11-dimensional metric and its inverse as
glw - CzT;w + C_le/ s g‘w =cH" + C_ZTMV . (61)

We can view this simply as a field redefinition which introduces the 11-dimensional Newton-Cartan
variables alongside the (dimensionless) parameter c. We will seek to send ¢ to infinity and interpret the
result as a non-relativistic limit. In principle, we can also think of this ansatz as containing the first
terms in an infinite expansion in ¢~3, and we will occasionally allow such a perspective to influence our
presentation. However, we leave the development of the full non-relativistic expansion to future work.
To see that the field redefinition (6.1)) makes sense in Newton-Cartan terms we look at the condition
0% = Gupg®, which gives at order ¢, ¢ and ¢~* respectively the following three conditions:

TupH” =0, 7,7+ H,,H” =46, H,m™ =0. (6.2)
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We view these as the defining conditions for 7,,, viewed as a longitudinal Newton-Cartan metric (of
Lorentzian signature), and H* viewed as the corresponding orthogonal transverse Newton-Cartan
metric (of Euclidean signature). Letting A =0,1,2 and a = 1, ... 8 denote longitudinal and transverse
flat indices, respectively, we can introduce projective vielbeins such that

T = THATZ,BT]AB . T = TR pnAB T”AT”B = 61]2’, (6.3)
H"™ = h* 06", Hyy = h*,h% 0w,  h*".h?, =68, (6.4)

and hence obeying the Newton-Cartan completeness relations following from (6.2]). Here n4p is the flat
three-dimensional Minkowski metric and ¢, is the flat Euclidean 8-dimensional metric. We can then
compute the determinant of the 11-dimensional metric:

~ _ —202 2 — _L M1..-p11 LV1-..V11
det g, = —c Q0% , Q° = —g5€ € Ty Trovo Tusvs Hpava - - - Hpugyony s (6.5)

where e#1-#11 denotes the 11-dimensional Levi-Civita symbol. Hence v/—g = ¢ 'Q and it is Q which

will be used as the measure factor in the non-relativistic action. In terms of the vielbeins, we can write

_ | 1 _pvpoi..os A_ B, Cra as
0= |5g¢€ €ABC€ar..asTy Tv Tp W™ .. W% g

(6.6)
and note that
9, InQ = 740,71, + h",0,h%, . (6.7)

We can obtain further useful identities by substituting the expressions (6.1)) into contractions of the
Levi-Civita symbol and the metric. One that we will use later is

1% nlVn A Al —m V10§22
n! H[MI 1...HW ] = —htHnAlAllon (L . TXio1 ...T>\3U3H)\4J4...H)\H_nau_n. (68)

Three-form For the three-form, let

Ca=Cs — %63614307'14 ATBATC + 07353 , (6.9)
so that A B
Fy=F, — %c?’eABchA ATBEANTC + ¢ 3Fy, (6.10)
where B B
F4Ed03, F4 Edc;g (611)

Although 53 is subleading, it will explicitly appear in the action and dynamics of the non-relativistic
limit. Its equation of motion will impose a self-duality constraint on Fj, and we will be able to identify
a certain projection of its field strength with the totally longitudinal components of the dual seven-form
field strength. We can therefore interpret the subleading part of C; as being ‘dual’ to the finite part.
This is clearly a general fact: the Hodge star itself has an expansion in powers of ¢ and so inevitably
mixes up the terms at different powers of ¢ in any p-form it acts on. What is non-trivial is that the
Chern-Simons term of the 11-dimensional theory will lead to both C3 and C5 playing a role in the
non-relativistic limit.

6.2 Expanding the action

The action for the eleven-dimensional metric and three-form is

Here £y = dCs. In form notation the Chern-Simons term is %E A Fy A ég, the equation of motion of
the three-form is d%}l = %ﬂ A F4 and its Bianchi identity is dﬁ4 = 0. The Hodge dual field strength
is F7 = %E, which obeys the Bianchi identity dﬁ} = %E A 13’4 and the equation of motion d;ﬁ} =0.
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Chern-Simons term We start with the expansion of the Chern-Simons term. Leaving wedge prod-
ucts implicit, we can simply compute

%F4F4é3 = %F4F4Cg — %(3C3F4F4 + 6F4ﬁ4)l€ABcTATBTC
(6.13)
— %d <C3F4C’366ABCTATBTC + eABCT B (F4C’3 + C'3F4)> +0(c?).
We drop the total derivative.
Kinetic term for three-form First, let’s write the component expression
quwsm = _663T[H1M2ATMSBTM4]C€ABC + FH1M2H3M4 73FH1M2H3M4 (6'14)
where we introduce the Newton-Cartan torsion
T = 20,m". (6.15)

Any term involving three H*” contracting the first term in (6.14)) vanishes as one H* must necessarily
contract a 7,”. As a result,

A

al AH1H4 AHAV4

‘g‘ t e g F,LL1 ,u‘4F1/1.A.1/4
— P1V1 ITH2V2 [TH3V3 [T H4V4 Q1V1 ITH2V2 B
_Q< (HMv HP22 HE3 PR, o By sgs — 12HPYHP2T, AT, By )

— 24H" T, AT, PP 477 p — 12HM M P22 I L v (6.16)

12 43 a
M1Vl [TH2V2 [TH3V3 ~[haV4
+ 4H H H T FM1H2M3M4FV1V2V3V4

+ 2H“1V1H'u2y2HusysHu4V4F#1M2#3M4ﬁ1111/21/3'/4> + O(Cig) '

Kinetic term/Chern-Simons cancellations and self-duality We now examine the O(c?) terms
in (6.13)) and (6.16]) which involve a field strength Fj, as well as the O(c") terms involving the subleading
Fy. These cannot possibly be cancelled by a contribution from the expansion of the Ricci scalar. The
relevant terms are:

N M1V [T H2V2 [TH3V3 L] HaV4 3 -
2. 4.QH H H H FM1M2M3M4 (C FV1V2V3V4 + 2FV1V2V3V4)

(6.17)
1 V5 R J75%1 3 A B C
2-a14131 € F i pansna (€ Fruspoprps + 2Fu5ueu7us)€ABCTu9 Tpro Tpan
To cancel the terms at order 2, we are led to require the following constraint:
)
Q) VL [ Heve [TH3VS [TH4V4 _ 1 Loemrpn p € T AT BT C (6 18)
vivevsvy — 4131 puspeprpus CABC T pg Tpio Tpan - :

This says that the totally transverse part of F),,,, is self-dual (or anti-self-dual). This is self-consistent
thanks to current solutions. We will refer to this as the self-duality constraint.

Three-form equation of motion As a sanity check that requiring the constraint is sensible
and necessary, let us at this point also take the limit at the level of the equation of motion of the
three-form gauge field. We will revisit the equations of motion, including that of the metric, in more
detail in section [7} For the three-form, we have originally:

A

0o ( |9|9W\1 AV)\QQP)\?’ AUMF M) = ﬁewmlmasﬁ01-~.04F05-~.08 . (6.19)

Inserting the expansion, one has firstly at O(c?®) that

A VA A oA 1 Vpooy...o A B C
Oy (QH“ VHY M HPS H 4F,\1,,,,\4) = =g €777 05 (Fy,..0s€ABCTo5 " Tog Tor ) s (6.20)

28



which is the duality relation (6.18) under a derivative.
At O(c®) we have the finite equation of motion

9, (Q<4 F e el o gy e v lolBloloy | A

+ H;L)q HVAZHP)\?’HGMﬁ)\l...M)) (6‘21)

_ 1 _pvpoi...os A B C
- 2_4!416 <F0'1...0'4F0'5...0'8 - 126ABCT010'2 Tos Toy F0'5...0'8) .

This will be reproduced from the action that we find below.

Ricci scalar Now we come to the Ricci scalar. A very quick way to take the limit is to start with
the explicit expression for the Ricci scalar in terms of the metric and its derivatives:

S D J T I
R = Zgu augpaaugp - 59“ aygp 8pgua
1 (6.22)
- Zgﬂ”aﬂ Ingd,Ing—¢"0,0,Ing —9,Ing0,4" — 0,0,9"" .
Calculating the expansion is trivial. One has R = ¢!R™ + ¢R©) + O(c?) with
R = Ly, o L, 0
- Z_l v uwTpo — 5 v pTuo
1 174 g [ 1 174 g
RO = 2 H" (0,700 0,7"" + 0uH po0, H?) + 70700, H (6.23)
1 1 1
- §H’“’8,,Tp”8pnw - §H“”8,,Hp"8pHW - 57’“"81,Hp”8p7'w

- H"9,InQ20,nQ) —2H"0,0, InQ — 20, InQ0,H" — 0,0, H" .

Recall that the measure \/—g introduces a further power of ¢~!. The singular piece can be easily
rewritten as

R(4) = _%H“VHPU(a#TPAaVTUB - apTuAauTaB)UAB = _iHuyHPGTupATZ/GBnAB . (624)

This cancels exactly the remaining singular term appearing in the expansion of the kinetic term
for the three-form. An entirely similar cancellation appeared in the NSNS sector expansion of [27],
and as noted there is reminiscent of what happens when taking the Gomis-Ooguri limit on the string
worldsheet. In the conclusions in section [15| we discuss the comparison with this limit in more detail.

Action and constraint Combining (6.13)), (6.16) and (6.23) we obtain the expansion of the 11-
dimensional SUGRA action in the form S = ¢>S®) + 2SO + .. The singular part is:

S® = — / A" S Fuy o (QHMY L HI e e o, A7 P ) Foy e, (6.25)
and in order to have a good ¢ — oo limit, we impose the constraint

M1V1 [TH2V2 TTH3V3 LT HaV4 _ 1 _pie... 11 A B C
QHM HPE2HS HMAE, g, = a3 € F s peprns €ABCT o Tuno Tuny s (6.26)
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to ensure that S®) vanishes. The finite part of the supergravity action is:
S(O) = /dH[L’Q<R(O) + %HMVTMPATVJBTPATJB
1 Hﬂlyl HMVQ HMVSTMMFMW#SMFV1V2V3V4

1HW1 H""2Fy, a€apcTy, TP e

_1p (HNIVl [ H2va FHsVs [THava [

At rivavsyy 12 43 4

(6.27)

1 _vivevsvapr...pu7 A_ B_ C
+ mnt B popisps €ABCT s Tug” Tz )

+iF ANFyNCy,

where R is as defined in (6.23). The equation of motion of Cup gives exactly , and we will
discuss the equations of motion of the Newton-Cartan fields in detail in section [l The equation of
motion of C;wp is , giving the constraint under a derivative. Alternatively if we were just to take
the action at face value, forgetting about its origin via an expansion of the three-form, we could
make the ch01ce to view F, wpo @8 an independent field, serving as a Lagrange multiplier imposing the
constraint in its form ((6.26]).

Symmetries The action is diffeomorphism invariant (as follows from the covariant rewrltlng we carry
out below), as well as gauge invariant under 60C3 = d\g, ¢ Cy = d). The vielbeins h* . and 74, transform
under SO(8) and SO(1, 2) rotational symmetries respectively, which are also symmetries of the action.
The non-relativistic theory is also invariant under Galilean boosts and a dilatation symmetry.

The Galilean boosts mix the longitudinal and transverse degrees of freedom. The parameter for such
a boost is denoted A,”. Letting A,* = h?,A,* such that 7#4A,% = 0, we can give the (infinitesimal)
action of these symmetries as

5AH;W = 2A(MATV)A, (5ATHA = —H‘MVAVA, 5AOLWP = —3€ABCA[MATVBTI;]C. (628)

The action S is invariant under these transformations on using the self-duality constraint. One way
for the action to be exactly invariant would be to treat F),,,, as an independent field transforming as
) Af wwoo = 4A Fpol ,\T’\ A, or to have C;wp transform in a way leading to this transformation.

The dllatatlons are meanwhile induced by the expansion in powers of ¢, with the dilatation weight
of each field equal to the power of ¢ which accompanies it in the expansion. The (infinitesimal) action
of dilatations is hence:

WH" = +XH" | 6\H,, = —\H,

[2Z%)

Tha ==X, arnt =4+t 00Cu,=0.  (6.29)

Note 0§ = —AQ. For A coordinate dependent this is a symmetry of the action S0 _on using the self-
duality constraint ( - If we treat F),,,, as an independent field transforming as 0xF},. 0 = 3)\FWPU,
then the action S is exactly invariant. We will explicitly verify the invariance of the action and study
these symmetries in more detail in section [7]

Newton-Cartan connections and covariant rewriting The way we obtained the action ((6.27])
was by a straightforward computation at the level of the metric and three-form. To better understand
the result, we rewrite the action in a covariant way by introducing the following connection

1
Ffw = TPA@JVA + 5[—]”‘7 (&LHUV + E)I,HW — aUHw,) , (6.30)

whose covariant derivative we denote by V.. This satisfies the following metric compatibility conditions:

V,H" =0=V,r,", (6.31)
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though it is not the unique solution. The antisymmetric component of (6.30)) is the torsion (6.15)):

1
0t = 37 AT, (6.32)

It is also useful to define the ‘acceleration’ and its trace

a,uAB = _TPATPBL ) ap = auABnAB ) (633)
as well as its symmetric traceless component
1
a#{AB} = au(AB) _ d_LnABa“’ (6.34)

where dj, is the dimension of the longitudinal space (which is d;, = 3 here, but we will also use this
notation in the reduction to the d = 2 case of SNC in section [8.1). The final tensor that will appear
is the extrinsic curvature defined by

1
]C;LVA = §£TPAH/“/ X ’CA = H'LLV’CMVA 3 (635)

and obeying the following useful identities
A, B =0, v, = K, (6.36)

Finally, let’s introduce some notation to make the expressions more compact. Given an arbitrary tensor
M, carrying lower indices, we will employ for convenience the following short-hand notation:
MW/EHM)HVUMPU, MABETMATVBMMV, VpMABEVp (TMATVBMM,,) s (637)
and similarly for tensors of arbitrary rank. The meaning of raised indices should then hopefully clear
from context — note that e.g. the field strengths, Newton-Cartan torsion and covariant derivative are
all naturally defined with lower curved indices so when they appear instead with raised curved or

longitudinal flat indices this uses the above notation.
The action can then be written in terms of these manifestly covariant quantities as

S = /d“x Q (L4 Ly + Q2 Liop) (6.38)
with
L=TR— a“AB&u(AB) + ga“au - %F“"’)AFW,JA + }leABCFAB“”TWC ,
Lr— —%ﬁul...m (F”l~~”4 N 4!3%61/1...1/4“1...;;7Fm”.MEABcTusATHGBTMC) ’ (6.39)
Liop = éF4 NFyNCs = ég! 7€ it cia P cus o

where the Ricci scalar R is defined in terms of the usual Riemann curvature tensor of the connection
(6.30) via
Rl o = 010, — 0,00, + T4, T0, =TTy, R =R’ H™. (6.40)

po
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Dual field strength

The appearance of the two field strengths F; and Fy in the finite action (6.27) may seem rather exotic.
In fact, we can relate the latter to components of the dual seven-form field strength, revealing that the
non-relativistic action involves a partially democratic treatment of what are originally dual degrees of
freedom. In 11-dimensional SUGRA, we have

Fr=dCs+1CsnNFy,  Fr=%F). (6.41)
With our expansion, we can compute *Fj in components:
<;F4)M1~~~ﬂ7 = Q€H1~~~N7V1~--V4 (CgHVI)\l s HV4)\4FP1~-p4 + Hyl/\l s HV4)\4ﬁ>\1~->\4
FAHYN L HPNS TN, (6.42)

_ 6HV1>\1 HV2>\2T/\1/\2A7_VBB7_V4C€ABC) + 0(6_3) .

We then search for an expansion of 6’6 that can reproduce the singular term and lead to a sensible
definition of the dual six-form in the non-relativistic theory. This is provided by

Cy = —50303 A éEABcTA ATBATC + Cf — %53 A %EABCTA ANTBATC +0(c7?), (6.43)
leading to
F7 = —%CSEABcTA/\TB/\TC/\F4—|—dCG—|— %Cg/\F4— %EABCTA/\TB/\TC/\ﬁLL_‘_O(C_?))- (644)

The singular piece in agrees with that in on using the self-duality constraint obeyed
by Fj. From the finite terms, we can define in the non-relativistic limit the quantity Fr = dCgs+ %Og/\F4
which obeys again dF; = %F4 A Fy. We could also define this quantity directly in the non-relativistic
theory after taking the limit by starting with the equation of motion of the gauge field. In
that case, we would define the dual seven-form field strength to be the quantity appearing under the
exterior derivative, including all terms on the left-hand side of as well as that involving dr on
the right-hand side. In components, this means

Foyr = 500 ooy (HYN L CHPMEY 4 AHPAN gy
— 6H" M H" 2T 5, A7 P74 s g (6.45)
+ ﬁg_leylmwp\l”')\7€ABCT)\1AT)\QBT)\gcﬁ)q...)q) )
Now, we can take the totally longitudinal contraction

F

o1 o2 o3 __ 1 o o2 o: V1A vada T
pl...,u401z72037- AT “BT "¢ = ZQeul...p4V1...V40'10'QU3T 1AT BT 5C'H o H F)\l...)\4

~ (6.46)
+ EABCF;“.../M .
Using (77?), it can be shown that whereas the transverse part of F),,,, obeys a self-duality constraint,

the longitudinal part of F), ., obeys an anti-self-duality constraint:

1v1 V4 o1 02 o3
QHM L HMAE, ioiosas T AT BT ¢

— +%6u1~~u41/1.--u4>\1--.>\3
413!

€DEFTM Taa " Tag” Py jsoroaos T AT 2BT7 0 (6.47)
The conclusion is that shows that the totally longitudinal part of F),, ,, can be identified with
the anti-self-dual transverse part of ﬁm,pg. Notice that the longitudinal part of the latter projects
trivially out of the action, and in fact it is exactly the projection as on the right-hand side of
which appears in . Hence we can re-express the terms in the Lagrangian involving Fj,,,, as

11 1 _ABC_\
‘CF - F#1-~~#4>\1m>\3 6¢ T AT

Toal
1v1 4V4 1 1...4401... V7 D E F
X (H‘u .. H‘LL —+ m€u s €EDEFTus Tuvg Tuy )FV1V2V3V4 .

)\QBT)\ch

(6.48)

This appearance of (components of) both the four-form and its dual together in the action is again
reminiscent of exceptional field theory.
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7 Equations of Motion and Symmetries

We have expanded the action, and now we turn our attention to the equations of motion, and the role
played by the non-relativistic dilatation and boost symmetries.

7.1 Equations of motion from expansion

To keep track of the equations of motion at each order, we will consider the result of expanding the
variation of the action. We will explicitly find that this gives the same results as varying the expansion
of the action we considered previously. The reason we take this approach is that it will provide a useful
way to keep track of which parts of the expansion of the eleven-dimensional equations of motion appear
at which order. Recall that we view our non-relativistic limit as arising from a field redefinition, and
we do not consider possible subleading terms which would occur in a true non-relativistic expansion.
That said, we set up the expansion below in a way that would be reminiscent of such an expansion.
The relativistic equations of motion are obtained from the variation of the action (6.12]):

05 = / A2 (\/19106" Gy + 6Cla y M) (7.1)

where

— 1 [ p1p3 _ 1o _ L [01--pa I
G = Ry — Fupl ps Ly guu( F Fﬂl---,04) )

) 7.2
swe — _% ( U( /|L€]|F“”p‘7) . 241 — HvpoL. UsFal U4F05m08> . ( )

We consider the non-relativistic expansion of the fields, in the form

G = cH™ + ¢ 2| G = 027,“, + c_lHW , C’Wp = cgwu,,p + Cp + c_3CWp , (7.3)
where w,,, = —€a BcTMATV TPC Both G and £ admit an expansion in powers of ¢, with
G =GO +3GB) 4 GO £ 3G 4 E=PEE + Py Ly (7.4)

We now re-organise the variation of the action that results from (7.3)), by inserting the expressions (7.3)
for the metric and three-form. We choose to consider the variations of 7%, and H"" as independent,

in terms of which
Wy = wu,,pT/\ Dy — RNz 5HM (7.5)

The general result at order ¢3" following from is that
056 = / dﬂx[aHW(Qgﬁ”) — 3wl )
+ 5TMA(27_VAQQ(371+3) _ TAupr)\gPU)\ ) (76)

3n—3)
+ 5Cuupgwjp + 5CMVP€ (3n+3)

using 1/|g| = Qc¢!. Hence, in general, if we expand the theory up to order 3k, for k < n < 2, the
equations of motion will be

(3n) —1 cMpo (3n+3) 1 ecpo) vp
g(,uu) SH ) (uwy)po €2 8(32 3) 29 = TpAWporSY™ gp?m 3) 5‘375 0, (7.7)
with the understanding that G = £© = 0. The angle bracket notation takes into account that
the variation of H" is constrained by dH"7,47,7 = 0. We can solve this constraint by letting

SH* = HPH oo M )7 such that the naive variation § H #T,, implies instead the equation of motion

Tywy = 5(HupH" To) + HypH Tiyirr) (7.8)
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which is symmetric and obeys 7447”57,y = 0. Note that the equation of motion for C at each order
is exactly that of C at the previous order.

We should contrast the equations of motion ([7.7)) with the result of independently expanding G and
E . If we naively set each other of the expansion of the latter to zero, we would find the equations
GG = 0 = €67 at any given order. However, in the non-relativistic expansion, treating 7#4 and H"
as independent fields, then equation says that we cannot simply expand the relativistic equations
and set each order independently to zero unless we consider the full expansion (potentially infinite if
treating subleading terms). A similar subtlety is the question of which equations of motion we are
meant to expand. For instance, in the relativistic theory both £#7 = 0 and g, gmgorE°™ = 0 are
equivalent, but lead to different truncations to finite order in the 1/c expansion. Here we have made
the choice to expand the equations of motion that appear conjugate to the variations dg"” and 6C),,,.

Let us look for example at the first two orders, ¢® and ¢3. If we simply wanted to expand the
theory up to order ¢® we would find the equation (g ©) — 3wEBGH ) ) = 0, however if we proceed with

expanding up to order ¢® we find that the equation for the 3-form tells us that £ = 0, so that we can
safely impose the two equations gff;)w = £B) = 0 independently.

Matters are further complicated by a number of ‘off-shell’ identities obeyed by the terms appearing
in the expansion of G and £. These identities will feature heavily below, and in fact are crucial for the
consistency and symmetries of the non-relativistic truncation.

To put all these ideas together, we now look in detail at the first orders of the expansion of .

Terms at O(c®) Here we encounter the leading terms in the expansions of G and €. First of all, we
have

ggjj) _ _TW ( T/;A Tp20277ABHp101 P20 4 %leo'l Hﬁ4o4Fp1 p4F01m04) (7'9)

101
which obeys G, = 0 automatically. Hence the dH*” variation at order ¢® does not imply an actual
equation of motion. One also has

Ely’ = =50, (QWH" M H™  HP HOMEY, 4 i€ 77T Fyy0,€ABOTos " Tog V75,7 (7.10)

This is the self-duality constraint under a derivative. It obeys TMAT,,BE,";W = 0, and so also the 7

variation at order ¢ vanishes identically. This is however necessary for consistency: the expansion
of the action itself started only at order 3, i.e. S©® = 0. Hence at this order we do not obtain any
equations of motion.

Terms at O(c®) At this order, there was a non-zero S® given by (6.2F), for which we required the
self-duality constraint to set to zero. Let us see how this information is reproduced. First of all,
the variation of C5 coming from ((7.6) at this order implies £3) = 0. The variation of 7/, involves a
contribution from &), which can be read off from the finite part of the expansion of the three-form
equation of motion, which was . For convenience, we repeat this here:

g(,ésp _ _%aa <Q(4H[M|)\1H|y\)\2H\p\)\37_|a]>\4F)\1m/\4 o 6H[,u|)\1H|V\)\27-|P|B7.|U]CT>\1>\2AGABC

+ H;M1 Hu/\ng)\sHaMf)\lmM)) (7.11)

+ meuupal...ag (Fal...U4Fa5...ag - 12€ABCT0102A7_03BTU4CFJ5...08) .
What one finds then is that
QTVAQQ(?) — THAwpg)\E(O)p”)‘
s Tu QF, L, (H . H"PF,,

= 24

vi. .,I/4p1...p7F (712)

A B C
pat 93'4'E p1.-pa€ABCTps Tps Tpy ) )

34



which is proportional to the self-duality constraint. For the terms accompanying the d H*” variation
one finds
v 3 oA
SH" (QG) = 30(uipo Han €
- 5Huy(ﬁEABCHA1(MTV)AT)\QBT)\chal...o4F(r5...08EAlm)\SUlmGS (713)

_ 9 p1---P3 Q 2
5L upr.ps Ly + o6 Huw ' )

such that after projecting using (7.8|)

EAI"')\?’Ul“'Ug

g

pox 1 A_B_ C
) _3w<u|paH>\\V>g(0) - WEABCH)\l(uTV) Thy Thg F01...04F05...08

9) 2 _ 0 KpoX (7.14)
+ %HMVF - EHK(MFV)WAF 7,

using the obvious shorthand for raised indices and F? instead of writing H* multiple times. This
exactly reproduces the variation §S® of the leading part of the expansion of the action (6.25). Then,
after projecting and using the Schouten identity or can be shown to again be proportional
to the self-duality constraint (specifically: the time-space projection of the first term combines with the
time-space projection of the third term, and the space-space projection of the second term combines
with the space-space projection of the third term).

Hence the sole equation of motion we obtain at this order is the self-duality constraint. This is
consistent with what we required from the expansion of the action.

Terms at O(c”) We next consider with n = 0. First of all, the equation of motion of C' indeed
gives &), as in (7.11)), while that of C' gives the constraint in the form £y). This is exactly what
we obtain from varying the finite action S directly. Note that the longitudinal projection of &0y in
conjunction with the self-duality constraint implies the equation
InagH"H" T, T,." = —LH" ... H"Fy 0 Forun s (7.15)

thereby reproducing the equation we would get by setting G = 0 (compare ) Hence although
we could not set G(® = 0 previously, the non-relativistic theory is not missing this equation. Note that
for generic non-vanishing Fj, equation (|7.15)) is incompatible with imposing foliation-type constraints
on the MNC torsion such that the left-hand side vanishes, however if F} is also restricted to vanish (for
example) one could require such constraints (as is always possible in the NSNS sector case [27]).

Now we turn to the equations of motion following from the variations of 7 and H. For simplicity,
we present here the independent equations of motion after projecting onto longitudinal (time) and
transverse (space) components. The temporal and spatial projectors are defined as

(AT)M v — T#ATVA7 (AS)M v — H#PHPV’ (AT)M v+ (AS)M v — 65 (716)

We start with the equations of motion of 7. The trace of the time projection gives an equation involving
the Ricci scalar:

7 AB 7.2 1 Avpo 1 ABpo C
R = §V“au + a }auAB +ga” + %FAupaF PT — gEABCF P Tpg

- (7.17)
+ %Fuupa (FWPU + ﬁEABcwypm\l“'MFAl...A4T,\5AT,\GBT,\7C) .
The traceless part of the time-time projection is:
H B M CcD
VP%auapy + a"auapy + auoa” (8)pyn (7.18)

_ _ 1 uvp Cuv D _ nap (_ 1 pCuvp uvCD E
=~ Fa" Fppvp + €ionFipy " T 3 ( I Fouwp + ccprl Ty ) :
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The space projection is
VI 4 + apacTC = LF"™P Fyppo — Leapc F*7PT,, (7.19)
Finally, consider the equations of motion of H. The space-space projection is:
R(‘“’)—a"ABa”{AB} + % (a“a” - azH‘“’)
= 7PAVETY) g+ THMN a, + FFMOAFY g — e HP AP0 F 0

— 3eapcFWPABTI C 4 L HW ey g PP T, (7.20)

+ %F(Mpﬂﬁ\l/)pw\ _ %SHWFmMﬁ e

+ %H’“’( — R+ %V“au + A8 } B+ 7a + 36FAVP,,FAZ”"’ e BCFABPUT 9.
Combining the trace of with we find that the self-duality constraint appears (con-

tracted with Fj,, ;).
The time-space projection is (with e4pc = n'Peppc)

R (1A) —a”BcaA(BC) + %aBa“BA

1 A BC 1_A BC 1 AB C'D
= 46 Bcva‘up + 16 BCCLPF‘up + ZEBCDap Fre

1 AB 1 ABC D
+ ZF pUFuBPU + ZGBCDF pr“

+ %apBAVpT”B — %V2T“A — a”VpT”A — %a“BA/CB + %a“lCA
— Va4 VA + 4T V7 + LV, VA — 4P pVFa, P

1 T A)vpo 1 A B C K Il A1...A301...0
+ EF(HZIpG'F o me BCTxy TX3 H;U' H}i)\lFol...0'4F0'5...0'8€ LSO TE

(7.21)

We have verified that these are indeed exactly the equations of motions that one gets by varying the
finite part of the action, S(©, given in (6.27).

7.2 Dilatations and a ‘missing’ equation of motion

We already mentioned the existence of a dilatation transformation given by , whose origin lay
in the expansion in powers of c¢. There is evidently a freedom to rescale ¢ by some constant while
simultaneously rescaling the component fields such that the eleven-dimensional fields are unchanged.
This rigid dilatation leaves the full action invariant. Hence for an infinitesimal dilatation, with d,c =
— ¢, we have the transformations , and clearly order-by-order for the action we should have

5,9 =6X5©@ 5,80 =3\5B) 5,50 =0.A5@ 5,63 = _3\53) . (7.22)

Recall that S and 65 vanish identically, so the first of these is just 0 = 0.

A powerful consequence of the rigid dilatations is that if we know the equations of motion for the
action S®%) at a given order k # 0 we can immediately write down an action that produces them
(which will agree up to total derivatives with that arising from the expansion). This works by applying
the formula for the variation and specialising to the dilatation variation. This is guaranteed to
produce 3kS®*) . This singles out the finite order action as being special, as here knowing the equations
of motion and dilatation symmetry is not enough to determine its form. Furthermore, for this case
we can promote the dilatation parameter to be coordinate dependent, and obtain a local dilatation
symimetry.

Let’s verify these statements. Under a rigid dilatation with parameter )\, the variation of the ¢3
part of the action is

5,53) = / A"z Q@ (AGE H" — X (2(G )" 4 + Beapc QT ELTY)) (7.23)
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where £4B¢ = 7,47, B7 C€mp Tt can be checked that QW H" = (. Then, if we denote the self-duality
constraint by

Ok = P [Py stﬁm HapLpT R p4€ABch5ATpGBTp7C (7.24)
we have
2G9N A+ Beapc QT ERTC = 355 Fly. 0 O (7.25)
hence indeed referring to (6.25) for S we indeed have
5,83 =3\56) (7.26)
Next consider the finite part of the action, with:
5,5 = / d"z Q (AgngW — A (2(69) 4 + Beapc QT ELE) + 9—15<3>Wp5kéwp) . (127
Now we can show that
GOH™ — (2G4 + 3eapcQ 1 EALS) = —LF,, 00 H, (7.28)

such that using 8“ = —£0,0M77 we have

5)\5(0) _ /dn (- 1/\pra@uupa 1aa@uupa(k5«wp) :
R N (7.29)
= / A" (= EAFpe O — O P 5\ F o)

after integrating by parts. For arbitrary local A, we therefore have 5,5 = 0 on imposing the self-
duality constraint, irrespective of the transformation of C),,,. Alternatively, if we require that

5)\ﬁ,uupa = _3/\ﬁ,uupa ) (730)

then vanishes identically without use of the constraint. This would mean accepting a non-local
transformation for 5#147 itself, which is not completely outlandish given the discussion in section
suggests we may think of it as being a dual degree of freedom to Cs.

What this means in practice is that the action S is invariant under variations of H* and 7# 4
of the form (6.29)). This implies that there is a ‘direction’ in the space of variations which leaves the
action S unchanged (or at best produces the self-duality constraint, which is not an independent
equation of motion). Hence if we vary S® to obtain the equations of motion of H** and 7* 4, we will
find that we are ‘missing’ an equation of motion. This is exactly as in the NSNS sector case [26},27] and
reflects a known difficulty, even in the purely gravitational context, of obtaining the Poisson equation
from an action principle for non-relativistic theories [52,53], at least at first order.

Thus, in order to obtain an equation of motion for this missing variation, we go one step further in
the expansion. The variation of S, from (7.6)), is:

55 = / A" [SH (0G5 — B HaE07) + 07 427740010 — 74,0000 %)

(7.31)
+ 6Cup L) + 0Cu Ly |

For dilatations we have

S = /dll‘x [)‘ (H0G1Y —20(G)a" = Beanc€lf) + 0:Cun€ly)’ | (7.32)
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With constant A, equation ([7.22)) implies that
58 / A"z (QN + G E7) (7.33)
where we defined the combination
N = 3(=H"GH +2(G0)4%) + eapc T ELES (7:34)

Crucially, (7.34) does not vanish on applying the self-duality constraint, unlike the combination of
terms and which appeared at the previous orders, and nor is it a combination of any
other equations of motion resulting from the finite action. It can therefore be used as the equation of
motion of the ‘dilatation mode’. (We are not really interested in the C' variation appearing in (7.32]),
which multiplies something we have already taken into account as an equation of motion.) It involves
the fully longitudinal part of G, which has not yet appeared in the equations of motion. Hence, we
identify it with the ‘Poisson equation’, in which the longitudinal part of C,,, plays the role of the
Newton potential (as did the longitudinal part of the B-field in the Stueckelberg gauge-fixed NSNS
sector). This is because €(_g) 1s the first equation of motion which contains two derivatives acting on
the former. Explicitly,

e — Lo, <Q(4H[,u|/\17_\1/|>\27-|P|>\37-|0])\4F)\lmM n 6H[H|A1H'”‘AQr""AST“’““FAI...M) (7.35)

1 Uvpoi...os -
+ oo € Fo . 01Fos. 05 -

Intriguingly, the combination of G(=%) and G(® appearing in has a somewhat murky relationship
to the ‘trace-reversed’ version of the metric equation of motion. The equation G,,, = 0 in the original
11-dimensional theory can be simplified somewhat by taking its trace and solving that for the Ricci
scalar. This trace is

3G = — SR+ L F? (7.36)
and the equation of motion without the Ricci scalar is
G = G — %gw,gjp"gpo =R, — %F‘upa/\ﬁ’ypg)\ + ﬁglwﬁ’? : (7.37)
for which )
™G0 = 12rvgl) — HvG(Y) (7.38)

which is exactly the combination appearing in ([7.34). Note the relative numerical factors here are the
same as the relative numerical factors in the powers of ¢ in the expansion.
Now, what exactly is the equation (7.34)7 Expanding the metric equation contributions and co-
variantising everything, one arrives at
TMVGLOV) = QT“AVPICW)A — VA, — }laABCaABC — %aABCaACB —a’ay
- GABCFDABpapDC - %FABNVFABMV + ﬁFquo-FuupU + AllEABC’FuVABTMVC (739)

—a*K,+ IC“”AICWA — QT“AT”BVV%[AB] - "V ,a, ,

A_ B -1 AB ~AB
eapeT, T PT,CQTEMY = —Le g VRFABC  _ Lle p o FABRT C
% p (—6) 6 [ % (7 40)
1 1_)i.01..08 - A_ B_ C ’
+ 2.4120) 66 ! ! 8F0'1...0'4F0'5...0'8€ABC7—)\1 Tho 7—/\3 )

hence the covariant Poisson equation is

N _ _%GABC(VMFABCM + a#FABC'u + BCLHDAFBCD/L) _ %FABHVFAB,U,Z/

1 Tpvpo Q1 Ai..)301..08 7 T A B C
+ EFH ’ F,uupcr + 244!2335 sl 8F0'1...O’4F0'5...O'86ABCT)\1 Tha Ths

— VA — aKa — K"K pyn — 20 PIKC a5 — 27V L, (7.41)
- CLABC(%;GABC + %CLACB +NBcaa)
=0.
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Note that this expression could equivalently be rewritten in terms of the Ricci tensor, using the following
identity:

RAN=T"R,, = V4 — IC“”AICWA — " P, ap . (7.42)
Remarkably, equation transforms covariantly under local dilatations. Exactly this equation will
also be selected by the exceptional field theory description as an ‘extra’ equation of motion that one
can not find from the variation of the finite part of the action. Furthermore, under Galilean boosts
(discussed in next subsection), it transforms into the other equations of motions. All this is in keeping
with the properties of the missing Poisson equation in the NSNS sector |26}27| and supports including
equation as an equation of motion of the non-relativistic theory.

If we think in terms of the expansion it might seem strange to find the rest of the equations of
motion from the expansion at order ¢ and this extra equation from order ¢=3. Clearly, if we would
vary the action S~ we would find additional O(c™) contributions to the finite equations of motion,
and if we would vary the action S(-% we would find additional O(c~3) contributions to the equation
of motion (7.41), i.e. it would become N = O(c™®). The guiding philosophy is to find the lowest
order non-zero equation of motion resulting from the variations of the action. For the Poisson equation
associated to the degree of freedom that disappears into dilatations at the level of S this happens
to arise at lower order than the other equations of motion.

As a final remark, just as in the NSNS sector case 27|, it is also possible to define a covariant
derivative that is covariant with respect to dilatations. Letting b, denote this dilatation connection,
and simultaneously introducing w,? as the longitudinal spin connection, we this new affine connection
is defined by the following metric compatibility conditions

6u7},A = QLTZ,A — wHABTl,B — b#T,,A — ffprA =0, (7.43)
V. H* = 0,H" — b, H* +T7 H* + T, H"* = 0. (7.44)
The solution to these equations is
Tp o p A AB 1 po
e, =10, —71°4 (bMTy + wy, TVB) — §H (b,Hd,,+b,H,,—b,H,,) (7.45)
where the dilatation and spin connections are explicitly given by
1 1 1
b, = ga“ + ETHACLA, w#AB = —a“[AB] + 57'#06/‘30 + T#[AaB] . (7.46)

7.3 Boost invariance

Now let’s consider the boost transformations defined in (6.28). The calculations are very similar to
those in the previous subsection. The variation of S® under (6.28)) vanishes identically. The variation
of the finite action gives

55 = / d"z| = A (207 A0GE) + Beancm,Pn Ol ) + onCunllyy] . (7.47)

and the combination of G and £ terms appearing here is

—QQQE;ZAMA—SEABC(S'&?BAMC = %FA'quAUAFauyp—%Fal”v‘lﬁjﬁmgglx)\lATAQBT)@CEABC . (748)

Using A, 47" = 0 and the Schouten identity this can be shown to be proportional to the self-duality
constraint. Hence the finite action S is invariant under boosts up to a total derivative and the self-
duality constraint. To make the action boost-invariant off-shell we must improve the transformations
(??) by requiring F' to transform as well, similarly to (7.30). The improved boost transformations are

5AH[,LV = 2A(;LATI/)A ) 5/\7_“14 = _HHVAVAv

- (7.49)
5AC/uzp == —3€A30A[“AT,,BTP]C y 5AFHVP0 = —4’7')‘AF)\[W,[,AU]A .
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Furthermore, one can then check that the set of equations of motion presented in the previous sections
is boost-invariant (i.e. closed under boosts) as expected. This includes the extra equation of motion
(7.41)), which under boosts transforms into the time-space projection of the equation of motion of H*",
equation ((7.21), as well as the self-duality constraint. This further implies that it is consistent to
include it on the same footing as the remaining equations of motion that can be derived by varying
SO Indeed, one can obtain the boost variation directly from that of S(—3), which is:

553 — / d"| = A (2974008 + Beancn RO ) + nCunly?| . (750)

The quantity in round brackets is exactly the time-space projection of the H* equation of motion. (As
a side-remark, note that this means that the boost variation of S(=% is not identically zero, although
it is zero on using the equations of motion following from the finite action.)

8 Dimensional Reductions and Type IIA Newton-Cartan

In this section we will propose reductions from the 11-dimensional Newton-Cartan theory to ten-
dimensional type ITA Newton-Cartan theories. We have a choice of whether to reduce on a longitudinal
or a transverse direction. Reducing on a longitudinal direction will lead to type IIA stringy Newton-
Cartan with RR fields. Reducing on a transverse direction will lead to a novel type [TA Newton-Cartan
geometry which can be thought of as arising from a non-relativistic limit associated to D2 branes rather
than strings. Similar reductions have been carried out in [37,/48| from the M2 worldvolume theory.

For comparison with the reduction ansatzes below, let us record here the usual decomposition of
the eleven-dimensional metric and three-form into ten-dimensional fields:

dsy = e (dy + Ar)* e P48y, Cy= Ag+ By Ady, (8.1)

where y denotes the direction on which we reduce.

Index book-keeping In this section, we denote the 11-dimensional Newton-Cartan fields and curved
spacetime indices with hats, thus ﬁ“ﬂ, ﬁ;A, Q, and so on such that the 11-dimensional coordinates are
# = (2)y), with u = 0,...,9. We assume that we have an isometry in the y direction. The 11-
dimensional three-forms are denoted Cp;p, é’ﬂ,;ﬁ.

8.1 Type ITA SNC

Here we present a reduction ansatz which produces the known Stueckelberg gauge-fixed form of the
SNC NSNS sector action, supplemented with RR fields.

Reduction ansatz We want to reduce on a longitudinal direction. We therefore split the longitudinal
index A = (A,2) with A =0, 1. Then we single out

72 = 2*B3(dy + Audat) (8.2)

thereby defining the dilaton ® and RR one-form A, that will appear in the reduced theory. If we take
Ty = 2%/ 30, then the remaining pair of Newton-Cartan clock forms and vectors must have the form

A = e‘qh/?’THAdx“ . TA= e+¢/3(T“A8“, —7"pA,0,) . (8.3)
A compatible ansatz for the transverse vielbein is

ha=(e7Pht,,0), By = (e 0, —e" P, A,). (8.4)
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These are such that 7,%, 7#a and h*,, h®, are ten-dimensional fields obeying the usual stringy Newton-
Cartan completeness identities. We can define 7, = 7,7,%na, Huw = h®,h°, 04, and similarly for the
projective inverses. We also have

Q= e 8BO. Q0= %8!E’WUI"'USEABEMWQSTHATthm01 o h® g (8.5)
Finally, we make the traditional decomposition of the three-form and its field strength:
C3=A3+ By ANdy, Fy=Gy+HsN(dy+Ay), Gy=dAs— A NHs, Hz=dB,, (8.6)
where A; = A,dx", along with
Cy=As+BoAdy, Fy=Gi+HsA(dy+ A1), Gi=dAs— A AHsy, Hy=dBs.  (87)
Interpretation as an expansion Inserting the above ansatz into the original limit (??) gives

d§?, = 2B (dy + A + 6_2®/3(CQTMV +c'Hy),

o (8.8)

C EEABTA N TB VAN dy + Ag + BQ /\dy+ 073<A/3 + EQ A dy) .
Hence according to ) this translates into the following expansion of the ten-dimensional type ITA
string frame metric gW, NSNS two-form, B, and dilaton ®:

Gy = Ty + Hyy

By = —cgeABT ATE + By + c;2§2 , (8.9)
e? = cse®
where ¢, = ¢*?2. This is nothing but the limit leading to stringy Newton-Cartan. In addition, we have
an expansion of the RR fields:

Ag = Ag + 0;22{3 y Al = Al y (810)

It is clear from these expressions that we can equivalently view this reduction as the result of the usual
M-theory to type ITA reduction using followed by the SNC field redefinitions of and .
At first glance, this is not completely general, given that the ansatz for the RR 1-form A; does not
involve a subleading term while the other gauge fields do. A justification for the above ansatz is that
it correctly produces the NSNS sector dynamics of SNC. Modifications to the ansatz would involve
relaxing the implicit Stueckelberg gauge-fixing in 11-dimensions and comparing this to the possible
10-dimensional expansions. We do not consider this in this paper.

Constraint The constraint (6.26)) becomes

M1V [T H2V2 ITH3V3 [T HaV4 _ 1 _pi...p10 A B
QH H H H Guivavsry = — o€ Gu5#6u7us€ABTu9 Thio (8'11)

and so only involves the RR 4-form field strength. The field strength of the NSNS 2-form is not
constrained. This is to be expected, as the limit of the NSNS sector alone makes sense without any
constraint, and in the eleven-dimensional case the constraint arose as a consequence of the Chern-
Simons term, which is not present in the truncation to the NSNS sector.

41



Type ITA SNC with RR fields The action obtained from the reduction ansatz (8.3 and (8.4]) is
Stia sne = / Az Q (e**L+ Lg+Q " Liop) (8.12)

with

_ T _ uAB B 1% _ _ Llagguvp _1 PA uvB
L =R — a"a,asy + (' —2D"®)(a, — 2D, ®) — SH" " Hup — 587" Hopu T
128 ~pA 1 2 ~vuvpA 1 20 _AB o
— 5€ G"G A — 15€ G"P G pn + €€ GagpeG*7,
o 1 ~ V1...V4 1 V1...V4f] .-G A B
Lo=—3Gu.m (G + ot Gl s €ABTus Tiig ) ,

Etop — %dA:; VAN dAg AN BQ ;

(8.13)

using the field strengths defined in and along with G, = 20,,A,). As before, we write
for convenience G = H* H"° G ,,. The Ricci scalar and connection, torsion, acceleration and so on
are defined in the same way as before but for the SNC geometry. If we ignore the RR fields, this is
exactly the Stueckelberg gauge fixed action for NSNS SNC (note that the subleading component By
only appears in the definition of 6’4). Furthermore, one can check that the reduction of the Poisson
equation agrees with the Poisson equation for SNC, with of course additional contributions from the
RR sector. The reduced Poisson equation is found to be

—1easV HABH + VAKA — 277V, V, @ + 277V 4a, + eaAs HAPHV @ — 2a* VA D

+ K:“VAK:/WA +a KA + QGM[AB}ICHAB + a"BC (%laABC + %CLACB + T]BcaA)

19 /Auv . CBu A 1 A 1,20 AB 1 ABuv
+ ZH Haw — easH (CLMC + 2CL'U5C) + z€ (G Gag + 2G GAB[,U/) (8.14)
201 N/ﬂ/pa ~ 1 Aidopi..us ~ ~ A B

€ IS (G Gvpo + 80 Gt iaGps.. s €ABTA Thy )
=0.

In this case [27], it is the longitudinal components of the NSNS 2-form playing the role of the Newton
potential. It is also interesting to look at the reduction of the equation (7.15)), which was the equation
of motion of the longitudinal components of the three-form. This reduces to

%TIABHWHWTWATPUB _ _%ewmem o HMMGM...MGVL..M 7 (8.15)

and in particular in the truncation to the NSNS sector the right-hand side is zero. This allows imposing
foliation constraints on the NSNS sector SNC torsion 7},,*, such as those discussed in [27].

8.2 Type ITA D2NC

General decompositions breaking local rotational invariance The next reduction we do in-
volves reducing on a transverse reduction. This breaks part of the local SO(8) rotational invariance.
Accordingly, write the flat index a = (a,7), with a = 1,...,8 — ¢ and 7 = 1...¢. Simultaneously
we can consider a different decomposition of the spacetime coordinate index i = (p,7) where p is
n-dimensional and i is (11 — n)-dimensional. We then pick a lower triangular form for the vielbein 7%,

such that )
R a 0
aA pr— /J/_ —
h’ 1% (Aukhlk hzl) . (816)

The condition ﬁ“ﬂ%ﬂ 4 = 0 implies

Rt a=0, hi(Fa+ A 74)=0. (8.17)
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The diagonal blocks in will in general not be square. Two interesting examples however are to
take these blocks to be square and invertible. In this subsection, we will take the lower right block
to be a non-zero 1 x 1 matrix, and perform a reduction to a novel type of type IIA Newton-Cartan
geometry associated to D2 branes. In section [0, we will take the upper left block to be an invertible
(11 — d) x (11 — d) matrix, and offer a description of the M-theory Newton-Cartan theory in terms of
exceptional field theory.

Transverse reduction to type ITA The dimensional reduction to type ITA corresponds to taking
n = 10, and ¢ = 1 above. We again label the coordinates again as z/* = (z*,y). In this case h¥, is
a scalar and we can identify it with the dilaton as h?, = €**/3. Using the conditions (8.17)), the full
Kaluza-Klein ansatz is:

a e ®/3h2 0 - e®/3pm, 0
hp = (62‘1’/3/1: 20 ) e = _eBA R, 23 ) (8.18)

”A— 7(1)/3(7"u ,0) %ﬂAzeJrq)/s(TuA,—AyTVA), (819)
plus the same definitions and ( . for the three-forms and field strengths. We also have

Q=80 Q=

wpot...o7
= 3,7, €

A Ca a
€ABC€ay..an Ty 7B T, R, R, (8.20)

Interpretation as an expansion Inserting the above ansatz into the original limit (??) gives

ds}, =c 1e4¢/3(dy + A1)+ 672@/3(027%1/ +c'Hy),

e L (8.21)
Cy = —cPe 37€AB cTANTEANTC + A3+ By Ady + ¢ (A3+BQ/\dy)

Hence according to . this translates into the following expansion of the ten-dimensional type ITA
string frame metric g,,, RR three-form, CQ, and dilaton ®:

guu = CZDT/JJ/ + CBQH;UJ s
Cs = —cheapee T NTE ATC + Cy + ' Cs, (8.22)

®_ -1
e =cpe

along with expansions for the NSNS two-form, B,, and RR one-form, A;:

BQ - BQ + CB4§2, 5 1211 - Al 5 (823)
where ¢p = ¢¥/*. This is an expansion and non-relativistic limit associated to the D2 brane (the powers
of ¢p appear in the same way as those of the harmonic function in the D2 brane SUGRA solution).
We can refer to it as D2 Newton-Cartan (D2NC).

Constraint The constraint (6.26]) becomes

M1V1 [T H2V2 [TH3V3 [T H4V4 — H1---H10 A B ¢
QH H H H Gu11/2u31/4_+3|3|€ € HM5M6M7EABCT% Tps Tpro >

8.24)
D rruivy Iypeve Irpsvs _ 1 _pi-pio A_ B c ( ’
Qe "HM " HE HYSSH g = + 4516 G liapspsnr€ABCTus Tug Tuio

which are equivalent. So now we have a duality relation between the RR 3-form gauge field and the
NSNS 2-form.
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Type IIA D2 Newton-Cartan theory The action obtained from the reduction ansatz (8.18)) and
(8.2) is

Spane = / Az Q (e?L+ Lg+Q " Liop) (8.25)
with
L=R—a"Pa,ap + 2a"a, —5a"D,® + ID"®D,d — LH"AH, 4
— %emG“”GW — %emG’*””AGWpA + e eABCGABpaT o,
£§ == %ém-..m (Gylmy4 - 3!%Q€7© u1...u4p1...p67_lm MSGABCTMAT%BT%C)
- %6_2(1)711/1.-.1/3 (/Hylmyg - 41§;Q€+q> st MG#1.~M46ABCT#5AT#GBTMC) ) (8.26)
= — ﬁ (éylmm — 3,6_¢”HP1 g €71 PRI 3,19€ABCH,,101 . HV4U4TU5ATUGBT(,7C) X

vi.vy 1 —® _vy..vap... 6 A B C)
(G 32 € Myt s €ABCTs Tus” Tpe )

Liop = 1dAs AdAs A By,

where the field strengths are defined as in and with again Gy = dA;. Note that we obtain
what appears to be an extra contribution to the dilaton kinetic term due to the e~® factor that in the
expansion of (5 in (8:22). We could alter this by redefining the RR fields in the reduced theory. In
addition, the reduction of the Poisson equation gives

%6@61430 (VMGABCM + GMGABCM + 3CLHDAGDBCH) — %e‘beABCGABC“V“(I)
+VAKs — 37V, V,® — 30V 18 + 2VADV & — KAV 4P + 277V ,a,,

+ KM a + a*Ka + 20" P, ap + a*PC (Laape + Laacs + npcaa) (8.27)
+ i”HAB“”HAcM + %em (GAB“”GABW + 4GA“GAM) — 62@%8@“”""@#,,,,0 - l—gﬁ“yp’fflwp

—P 1 A1 A2A3 LT - 7
+e mEmt

A B C~ 1/
€EABCTN: TXa T)g GM1-~~M4H/L5~-/L7 =0.

As in the MNC case, the longitudinal components of the three-form gauge field play the role of the
Newton potential.

9 Dimensional Decompositions and Exceptional Field Theory
Description

9.1 Exceptional field theory

We will now discuss the exceptional field theory description of the 11-dimensional MNC theory. ExFT
automatically has a number of features in common with the non-relativistic theory: breaking of 11-
dimensional Lorentz symmetry, a geometry arising from mixing metric and form-field components, and
the inclusion of dual degrees of freedom. We will see how it provides a unified framework treating the
relativistic and non-relativistic theory on an equal footing, which demonstrates that the same excep-
tional Lie algebraic structures that underlie the relativistic theory are present in the non-relativistic
one. In addition, the ExFT equations of motion include the additional missing Poisson equation.

We will focus particularly on the relatively unexceptional case of the SL(3) x SL(2) ExFT [54].
This makes use of an (8 + 3)-dimensional split of the 11-dimensional spacetime. As such, it is a
very natural fit for the (8 + 3)-dimensional split into transverse and longitudinal directions present in
the MNC expansion. The SL(3) x SL(2) ExFT includes a Riemannian metric for the 8-dimensional
part of the spacetime, but the 3-dimensional part is described by an ‘extended geometry’ involving an
SL(3) xSL(2) symmetric generalised metric. By decomposing the 11-dimensional Newton-Cartan theory
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appropriately, we will replace the transverse Newton-Cartan metric with an invertible 8-dimensional
metric, H# — ¢", and the longitudinal metric with an invertible 3-dimensional metric, 73, — 7;;,
which will be embedded into the generalised metric description. This drastic simplification of the
geometry is nonetheless sufficient to highlight the key features of the theory.

It would also be interesting to consider for example the opposite (348)-dimensional split correspond-
ing to the Egig) ExF'T, embedding the transverse metric into the Egs) generalised metric. However
as the known formulation of ExFT makes use of a Riemannian metric for the unextended part of the
spacetime, this is not immediately available for our purposes. Evidently, for any given Ey4) ExFT,
one can construct or imagine multiple other ‘hybrid” formulations depending on how one chooses to
separate or mix the longitudinal and transverse directions. More ambitiously, one could choose to work
with the recently fully constructed ‘master’ Ey; ExFT |55, for which no coordinate decomposition is
necessary. Evidently this would eschew the technical difficulties of the latter in favour of the technical-
ities associated to working with an infinite-dimensional algebra. In this paper, although many features
that we will see are quite general, we describe the explicit details mainly for the d < 4 cases.

ExFT ingredients The basic idea behind ExFT is to replace d-dimensional vectors with generalised
vectors VM transforming in a specified representation of Eqq). This representation is such that we
can decompose VM under GL(d) as VM = (V*, Vi;, Vijkim, - - . ) where V' is a d-dimensional vector, V;
and Vjjum a two- and five-form, and the ellipsis corresponds to higher rank mixed symmetry tensors
that appear for d > 7. Generalised vectors are used to provide an Eyg)-compatible local symmetry of
generalised diffeomorphisms. These are defined in terms of a generalised Lie derivative which acts on
a generalised vector VM of weight )\ as

SuVM = LoV = UNONVY — VNONUM + Y MY poOnUPVE + (A — 55)onUN VY (9.1)

Here YMY by is constructed from invariant tensors of Eq(4). This together with the weight term with

coefficient —1/(9 — d) appear such that this generalised Lie derivative involves an infinitesimal Fyq),
rather than GL(N) transformation. The partial derivatives written here formally involve an extended
set of coordinates y™. However, consistency requires the imposition of a constraint Y™V pody,0xn = 0
where the derivatives can act on a single field or a product of fields. One solution to this constraint
is to view the d-dimensional partial derivatives as being embedded such that 9y, = (0;,0,...,0). We
always assume we have made this choice below. (An alternative solution leads to a ten-dimensional
type IIB description.)

Given this choice, for the d < 4 cases we will look at in detail, the action of UM = (uf, \;;) on
VM = (Vi V;) (both having generalised diffeomorphism weight 1/(9 —d)) is Ly VM = (L, V', L, V7 —
3Vk8[k/\ij]), where L, denotes the usual d-dimensional Lie derivative. Identifying the two-form com-
ponents \;; with the gauge transformation parameter of a three-form C’ijk, this means we can write

VM = (VI V,; — éijkvk), with V}; gauge invariant. We use this to give explicit parametrisations for
the ExFT fields.

The field content of ExFT is as follows. We now let p,v,... be (11 — d)-dimensional indices.
We then have an (11 — d)-dimensional metric, g,,, which is a scalar of weight —2/(9 — d) under
generalised diffeomorphisms. The Ejyq4) extended geometry is equipped with a generalised metric,
My, transforming as a rank two symmetric tensor of weight zero under generalised diffeomorphisms.
In addition, there is a ‘tensor hierarchy’ of gauge fields, starting with an (11 — d)-dimensional one-form
AM, and continuing with p-forms By, C,.,, ... in particular representations of Eq(4). This set of
fields mimics and extends what appears in a dimensional decomposition (or reduction) of the bosonic
fields of supergravity.

Dimensional decomposition and field redefinitions We describe now the dimensional decom-
position used to embed 11-dimensional SUGRA in the ExFT framework. We split the 11-dimensional
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coordinates z# = (z*,y'), making an (11 — d) + d split. The supergravity degrees of freedom are then
similarly decomposed under this split, classified according to their nature from the point of view of
(11 — d)-dimensional spacetime, and then rearranged into multiplets of the exceptional groups Eq(q).
We assume no restriction on the coordinate dependence. This can be viewed as a partial fixing of the
local Lorentz symmetry in which we choose the 11-dimensional vielbein é%; and hence metric gz» to be

1

—1 —
&t = <|¢| 2(2_‘?6""M Oz> G = <|¢’ g_dguu“‘(bkklA,ukAul (bikAul) : (9.2)
Afot @Y PirAy Pij

where €, is a vielbein for an (11 — d)-dimensional (Einstein frame) metric g, and ¢; is a vielbein for
a d-dimensional metric ¢;;, with |¢|= |det(¢;;)|. Normally one takes g,, to be Lorentzian, such that
this corresponds to fixing the Lorentz symmetry as SO(1,10) — SO(1,10 — d) x SO(d), however we
can also take it to be Euclidean, such that SO(1,10) — SO(11 — d) x SO(1,d — 1). The latter choice
is relevant for the version of ExFT applicable to the non-relativistic theory.

The ‘Kaluza-Klein vector’ A," has a field strength defined by

F' = 20,A," — 241,70,4,)". (9.3)

Letting L denote the d-dimensional Lie derivative, the Kaluza-Klein vector also appears as the connec-
tion in the derivative D, = 0, — L4, which is covariant with respect to d-dimensional diffeomorphisms,
using the transformation d,A," = D,A’ induced by the action of 11-dimensional diffeomorphisms on
B2,

For the three-form and its field strength, we define a succession of gauge field components (denoted
by bold font) via
where Dy' = dy' + A,'dz*, the subscripts on the right-hand side denote the form degree in (11 — d)
dimensions, and we omit the implicit wedge products. Similarly, for Fy = dCy we let

The persistence of hats reflects the fact that we still want to take the non-relativistic limit of all
these quantities. Explicit component expressions can be found in appendix We can make similar
redefinitions for the dual six-form and its field strength.

Metric and generalised metrics The metric g, appearing in (9.2)) is directly used as the (11 —d)-
dimensional ExFT metric (the generalised diffeomorphism weight —2/(9—d) follows from the conformal
factor in (9.2)).

The generalised metric My, or its generalised vielbein, may be defined as an Eyq) element valued
in a coset Eyq)/Hq where Hy is the maximal compact subgroup (in the Euclidean case) or a non-
compact version thereof (in the Lorentzian case). Under generalised diffeomorphisms it transforms
as a rank two symmetric tensor of weight zero. It is normally parametrised in terms of the wholly
d-dimensional components of the eleven-dimensional fields, ¢;; and CA'ijk, in a manner consistent with
its transformation under generalised diffeomorphisms. For d > 6, this parametrisation also includes
internal components of the dual-six form. For simplicity, we will restrict to d < 4, in which case the
conventional parametrisation of the generalised metric is given by

(64 LCCy G
Moy = |61/ d)(% L Cim 2¢i[k¢”j)_ (9.6)

The conformal factor here ensures that |det M|= 1.
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In specific cases, we can find factorisations of the generalised metric leading to simpler expressions.
This includes the SL(3) x SL(2) ExFT. Here, generalised vectors VM = (V¥ V};) transform in the
(3,2) of SL(3) x SL(2), with 4, j, ... three-dimensional. We can dualise V;; using the three-dimensional
epsilon symbol, and define V¢ = %eijkf/}k. Introduce an SL(2) fundamental index, a = 1,2, and let

VM = Vi with Vil = Vi and V2 = V. In terms of this basis we have a factorisation
Muyn = Migjg = MijMag, (9.7)

where M;; = M; with |det M;;|= 1, and Mog = Mg, with |det Mys|= 1. When ¢;; has Lorentzian
signature, the expressions which reproduce are

3 1/2 1/202 _ 71/2@ R .
M = 10700y, Mas = (|¢| |¢!|¢1|/20 Jﬁlﬂ\‘lﬂ) , O= 5%, (9.8)

Gauge fields and dual degrees of freedom Along with the Kaluza-Klein vector, A,°, coming
from the metric decomposition , the p-forms obtained from the decomposition (9.4 of the three-
form fit into FEgyq)-valued multiplets denoted A,, B, C,up, .... Their field strengths are denoted
Fuvs Huvps Tuvpos - --- To obtain full Fyq4) representations, we have to include here the set of p-forms
obtained by decomposing the dual six-form. This is unsurprising from the point of Ey4) U-duality
transformations, which mix electric and magnetic degrees of freedom (e.g. M2 and M5 branes) coupling
respectively to p-forms and their duals.

For d = 3, this works as follows [54]. The ExFT gauge fields A,"*, B,ui, Cuup®, Dypo’ have weights
1/6,2/6,3/6,4/6 respectively, and their field strengths are denoted F,.,"*, Huwpis Tpwpo® and Ko por'
(the latter does not appear in the action). Under generalised diffeomorphisms, F@ transforms as a
generalised vector of weight 1/6, while H and J transform via the generalised Lie derivative acting as

LaH: = NP0 H: + 0ipNPH, | LaTY = NP0 T — 9;5M°T° + 0,5M° 7 | (9.9)

These field strengths obey Bianchi identities:

3D[u}—vp}m = 6ijk€aﬂaj5Hquk ’ (9.10)

4D[pHupU]i + 3€ijk€aﬁf[#ujafpo]k6 = 8ia\7uup0'a ) (911)

5D Tpon™ + 10F 0 “Hporii = €203 ppor’ (9.12)

where D, = 0,,—L 4,. The EXFT one-form can be simply identified as A, M= (A, 56“ *Cik). The two-

form B, transforms in the (3,1) of SL(3) x SL(2) and is identified (up to a further ﬁeld redefinition)
with é;m- However, rather than give the precise field redefinitions for the potentials, it is simpler
to work at the level of the field strengths. These are all tensors under generalised diffeomorphisms,
meaining in particular that they transform in a particular way under d-dimensional three-form gauge
transformations. This allows us to decompose in terms of manifestly gauge invariant combinations

, . 1 ... - A A A
]:/u/Zl = Fm/l ) ]:;WZQ = 56%(Fuujk - Ojle l) ) HMVPZ = FNVP“ (9'13)

where F),,’, ' F wwpi and F ij are gauge invariant and can be exactly identified with the quantities defined
in (9.5) with F,,* as in

The three-form 51tuat1on is then where it gets interesting. There is a single 8-dimensional three-
form CWp obtained from the 11-dimensional one. There is also a single three-form C’Wp,]k coming from
the 11-dimensional six-form. Together these form an SL(3) singlet and SL(2) doublet, for which the
field strength obeys a self-duality constraint reproducing (in the relativistic case!) the correct duality
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relationship between the field strengths F wwpo and F wpoijk- Lhis duality constraint, which has to be
imposed by hand, involves the eight-dimensional Hodge star acting on the 8-dimensional indices and
the SL(2) generalised metric acting on the SL(2) indices:

A /‘g‘Maﬁj#l/PUﬁ — _48/§€aB€MVPO'/\1-.)\4j/\1”.)\4/5 ) (914)

The coefficient & is fixed via the self-consistency of (9.14) (in both the cases where g, has Lorentzian

or Euclidean signature, with M,z having the opposite) to be k = :I:m, with the choice of sign being
a matter of convention (equivalent to changing the sign of the three-form in eleven dimensions). This

is consistent with decomposing the SL(2) doublet of four-form field strengths as

A N ~

1 _ ¢ 2 _ 1 ijk
\pra = F;wpcra juww = EGU (prm'jk - Oijk ;wpo) : (9‘15)

Thus in general, ExFT treats simultaneously degrees of freedom coming from the three-form with
dual degrees of freedom coming from the six-form, encoding the duality relations between them in its
dynamics.

Dynamics: SL(3) x SL(2) ExFT pseudo-action The ExFT Lagrangian can be uniquely fixed by
the requirement of invariance under the local symmetries (generalised diffeomorphisms, gauge trans-
formations of the tensor hierarchy, and finally (11 — d)-dimensional diffeomorphisms). When 11 — d is
even, this gives a pseudo-action which must be accompanied by a self-duality constraint such as .
This includes the case d = 3. The pseudo-action in this case can be written as S = [ d*z d% \/EEEXFT
where the Lagrangian has the (quite general) expression

1
EEXFT = Rext (g) + ‘Ckin + Eint + V |g| £top 5 (916)

Here, with D, = 0, — L 4,,, we have

1 v o 1 v o 1 v 1 v
Rexi(g9) = Zg“ D,9pe D1y — 59“ D,.9"°D,gve + Zg“ D,IngD,Ing+ §D” In gD, g"" , (9.17)
1 y 1
‘Ckin - ZDuMz]DuMij + ZDMMagpuMaﬁ
1 e vj 1 i v 1 [ vpo
- ZMZJMQ,BF/LV FH i — EM JH,U,VpiHM pj - %Maﬁjpypa j'u r 67 (918)

1 1 1
Lt = ZMMN(?MMM@NMM + ZMMNaMMQBaNMag - §MMN8MMKL8KMLN
1 1
+ §8MMMN8N 1n|g|+ZMMN (OM G Ong"” + O Infg|On In|gl) (9.19)
The topological (Chern-Simons) term can be defined via its variation:

0Lsop = HEMWMS( o 5“4#1meaﬁjuzmusﬁ}luemmi

. 4 iik
+ 6AB#1M21' (eaﬁfuwzlmjusuﬁsﬂ - 56” Hﬂauwstﬂwwsk)
+ AAC,, o " €ap (ijus---usﬁ + 4Fu4uslﬁ7{us---usi>

- aiOéADm---Mijus---Msa) )

(9.20)

where the ‘improved’ A variation includes by definition contributions of variations of lower rank gauge
fields, for explicit expressions (which we do not require) see [54]. Finally, we must impose the constraint
(9.14) after varying the above pseudo-action.
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9.2 Obtaining the 11-dimensional Newton-Cartan theory via ExFT

In this subsection, we perform a dimensional decomposition of the 11-dimensional MNC variables, and
use this to explain how exceptional field theory describes this theory.

Dimensional decomposition of 11-dimensional Newton-Cartan theory We start with the
11-dimensional coordinates labelled as 2# = (z*,y!) with u = 1,...,11 —d and i = 1...,d. We keep
all coordinate dependence on y¢ throughout. Thus this is a decomposition rather than a reduction. In
terms of the vielbein decomposition (8.16]), we take ¢ = d — 3 and n = 11 — d. The flat indices are
a=1,...,11—dand7=1,...,d — 3. Explicitly, we take the SO(8) vielbein to have the form

1 1
ho = [Q9=de, 0 oo | Bt 0 (9.21)
g AfnT, n Qi AR B

with e, an invertible vielbein for an (11 — d)-dimensional metric, g,, = €2,€°,0.,. We also have to
take A
= (A7), a=(0,74). (9.22)

where 7;; = 1;47;8n4p, with A = O, 1,2 as before. The conformal factor 2 appearing in (9.21)) is defined
by
H;,j, (9.23)

2 _ _ 1 Wt J1eJdr o o L
O = B € Tivjr Tisjo Tizjs Hisja - - -

N 2
and related to that of the 11-dimensional theory by € = (dete)2” 9-d. It is useful to write down the

full transverse and longitudinal metrics:

2
f{m = <Q_mguu + HklAukAVl ijAuk> 72[“3 — (AﬂkAVlTkl Aﬂkaj)

e HZkAl,k HZ] Al/kai Tij
9.24
A an QQQd Qid MPA J . 0 0 ( )
H" = 2 ¢ 2 , ™= ( z) :
_Qg_dg Ao_i HZ] + Q_d pUA zA 7 0 v

In this way all the degenerate structure is encoded in the d-dimensional part of the spacetime, with a
degenerate d-dimensional metric H;; = h';h7;6;;. This ensures that the metric g, can be identified with
the metric appearing in exceptional field theory, while the degenerate Newton-Cartan metric structure
will appear in the generalised metric. In addition, we redefine the three-form and its field strength

according to (9.4) and (9.5)), now without hats:
03 03 + C’gsz + CmDy Dy + 5 C’z]kDy Dijy y (925)
Fy = Fy + F3, Dy’ + FQUDy’Dy + kaDy 'Dy’ Dyf 4+ L FljleleyJDykDy , (9.26)

where again Dy’ = dy' + A,'dz*. We carry out an analogous decomposition for (5 and F4, and for Cg
and F%. Finally, we can consider the Newton-Cartan torsion: with T[U;A = 28[,1%9]A we have

= 28[17_]] ) Tm'A = Tm‘A - AujTji = DMTiA’ (9.27)
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Embedding the limit in ExXFT Let’s start by considering the expansions (?7?) and (7?) of the
original 11-dimensional metric and three-form. We make use of the decompositions (9.24)) and -
for the Newton-Cartan variables and three-form appearing in the decomposition, and then use these to
work out the decomposition of the 11-dimensional metric and that of the three-form. The
potentially singular terms as ¢ — oo then appear in the d-dimensional components of the metric and
of the three-form, with

2 -1 A 3 A_B_C -3~
(ﬁij:CTij—l-C Hij, C’ijk:—c €EABCT; Tj Tk +C¢jk—|—0 Cz_]k (928)

The metric g, and Kaluza-Klein vector A,° appearing in are then exactly those appearing in H "
in (9.24)). The redefined form components carrying an (11 — d)-dimensional index are all non-singular,
SO Cw = Clij + O(c™?), and so on. One point of danger is that C’Uk still appears in the field strengths
of these fields. However, consulting the more explicit expressions , one sees that the field
strength }"W appearing in ExFT in fact involves the combination ]:uvu = F;ww CZ]kF w, which is
in fact 1ndependent of éijky such that F,u,uij - éiij#Vk = F,ul/ij - Ciijwj .

For the generalised metric , inserting the expressions one finds that all terms at leading
order in ¢ cancel, and sending ¢ — oo one has a manifestly finite and boost invariant expression:

Muyn = Qi (Hij — eapeTi " Cpum* 1'% + CopCrmn H* 1" —eapemiATHPrIC + QCiqup[le]q>

—eapcTATBTIC 4 QCkqup[iTl]j of ki 4 orilk frili

(9.29)
The parametrisation can be viewed as a mon-Riemannian parametrisation of the generalised
metric, and viewed simply as an alternative possibility to taking the usual form . The reason why
this is a non-Riemannian parametrisation is most clearly seen by looking at the inverse generalised
metric MMV In the Riemannian case, the parametrisation (9.6)) implies that the d x d block M¥ is
given by MY = |¢| 1/(9=d) qb” and therefore corresponds to the inverse spacetime metric. Assuming
this block is invertible then uniquely fixes (given the definition of the generalised metric as a particular
coset element obeying certain prgperties) the rest of the parametrisation. In the non-Riemannian

case, we instead have M% = Q" 9-d HY  which is non-invertible. This leads instead to an alternative
parametrisation. This is exactly as in the DFT case 35|, which was generalised to ExFT in [40]. The
expression ((9.29) can be checked to be equivalent to the non-Riemannian SL(5) generalised metric
worked out from first principles in [40]. In fact, from this point of view, one need not even go through
the complications of taking the limit, but simply write down , insert it into the ExFT and study
the resulting dynamics.

Returning to the embedding of the expansion in ExFT, we also need to worry about the singular
pieces in the expansion of the dual gauge field Cs. This inevitably appears in the tensor hierarchy
for all exceptional field theories. From , we have Cg ~ BC3 ATATAT + ..., and so given
the decomposition according to A and , any component of Cs carrying three d-dimensional
indices will be singular, i.e. Cupijk, Cuvijki, Chuijkim, Cijkimn. The claim is that, remarkably, all such
singularities cancel automatically thanks to the precise combinations of Cs and Cj that appear in
the ExF'T fields. For d = 3,4, this is most straightforwardly checked at the level of the ExFT field
strengths. One sees from for SL(3) x SL(2) (and from (I1.12)) for SL(5)) that the components
of F; always appear in the combinations F,,peijk — CijiFlwpe and Fyu i + 4C[ka|Wpa|l] exactly such
that the singularity coming from ngk cancels that coming from F,, which was written down in (16.44]).
That the ExFT gauge potentials themselves are non-singular can further be verified by hunting down
the correct field redefinitions that relate the ExFT gauge fields to the 11-dimensional ones. Note that
for d > 6 the components C’ijklmn are present and appear in the generalised metric itself: we have not
verified explicitly but the expectation would be that it does so in a way that ensures the generalised
metric remains finite.
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Summary From the above we can conclude that the fields used in ExFT are manifestly non-singular
in the non-relativistic limit (equivalently this shows that the fields which are U-duality covariant in
a genuine dimensional reduction are non-singular). We can also view the distinction between the
relativistic and the non-relativistic 11-dimensional theory as being solely governed by the choice of
parametrisation of the generalised metric. Having picked a generalised metric parametrisation, it is then
consistent to directly identify the ExFT gauge fields and metric g,, with the gauge field components
and metric of the decomposed relativistic or non-relativistic theory.

This is summarised in figure [3] The upper triangular half of this diagram corresponds to first
embedding the relativistic fields in ExFT in the usual manner, with a Riemannian parametrisation of
the generalised metric, and then taking the non-relativistic limit giving a non-Riemannian parametri-
sation. The lower triangular half corresponds to first taking the non-relativistic limit for the orig-
inal 11-dimensional fields, and then embedding these into ExFT, giving the same non-Riemannian
parametrisation. In both cases, one needs to make the appropriate dimensional decomposition of the
fields of the Newton-Cartan theory, corresponding to fixing the local tangent space (non-Lorentzian)
symietry.

Fix Lorentz

11-d SUGRA ExFT (rel. param)

Non-rel limit i ' Non-rel limit

3 1

Non-rel SUGRA ~  F'ix non—LorentL, ExFT (non-
rel. param)

Figure 3: Relationship between non-relativistic limit and non-relativistic parametrisation of ExFT

Inserting the non-Riemannian parametrisation into the ExFT action or equations of motion will then
reproduce the finite action and equations of motion results from taking the limit, after decomposing.
For the action, we calculate this decomposition in appendix 10} What we will show next is that,
remarkably, the ExF'T equations of motion also automatically reproduce the Poisson equation .

Generalised metric and equations of motion

We now take a closer look at the consequences of using the non-relativistic parametrisation of the
generalised metric. We focus on the d = 3 SL(3) x SL(2) ExFT. For the d = 3 Newton-Cartan geometry,
H" and H;; have rank zero and so are identically zero. The longitudinal metric 7;; is a three-by-three
matrix and in fact invertible, with Q2 = — det 7. The resulting non-Riemannian parametrisation of the

generalised metric (9.7)) is

_ 20 1
My =Q72B75, Mas = ( f 0) , =10y, (9.30)

Comparing and , we can note that is the most general possible SL(2) non-Riemannian
parametrisation (up to the sign of the off-diagonal components), as this is completely fixed by requiring
My = 0 which prevents us from interpreting that component as the determinant of a standard three-
dimensional spacetime metric.

Normally, the generalised metric M,z encodes two degrees of freedom. It is clear that the non-
Riemannian parametrisation given by is restricted and is missing one degree of freedom. We
may identify this missing degree of freedom with the overall scale of the longitudinal metric, as the
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|—1/3

latter only appears in the combination |det T 7,5, which is conformally invariant. This makes the

dilatation invariance trivial in this formulation.
If we insert this parametrisation into the SL(3) x SL(2) pseudo-action, with Lagrangian (9.16)), we
find that L, as defined in ((9.19) vanishes, while

1 - 1 1 -
1 DuMID M + ZD“MWDMM&H = ZDM(QW?W)D#(Q*/i"m). (9.31)

This reproduces exactly the expected terms in the d = 3 case of and .

Notice that the kinetic terms for M,z completely drop out. So if we insert the non-relativistic
parametrisation into the action, and then vary with respect to ¢, we will never find an equation in-
volving D*D,, ¢, i.e the Poisson equation. However, instead we can consider the equations of motion of
the generalised metric, which can be evaluated independently of its choice of parametrisation. These
will provide the missing Poisson equation. This is exactly analogous to the situation in DF'T, see the
discussions in [26],36]. One has to make a choice about whether you allow the equations of motion that
follow from variations of the generalised metric that do not preserve the non-Riemannian parametrisa-
tion. In both the DFT SNC case, and the present case, there is exactly one such independent variation,
which provides an additional equation of motion beyond what is obtained by varying the fields of the
parametrisation themselves.

Let’s see how this works. Naively, the result of varying the generalised metric M3 in the action is

68 = / Pz d°Y \/GIM P ,5, (9.32)

with
Kap = =175 (Du(v/gD"Map) = Moy MssDy(y/gD" M)
+ ZMMMB(;MM}"W”}"’W& + 9—16/\/1(17/\/135\7“@07‘7“”””‘5
+ MY (igal MM 031 M + D10 M7 0j15) M + Dol 9 0s1) 9™ )
— §MY0,0055 0. + Z=0ial (/905 M) (9.33)
— 3 MY (Oy M D) Mij + i M 01, M5)5)
+ 5075 (0 (VIMI M 050 Mig)5) — Miy(aMp)s0s(VgMT M7 0 M)
15 (0 (VIMI M 035 Ma5) = Mar M gs0ie (/M7 M©0;, M?).
Now, the variation 6 M®? cannot be arbitrary but must preserve that |det M|= 1. This ensures that one

gets two rather than three independent equations, corresponding to the usual two degrees of freedom
encoded in M,3. The true equation of motion taking this into account is:

Raﬁ = ]Cag ./\/loég./\/l'y =0. (9.34)

This can be thought of as the vanishing of a generalised Ricci tensor, R,s. For the non-Riemannian
parametrisation (9.30)), the two independent equations are

RQQ = ’CQQ = O, RH — QQORQQ = ICH — Q@Klg =0. (935)
Setting 0;; = 0;, 0;2 = 0, we have explicitly that

Koo = 43 MijF ' F*7 + oo Fppe F*77 = 0. (9.36)
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This is the equation of motion arising as the totally longitudinal part of the equation of motion
of the three-form. This is consistent with its appearance here as the equation of motion of ¢, which is
indeed the totally longitudinal part of the three-form.

The other equation of motion is (after using (9.36))

0=~Ky — 230K12

= _\1[% Z]kD (\/_g l/Z]k)
lelianyle'uymn + F,uupcrzng#Vpglmnﬁeijkelmn (937)
%LMU (@M’“laj/\/lkl + Q‘gw,ajg/w) — %Mij@/\/lklak/\/ljl
— IMY9,0;ng — Lo(/goMY)

Here we have Fijk = DuCiji —305Cujn having used D, My, = D, My, —e'j 0; Awk./\/lm We can then
identify (9.37) as the Poisson equation for ¢ = ”kC’wk, as it has the form D,(\/gD"p)+---=0. It

is conjugate to the variation 0 M. For the non—Rlemanman parametrisation, MH = 0, so allowing this
variation corresponds to allowing variations that do not respect the parametrisation. In terms of the
expansion of M®? in powers of 1/c, this variation is subleading in origin. Finally, one can precisely check
that this equation is indeed exactly the Poisson equation , which we found at subleading
order in the expansion of the relativistic theory, and here is rewritten in terms of ExFT variables after
making the dimensional decomposition of all the fields. (It can be easily checked that the gauge field
terms match, using to relate the seven-form components appearing here to those of }7’4, and a
patient calculation shows that inserting the dimensional decomposition of the eleven-dimensional fields
matches perfectly.)

Structure of generalised Ricci tensor Geometrically, R,z should be thought of as (the SL(2) part
of) a generalised Ricci tensor. It is a symmetric generalised tensor of weight 0 and obeys M*R 5 = 0.
When we take the relativistic parametrisation of the generalised metric, it can therefore be

parametrised as
1 C\ (16|'"*Rsy  Re 10
R = (0 1)( Re  [6]7*Ry) \C 1 (9:3%)

with R, and R¢ tensors of three-dimensional weight 0, such that the variation of the action leads to

5 1/2 R
58 D — /d% d%y /g ( |LZ)|‘1/2 Ry + |¢|‘1/25CR(;) (9.39)

Let’s examine what happens to the components of R,z in the non-relativistic limit. We have |¢|
Qc?, C = —c*Q + C + ¢ 3C. This leads to the expression

_ 1 1 C C?’Q(R¢—Rc) RC—R¢ 1 0
Rap =3 (o 1) ( Re—-Ry 0 'R,)\C 1 (9.40)

So in principle the independent equations are still R and Ry4. However, we already know that this
generalised Ricci tensor has no leading parts in ¢ when we take the limit (because none of the ExFT
fields contain singular terms). If we expand

1/2_

Ry =RY + R + ¢ *REY, Re=*RE + ORY + ¢ *REY, (9.41)

it must be that we have 72(3 RC , 72(0 R(C), viewed as off-shell identities, and the independent
equations of motion, i.e. those appearlng as the actual finite entries of R4, are actually

Rf) —0, Rg(z;g) _ R(C;S) 0. (9.42)
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The former is conjugate to 6 M?? and the latter to the SM! that is forbidden if we insist on keeping
a non-Riemannian parametrisation. We can go back to the variation (9.39) and expand that:

08 = — /d8x 4%y /g (0InQ(Ry — Re) + Q '¢?6CRe) | (9.43)
hence the first non-zero variations are
55 = — / d®z d% /g <c—35 QR —REY) + 9—15072(5’)) . (9.44)

We see again that we get the longitudinal equation of motion for the three-form at finite order, and

the extra Poisson equation of motion comes from a subleading variation associated to the variation of

the volume factor €2, which otherwise has no dynamics associated to it in this formulation.

Generating non-relativistic generalised metrics via U-duality

Non-trivial U-duality transformations act as SL(2) transformations on the generalised metric Mz,
. . . b .

via M — M’ = UTMU with detU = 1. Parametrising U = (CCL d) the transformation of the

non-relativistic parametrisation ((9.30)) gives

,( 2alap+c)  2abp+ad+be (9.45)
of 7 \2abp +ad +bc  2b(bp + d) ’ '
and this remains in the non-relativistic form only if b = 0, or else if ¢ is constant and d = —by. In the

former case, the effect of the transformation is ¢ — a(ap + ¢) and so amounts to a scaling and shift of
the three-form.
The genuine non-geometric U-dualities correspond to the SL(2) inversion symmetry with a = d = 0,

bc = —1. If ¢ < 0, this takes us from the non-relativistic parametrisation to a relativistic one with
Pij = (—i)w?’(det 7')71/37'@7'7 Cijk = —iﬂjk- (9.46)

These obey |det ¢|= C? which corresponds to a ‘critical’ three-form.
We can apply this to a real supergravity background along the lines of |33,/40], namely the M2 brane
solution in the form

ds? = f2Bndy'dy’ + 136, da"dx” . Cie = (71 +7)eijn (9.47)

where the harmonic function f obeys 0,0"f = 0 and v is a constant. This has constant exceptional
field theory 8-dimensional metric, g,, = 0,,, while

—(f+27) —(1+7f)
Mij:m’j, Ma6_<_7(1+7fq; _f’)/ ) (948)

Sending f — 0 corresponds exactly to the original limit (??). Alternatively, we can formally U-dualise
along the y* directions (including time) to obtain a solution with

_( 7 L+~f
Map = (1 +f —(f+ 27)) ' (9.49)

The standard M2 solution has v = —1 and f = 1+ %, with r? = §,,2*2”. In this case, the generalised
metric ((9.49) corresponds to the negative M2 solution [56]:

d82 = fNi2/37]ijdyidyj —+ fl/gdwdx“dx”, Cijk = (fil — 1)€ijk7 f =1- r% . (950)
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This solution has a naked singularity at f: 0 < f—2=0. Evidently the generalised metric (9.49)
is non-singular everywhere and at ]?: 0 becomes non-relativistic. This suggests [22] interpreting such
backgrounds as containing a singular locus at which the geometry degenerates to a non-relativistic one.
If we alternatively take v = 0 then the generalised metric has the non-relativistic form
everywhere, with ¢ = —% . If we now reconsider the equation of motion ((9.37)) which can only be
found by varying the generalised metric before inserting the parametrisation, then this is exactly the
equation V2 f = 0 obeyed by the harmonic function. Finally, we can reconstruct the full 11-dimensional

MNC geometry:
FA = (0,84), HP = (58 8) , Cola=—1f. (9.51)

9.3 Gauge fields and self-duality in SL(3) x SL(2) ExFT

Now let’s look at what happens in the gauge field sector of the SL(3) x SL(2) ExFT. Let’s repeat the
parametrisations (9.13)) and (9.15)) now for the field strength components of the non-relativistic theory:

‘FMVZI = F[LVZ ) J:HVZQ = §ezjk(Fuujk - CjleuVl> ; H/ﬂ/pi = _Fp,l/pi ) (952)
1,
,uupcrl = F,uzzpa ) juupaz = 66 Jk(F,uupo—ijk - Cz'ij,qua) . (953)
Then the kinetic terms (9.18)) in the SL(3) x SL(2) ExFT pseudo-action (9.16|) are

— I My Ma T " P = MOy 5 = =30 PPN By — Q2T B, 5 (9.54)

which matches the corresponding terms in the decomposition (10.27)) of the non-relativistic action.
To discuss the three-form gauge field, consider the SL(3) x SL(2) ExFT equation of motion obtained
from the pseudo-action by varying C,,,“:

Do (V/19IMapT"77%) = 20ia (/19| MTH!;)

. 9.55
- 48H€aﬁeuup01...05 (Dal \7(72...05’3 + 4~F010226H030405i> =0. ( )

After varying, we must also impose the constraint . This constraint involves the generalised
metric, and so it is sensitive to whether we are describing the relativistic or non-relativistic theory.
However, in either case, using the constraint in the equation of motion of C,,,? in fact produces the
Bianchi identity for Jwpo' = Flup0- In the relativistic case, with the Riemannian parametrisation
(9.8) of the generalised metric (or its Euclidean version), we could go on to use the constraint to
eliminate J,,,,° from the equation of motion of C,,,%. The result would be the equation of motion of
the three-form C),, following from the decomposition of 11-dimensional SUGRA.

Now let’s consider the situation where the generalised metric admits the non-relativistic parametri-
sation . In this case, choosing the minus sign for x, the constraint implies that

vpo __ 1 VPOA]... A vpo _ 1 VPOA]... A\
VG EF"PT = — 4T s VGET g = €T B g (9.56)

So we can no longer eliminate F},, s in favour of F,,,,. This is clearly as expected for the MNC theory
for which the former indeed appears explicitly in the action and equations of motion (note it is related
to F, wwpo Via (10.30))). We therefore see that the ExFT constraint gives not only the expected constraint
that the original four-form field strength becomes self-dual, but also the duality condition with
opposite sign which is obeyed by the dual seven-form (6.47)). Thus the SL(3) x SL(2) ExFT contains the
expected degrees of freedom of the non-relativistic theory, and efficiently rearranges them into self-dual

and anti-self-dual parts automatically on the non-Riemannian parametrisation.
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10 Dimensional Decomposition of Non-Relativistic Action for
ExFT

Decomposition of R Consider the part of the scalar curvature R as defined in (6.23) not
involving the longitudinal metric, but just the transverse metrics Hyy and H*” and the measure factor
Q). In the dimensional decomposition used in exceptional field theory, the latter two factorise as

Hyy = UPUS Hys,  HP = (UH,A(UY),"H (10.1)
with 5.0 AJ G G
R v J _ 0 _ o w0
g 13 3 o — 1224 [ — .
U, (0 &J) , Hp ( 0 H) , H ( p HU) . (10.2)

Here G is the inverse of G, but HY and H;; are not invertible. The idea is to completely factor out
the matrix U from derivatives of G. Defining

0,Hyy = USULUSOH 5., 0,H7 = U2 (U7 (U )30 (10.3)

GAR

we have the relatively simple expressions

717 _ DuGup HleuAul Y2 aiGVp HklaiAul
8lep B <HleluApk DMij ’ aHWp - HjlaiApk 8,'ij (104)

DG —G" D, A" 3EF 0P 9,G"? —G"79; A"
GpgDHAgj DMHA;‘k: ) , OH’ = (—GP"@AJ 0, H% ) (10.5)

where D, = 9, — A,'0;. For instance, consider the following terms in the scalar curvature:

L G H e OH,” — L HWOH »OH s (10.6)
A fairly straightforward calculations shows that these equal
1G"D,G,.D,G” — LG"D,G” D,G,, — AG" G*" H;;F,,,'F,,” + 1G""D,H;; D, H"
+ LHY(0,G ,,0,G" + 0;Hu0;H™) — $HY 0, H" 0, H ; (10.7)
— 10, + HYH;;,) D, A,f0,G" + G" H" Hj,0,A," 0; A,

where F,,' = 2Dy, A,)", D, = 8, — La,, and acting on G, and G, we have D, = D,,.
Next, consider the part of R that involves 7:
LHM 037550577 + 1717 0,7350, HP? — L3770, HP 9575 — SH™ 0577 05736 (10.8)
Similar calculations to above give
%G“”DunijT” + g“”Tikaj&»Aul@lAuj — %TikajDMAykﬁiG“” (10.9)
+ iH”aiTklakal + %T”aﬂ'klaijl — %T”@H“@km — %H”aﬂklakm

The terms involving 7% 7;; on the first line here combine with the terms involving H** Hy; in the last
line of (10.7) and sum up to give 6% = H" Hy; + 7'%7;;, after which point the rest of the calculation
proceeds identically to that normally used in exceptional field theory.

Finally one has the terms

— Gﬂﬁéﬂ ln Q a; ln Q + 2(§ﬁ ln Q %,}ﬂp — 8118,;@‘19 - Gﬂﬁaﬂaﬁ ln Q (1010)
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where Q) has weight 1, and in the final two terms (‘1 = D#, 0; = 9;. Note D,In Q0= Du In —8,;A#i. We
let Q = Q4/|G|, where 2 has weight 1 under internal diffeomorphisms. Straightforward manipulations

allow one to rewrite (10.10)) in the decomposition and combine with ((10.7)) and ((10.9) After dropping
a total derivative, the final result is:

RO(H,#) = Rew(G) + RO(H,7) — LF,, F,,? GG Hy,;
+ iG“"(DHHijD,,HU + D#TijD,ﬂ'ij + D, In Q*D, InQ?) (10.11)
+ 2HY(9;G,,0;,G* + 9;In|G|0;In|G])
where
Rew(9) =31G"D,G,,D,G*” — 1G"' D,G* D,G,, — 1G" D, In|G| D, In|G]

10.12
— D, In|G|D,G* — G*"D, D, n|G|-D,D,G"" | (10.12)

R(O)(H, 7') = +}1Hij6irk18j7kl + %T”@im@jH“ - %T”@-H“Oﬂil - %H”@ﬂkl@km
+ 1HY9;Hyo; HY — LHY0; H* 0, Hy — S HY 0;ln Q*0;In Q° (10.13)
- &ln Q28jHij - (‘i@H” - Hij(?i@jln Q2 .

The measure factor is Q = Q,/|G|. To obtain an Einstein frame action, we let

2

G/u/ = Qigidg,uy . (1014)

Gauge fields The compact expressions ((9.4) and (9.5)) are equivalent to
Caop = (U AU (UC5, 5,0 Faogs = (U MU 205U )My s,

(10.15)
giving in components
Cijk = Cijr s Cuij = Cpij — Aukcijk’v
C,ul/’i = C,ul/i — QA[#]CI,}ZJ -+ A#jAVkCzjk s (1016)
Cuvp = Cvp — 3A[uicwﬂi + SA[uiAVij]ij - AuiAvjAkaijk )
Frnnpg = 48[mcnpq} ) 3 pmnp = D ucmnp - 36[m0|u|np]
Fl/mn:2D Oumn Fupomn+2amc v|n] »
" wCvlmn & £ Cp mC v in] (10.17)

Fqum = SD[#CVP]m + 3F[Wncp]mn - amCWP )
Fuypoe = 4D [uCl/pU] + 6F] [ul/mOpd]m )
where F,," is as defined in (9.3). The original Bianchi identity dFy = 0 becomes a set of equations

D MF mnpg = 4a[mF npq| >
2Dy Emnp = _38[m|FuV|np] — s Fymnp
3Dy Fopimn = 20 Fvpin) + 3F " Fopmn » (10.18)
4D wlvpolm = —OnLps + 6F 1’ Fpolmp »
SDFpeny = 10F" Fpoxm -

The above formulae are applicable to any dimensional reduction. In particular for the 11-dimensional
MNC theory they allow us to easily decompose the terms in the action (6.27)). For example, using the
Einstein frame metric to raise indices, the kinetic terms for the field strength are:

_ 1 frpaby fypebe rhasts cfula p I
M 2 HISS TR F o i ia Fonvaigig

= —5 QO e — SOV OO HI R, P (10.19)
. %QZ/(E)—d) Hinlequuikaleq . %HinlemnquF’ikmpF'lnq .

J
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Similar manipulations apply to the rest of the action. Let us also indicate how the factorisation applies
to an equation of the form 9;X#7?? = ©M, where X has weight 1, and both X and © admit a
factorisation via U~! in terms of quantities X and © independent of bare A,°. This is of course the
form of the gauge field equation of motion . After decomposing, one has the simple expression

DX 4 0 1 3G — @, (1020

Constraint The constraint (6.26]) decomposes in terms of the redefined strengths:

6
_ v V4 _ 1 Dy...0415k 1 A_B_C
\/§99 dgﬂl b gﬂ4 Fu1 va — T 4] e ! 6€ABCT: Tj Tk Fﬁl...194 )

4
o1 1% v ) 1 iD1...04pqr 1 A_B_C
\/EQ —dgtttt g 3H]FV1V2V3] = g€ e 6€ABCTp Tq Tr Forou s
92d M1V p2V2 TTE1J1 FT%272 1 pap2t1ialy...0apgr 1 A_B_C (10.21)
\/EQ g 4 H H Fl,ll,zjle = —g¢€ 6EABCTp Tq Tr Ffll...f/47
v 917 7 1  piq...i301...04pgr 1 A_B_C
\/Eglil THw H 3]3}7)}31]2]3 =—q 2 Ht--2301 ... Vapg €A BCTy Tq Ty Ff/l._,ﬁ4 ,
2
-0 1717 ) 1 41...5401...04pqr 1 A_B_Cr
\/EQ 9—d [ H 4J4FJU2J3J4 =—1¢ 1...9401...04pq Yeapery 1", F131...134 )
or instance, when d = 3 on e first of these is non-zero, giving:
For instance, when d = 3 only the first of th ,
v v v1...v45k 1 C
\/EQgNI T -QM 4FV1...V4 — eul H4V1 .. V4] EABCTZ 7'] Tk Fyl,,,]/4 ) (10 22)
_ 1 M1 4] ... Vs ’
- _IG QFV1...1/4 .
When d = 4 only the first two are non-zero:
v 1% 1 vy...v3ligk 1 A C
\/_959’“ 1 M4 4F1/1 = 3,6“1 Jravy...v3liy teapcT T Tk Fylyzygl’ (10 23)
= v 1% ) 1 iv1..v4pqr 1 A_B_C
\/§Q5gﬂ1 1 Ns 3 JFZ/1V2V3] 4'€N1 M3 ... V4 DG EABCTp T, Tr FV1...1/47
or if we take $€*e poTi TP, %hy = Q these are
Hivy #41/4 _ 1, pi.pavievsyl
\/—Q5g .. Fo v = 3me NE, vl (10.24)

1
nivi ,u3V3 1j _ 1 p1..p3vieva i)
V99 .. HYE,, vy = 7M€ WQ5F, ., -

Here H% = h'h/ (as it has rank 1), and so both of these are equivalent.

Result Putting everything together, the dimensional decomposition of the finite action S© is
50 = [ @1ty G Rualo) + Lun + Lo + L+ VT Lcs) (10.25)

Here, using ¢g" to raise (11 — d)-dimensional indices, we have
1 nv po 1 Ny po 1 uv 1 Ny
Roxi(9) = 79" Dudpo Dug” = 59" Dug™ Dpguo + 19" Dy lngDyIng + 5D, IngDyg . (10.26)

Lin = 3(D,HYD*Hyj + D, 77 D*7yj — 5D, In *D* In Q) + D, 7. 74" D"y P 75!

+ %HijFuikZGABcD“TjATkBTZC IHZ]HlequmkaMjlq
L1 2 N A kB IC . (10.27)
_Qg—d( — F, F"™ Hyj + FyuF* ™ eapotnm P17 — HY 1 Fym’kFle)

LOTarF,, F

ppt
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and

2
—d

Q9—d Ly = 1H” (09" 0;9, + 0;In g0; In g) + 1Q9 dO;(H7Q™ 9 )8 Ing
}lH ]@mlaﬂ'kl + iTijaiTklaijl — % ”@H“@km — %H”@ﬂklaﬂil
+ 1 HY 8, Hyu0;H" — $HY 9; H* 9, H
- i(gd__(jy J 0;InQ? — g%dﬁi InQ*9; HY
—ipi HlemnquEkmijlnq + LH™HI"F e apc T 7P 7'¢

+ LHIT AT 4Ty P

(10.28)

The term Lz consists of a sum of contractions of F Lo F wwpis €te. (following analogous redefinition of

the components) with the constraints as decomposed in (10.21)). For instance, when d = 3,

‘Cﬁ = ul u4(\/_QgM1V1 - “4V4FV1 B2 + %EMH'MVIMMQFVL--M) ) (10‘29)

In this case the relationship between the dual seven-form field strength and F uwpo Slves

LR iige = QU Fy o + 5/t F) (10.30)

When d = 4,

O 1 - 7 1/5 _Ai...\401...03 1 -
Li= -3 <qu2u3¢h — Qe a fggw1 .. .ggng,\ln_M) X

\ (10.31)
% <\/§Q59““’1 . #Sysh]Fllll/QVg] Q 1 6/~t1 p3VL. V4FV1 V4) ’
Using ((6.46)) we can rewrite ((10.31)) in terms of the dual seven-form field strength directly as
g 1 :
Eﬁ - +ﬁFH1...H3ijkl€z]kl (\/59_59“11/1 s 'g'uSVShJFI/leVBj - %6:“‘1'“.“‘3”1~NV4FV1.“V4) : (1032)

Finally, the Chern-Simons term can be worked out by taking wedge products of (9.5 and (9.4), we do
not display this explicitly.

11 The SL(5) ExFT and its Non-Relativistic Parametrisation

In the d = 4 case, more of the degenerate Newton-Cartan structure is preserved.

Elements of SL(5) ExFT For d = 4, generalised vectors VM = (V% Vj;) transform in the 10 of
SL(5), with 4,7,... now four-dimensional. This representation is the antisymmetric representation,
and we can see this more clearly as follows. Let M, N, ... denote fundamental five-dimensional indices
of SL(5). Then we can equivalently write a generalised vector as carrying an antisymmetric pair of
such indices, VM = VMV = _VyNMand on writing M = (i,5) we can identify V® = V? and
Vi = Leky,, . The generalised Lie derivative acting on vectors of weight Ay is explicitly

LAV = GAPQ0pQV Y 4 20p APMVAIC 4 5 (14 Ay + w)Opo ATV (111

The section condition is MNP, , ~NOpo = 0, and below we work with the M-theory solution, where
splitting M = (i,5) the derivatives 0,; are viewed as identically zero, and the derivatives 0;5 are
identified with the 4-dimensional partial derivatives.
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In this case, the generalised metric admits a factorisation

MM,/\/’J)Q = —(mMmeN — mMQmpN) (112)

where the ‘little metric’ ma s is symmetric and has unit determinant. The overall sign in this expression
needed for the ExF'T action to reproduce SUGRA correctly when we include timelike signatures in the
generalised metric, according to the conventions of [40].

The gauge fields, A", By, Cuwp™ and Dy, p0 0 have weights 1/5, 2/5, 3/5 and 4/5 respectively,
with field strengths denoted FMVM s HuwpMs .ZWPUN and K, p0an. Under generalised diffeomorphisms,
FM transforms as a generalised vector of weight 1/5, while # and J transform via the generalised Lie
derivative acting as

LaHm = 2A20poHm + HpomoAT2,  LaTM = 0pg(AATRTM) — 9po APM T2 (11.3)

They obey Bianchi identities:

3D[u]:1/p]MN = %eMNPQKaPQHWp/C ) (11.4)
4D[uHup0]M + %EMNPKﬁ-ﬁ;AVNP-FpU]KE = a./\/'./\/ljul/poNa (115)
5D[,u\71/po')\]M + 1OﬁyuMNHpoA]N 3 MNPQK@N’P]CNWJU)\QIC . (116)

The dynamics follow from the variation of an action S = [ d"z d'%yLespr where Legpr has the same

form as (9.16)), with Rey again as defined in (9.17)), and [65]
['kin = +%’DHMMN'D“MMN - %lMMN.FW,Mf‘uVN — %TTLMN,HHVPMH”VPN (11.7)

Ling(m, ) = MMV 0y MELON My, — LMMN 9y MELG My + 200 MMN Oy Ing]
+ LMY (071 g, On g™ + Onr In|g|On In|g]) .

The topological term can be defined via its variation (again up to a choice of sign equivalent to changing
the sign of C in eleven-dimensional SUGRA):

(11.8)

_ 1 MN MN
6£t0p - _ﬁem " (25“4u1 HM2N3/‘«4MHM5,U«6N7N + GFHIMQ ABM3M4MHM5u6M7N

(11.9)
ONMACps ™ jM,.,MM) .

We refer to the original paper [65] or the review [45] for explicit details.

Review of 11-dimensional SUGRA embedding We start with the little metric, may. The
parametrisation reproducing is

o 101720 —|o| " 2guCr (i = L ikl 11.10
? (_W_l/ngjkck ‘¢|1/2(_1)t+|¢’_1/2¢k10k0l ’ = 3¢ JKL - (11.10)

For the gauge fields, we can again identify AM (A CW) However, we already require dualisations
when treating the two-forms. We get four 7- d1mens1onal two-forms, C’W and a single three-form éuw
The latter can be dualised into an extra two-form, C’W (1dent1ﬁable with the components C,MJM of the
six-form in eleven-dimensions) such that By, ~ (Coui, Cm,) gives a five-dimensional representation

of SL(5). Meanwhile, we can view C;wp together with the four four-forms wam]k as comprising the
conjugate five-dimensional representation. The equations of motion of the SL(5) ExFT then imply
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that the field strengths of these two- and three-forms are related by duality. This involves the seven-
dimensional Hodge star acting on the seven-dimensional indices and the generalised metric acting on
the SL(5) indices:

\glmMPHPp = —%e”“p"l"'”“jﬁ“m/\’l (11.11)

Again, the field strengths are all tensors under generalised diffeomorphisms, we may make the (usual)
identifications consistent with the Bianchi identities [45|

i5 i ij 1 ijkl/ T A fom
Fm/ :Fuua FMVJZQEJ (FMV’{IZ_C]{IZMFMV )7
n 1 _ijkl/ 1 n A
lem’ = _Fuupi ) pr5 = —u¢ ! (prijkl - 4FWpiCjkl) ) (11‘12)
5 - i 1 _ijkl/ T A B
Twpe” = —Fuvpo s Twpe' = +3€ P (Fuvpogrt — CiraFlupo) -

Generalised metric The distinction between Riemannian and non-Riemannian parametrisations
can be seen at the level of the unit-determinant five-by-five little generalised metric. For an M-theory
parametrisation, this can be written as:

mi;  Mys
mMjs Mss

MmN = < ) s M55 det(mij) - %mz-5mjg,eiklmequrmkpmlqmmr =1. (1113)
If det(m;;) # O this leads to the Riemannian parametrisation (11.10) encoding a four-dimensional
metric, g;;, and a three-form, Cj;,. However, we can also have det(m;;) = 0 with m,; of rank 3 and
this leads to a non-Riemannian parametrisation which was worked out in [40]. We can rediscover this
parametrisation by taking the non-relativistic limit of (11.10) using (9.28). The resulting expression

for man is

1 kl A_ B_C k

iy = Q45 7ij o™ eapem™mn T” —TiC0 Ny g
M %ijeklmnEABchATmBTnC - TjkC’“ 7,;C'C7 — %ejklmeABcHikaAnBTmCC’ ’ '

in terms of four-dimensional Newton-Cartan variables and C! = %e"jlejkl. The unit determinant
constraint implies that

_ 1 ida edar o .. — (2
3r€ € 7—11317—123271333}11434 =07, (11'15)

which is the definition of Q? in this case. As H;; has rank 1, we can introduce a projective vielbein h;
such that H;; = h;h; and we take

%eijkleABCTiATjBTkChl =Q, (11.16)

choosing to fix an arbitrary sign (by sending 774 — —7;* if necessary) which could appear here () is
assumed positive). Then ((11.14) can be written as

> —Qh: — 7.0k
Tij Qh; — 1;,C )7 (11.17)

— (O)—4/5 o 4
M = € <—th — 7xC* 7, CICT + 2R, C1

which in this form can be checked to correspond to the parametrisation written down in [40] from first
principles. Note that the boost invariance, acting as

Shi = WAATa, 00 = —QAAWT ., TaAP =0, (11.18)

corresponds to a shift symmetry of the parametrisation (11.17) pointed out in [40]. This generalises
the Milne shift redundancy of the DFT non-Riemannian parametrisation [35]. Here we introduced the
inverse vielbeins h* and 7¢4 obeying the obvious relations

hh' =1, a4+ Wh;=6:, Tahi=0 7 =0, 7477 =65. (11.19)
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The generalised metric in the 10 x 10 representation followng from the little metric (11.14) can be
seen to take the form ((9.29)), after rewriting in the basis where generalised indices run over vector and
two-form indices, and using the identities

Ez‘1...i3k€j1...j3l7_kl _ _3 QQ(le[i17i2|j2\Hi3]j3 + a2l pielgsl prislin - 7_j3[¢17_i2|j1|H¢3]j2) ’
giiskin sl fr, = 3] 2l pialial islis] (11.20)
It is useful to record the explicit expression for the inverse little metric:
i _90-1pt0d)  _Q-1p
MN _ s (T = 2Q7°HA0C
m Q ( -1 0 . (11.21)

Clearly, variations 0m™V with ém® # 0 do not preserve this parametrisation. This means that if
we look at the equations of motion Ry = 0 of the generalised metric, we expect that Rss = 0
provides an additional equation of motion that we would not find by varying the action evaluated on
the non-relativistic parametrisation.

Field strengths and self-duality in SL(5) EXFT Our field strengths (11.12)) are now

fuui5 = Fpul ) fm/ij = % ijkl(F#Vkl - CklmF“Vm) ’
Hyuwpi = —Fuvpi s Hpuwps = _Iewkl<FMVPijkl B 4FN”PiCjkl) ’ (11.22)

j;u/pO'E) = _F;wpa ) jw/pa = + . Z]kl(Fquajkl - C]k’lFlU/pO') .
The kinetic terms ((11.7)) in the SL(5) ExFT action are:

1 M N 1, MN

102/5 i j ABC -k i i . JC 1kl
= _ZQ / (Hiij/lFuVj — € TiATB]TC FMVZFHij + TévT] H FNVikF#le) (1123)
1 H4/5 15 v 10—-1/5 i vp 1 _jklm
_EQ/ TIEMPE i + 10 /5p, prve, LeMm g o im

which match exactly the corresponding terms in and , including the appearance of
components of the dual seven-form field strength.

We see again that the ExFT description automatically contains the correct dual fields to reproduce
the non-relativistic action immediately. It’s worthwhile to go into some detail about the appearance
of dual fields in the relativistic case. As mentioned above, the decomposition of the 11-dimensional
three-form in the (7+ 4)-dimensional split produces four two-forms, Ouuz and a single three-form, C’Wp
We exchange the latter for an additional two-form, C’W, in order to obtain the five-dimensional SL(5)
multiplet By = (C’Wi, é,uu) This is normally done by introducing the two-form into the action as a
Lagrange multiplier enforcing the Bianchi 1dent1ty for F#,,pg When this is done, the terms involving
F4 in the action are schematically F4 A *7F4 — C’g (dF4 +...)+ F4 A X3, where X3 denotes whatever
appears alongside F} in the decomposition of the Chern—Slmons term. Integrating by parts one defines
a field strength H3 ~ dCy + X5 and treating F, then as an independent field, one can integrate that
out of the action to produce a kinetic term for H3. The latter is then the M = 5 component of the
ExFT field strength H,,,0, and in this way the ExFT action matches the partially dualised SUGRA
action.

In the non-relativistic theory, there is already no kinetic term for Fj in the decomposed action, as
seen from . It only appears (linearly) in the constraint term , schematically in the form
Fy N (*7]54 + F3;h"). So instead if we carry out the same procedure, we find that F; equation of motion
sets Hy = *7ﬁ4 + ﬁgihi, which in this case exactly corresponds to the relationship between the dual

62



seven-form and F} as expressed by (6.46). Hence now it is this Hj that we identify with . via
the above arguments. All this exactly mirrors what happened for the SL(3) x SL(2) case.

We finish with a brief look at the equations of motion. The field strength J,,,, of the gauge field
C,wp only appears in the topological term. This gauge field also appears in the field strength H,,,. Its
equation of motion has the form 0N = 0 where

euup./\/l = \/gmMPHuupp + %Euzzpol...m;jalmml./\/l ) (1124)
Meanwhile the equation of motion of B, o is
Dp(\/EmMN’H“””N) + %ﬁMPQ’CEaPQ(\/EMICE,IC/L/}WV]C/D) . %Guu)q‘../\5./—_-)\1)\2/\/(/\/'7_[)\3.”)\5/\[ —0. (11'25)

The M = 5 component combines with the M = 5 component of the Bianchi identity (11.6)) to give
D,0"P5 = (. Hence we integrate and set 0**#M = (. Let’s examine the content of this constraint.
Firstly, the 6#?> component implies

O Vo ghi prve; — Lo = (11.26)

This is the 11-dimensional self-duality constraint (6.26) on the transverse part of the four-form field
strength, here decomposed as in (10.23)). Secondly, setting §#*?* — C'9**P> = () and projecting gives

VIV IRy T T A Fyy i = 0,

, - 11.27
\/594/571AFMVpZ‘ . %6“”’301"'047{4 %EWMFUL..UQM —-0. ( )
The first of these is part of the self-duality condition (6.47)) obeyed by the totally longitudinal part of
the dual-seven form. The second is part of the duality between the partly longitudinal four-form and
the rest of the seven-form. We see again that the ExFT rearrangement of degrees of freedom exactly
captures the novel features of the eleven-dimensional non-relativistic limit.

12 The Extremal Nature of Exotic Branes Actions

In this research article, assuming the existence of some isometry directions, we construct effective
actions for various mixed-symmetry tensors that couple to exotic branes. We consider the cases of
the exotic 53-brane, the 1$-brane, and the Dp;_,-brane, and argue that these exotic branes are the
magnetic sources of the non-geometric fluxes associated with polyvectors %, g%  and ~4¥7-»,
respectively. As it is well-known, an exotic-brane background written in terms of the usual background
fields is not single-valued and has a U-duality monodromy. However, with a suitable redefinition of the
background fields, the U-duality monodromy of the exotic-brane background simply becomes a gauge
transformation associated with a shift in a polyvector, which corresponds to a natural extension of the
B-transformation known in the generalized geometry. Here we study the case of exotic super p-brane.
The contribution of the boundary terms in the variation of S, is given by

6S,|r= ]{dsup“YAGAE(SYE, (12.1)

wipz...p- Here, we consider the variational problem with the fix initial (7 = 7;)

and final (7 = .Tf) data, so the integral along the super p-brane profile for 7 = (7;, 74) does not contribute
to 5Sp]p

Where dSV = Z%g”ﬂllLQH.y,pdS

/ ds.p"YAGrz6YE| = 0. (12.2)
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As a result, the variation d.Sy|r is filled out by the integrals along the p-dimensional boundaries of the
brane worldvolume containing the 7-direction

s (12.3)

6S,|r= 22" / ds;ip' Y2 Grz0Y=

s
In the case of variational problem with free ends, when the field variations on the p-brane boundaries
are arbitrary, the vanishing of these hypersurface terms in 0.5,|r gives the super p-brane boundary
conditions. As shown in the current literature, the Wess-Zumino term of the 53(34567,89)-brane
action (smeared in the isometry directions, z® and x°) can be written as

9

2 da® A da? fiz2 n° g

9% :_Mmsg/ B A _ 3 / 5®

W ” Mox1z, o (2mRg)(2m Ry) (27 Rs) (27 Ro) Jagxrz,
= — s /5@ A (z— X(€) (n®: number of the 535(34567, 89)-branes) (12.4)

) = nPPn 52 (2 — X (§))
B (27 Ryp,) - (27 R,)

<§p1"'p” (x — X(&) dz' Ada®, nPrPr e Z) ,

where we used Mg the worldvolume of the 53-brane, and the Ramond-Ramond fields and the worldvol-
ume gauge fields are turned off for simplicity. Now, let us consider the dual action which additionally
includes the Wess-Zumino term

- ~ 1 _9F s~ = ~ ~ ~ 1 7 ~ik ~7i ~
S1Gijs &, B8] = CTER /[e ?(FR+4dg Axdo) — 2 e g* G QY N QLY
10 ) (12.5)
~ g [ 588 A8 - X (6).
Taking a variation with respect to 51(,83, we obtain the following equation of motion:
L qgura_ Fof nP982(z — X (€)) dat A da?. (12.6)
2kt (2mRp) (27 Rg)

From (12.6]), we conclude that the current for the 53(n; - - - ns,mymsy)-brane (in the absence of the
Ramond-Ramond fields) is given by

. (27 Ry, ) (2T Ry ) i
*]5%(n1..~n5,m1m2) - 21{1%0 H52 2 dQ(l) 1ma2 . (127)
2

According to the Wess-Zumino term of the 5%(34567,89)-brane action (smeared in the isometry
directions, 2® and 2°) is written as

S5, = — s / /B A6z — X(€)), (12.8)

where the B-field, the Ramond-Ramond 0- and 4-forms, and the worldvolume gauge fields are turned
off for simplicity, and §%°(z — X (£)) is defined in (12.4)). As in the case of the 53-brane, if we consider
the action

- ~ 1 o0 = ~ ~ ~ 1 7 ~ik ~7i ~
Sl 6.4 = g [ [ GR+4d00345) - 5 & 5§ P £GP
10 (12.9)

1
~ 1 [ 598 A - X(©),
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and take a variation with respect to ’yl(ﬁi, we obtain the Bianchi identity for the P-flux with a source

term:

—d )pa _ Hs3

2 1 2
2% GRSy "o~ X () da’ Ada®. (12.10)

As in the case of the S-supergravity, we can further find a solution corresponding to the (Euclidean)
background of an instanton that couples to v electrically. The explicit form of the background fields
is presented.

We have presented various actions with the following form:

2(at+1) ¢ ) o o
)' 911]1 o Gir it Q( Jirir—p A % Q( )jl"~j7p:|

2(7-) (12.11)
where Qa7 = dA"7-» i a non-geometric flux of which an exotic brane acts as the magnetic
source, and « is an integer. A list of non-geometric fluxes and their magnetic/electric sources.

The equations of motion are given by

S[Gij. @, A“"'“*P]zL [ ¢ (% R+4dgAk dg)—

2
2K70

~ ~ .~ o e2(at2)é . i
R+ 4(V’8Q§ ZJ @(b 8J¢) +1)(7——p)' Qijl J7-p Q J1edrp — 0, (1212)
5 = o 7 (at2)
Rij +2V;0;¢ — 22(7—? (szl K Qipyokr, — (T =) Qi 2 W72 QR
_OCT'F? Q li-lr—p lel"'l7—p gu> = (:)7 (12.13)
9 9 — 92(at)d ~ _
dQEl.)..in =0, le.)”i?ip — o2(at1) o Givi " Girpin_y QW) ji-jr—p dA“ i (12.14)
If we regard the dual potential Agf?.,i7_p as a fundamental field, the dual action is given by
]. 72¢ ~ ~
Slgi, &, AL ] = g | [ GR+4dpA%de)
10
pomi 1215
_2(7— )'911__ g PdA“ AN d‘AJl Jr—p |
where we defined @ = —a — 2. We can add the Wess-Zumino term of the exotic p”*-brane extending
in the z™', .- -, x"-directions and smeared over the x%', - .-, x57-r-directions:
NSt ST—p dzSt A - AdaS7r
SWZ = — U, 7-p / LAgs?._s A
P-a m,% » Mp+1><T51 s7_p (7 _p)! per (27TRS1) T (27TRS77p)
= 1 /(7 —p)! FAGL ., N O (2 = X(€)). (12.16)
Then, taking variation, we obtain the following Bianchi identity as the equation of motion:
NSt ST-p
> A5 57 = 2k], 7 6 (x — X(€))dat Ada?. (12.17)

(27Rs,) - (27 Rs,_,)

If we choose n®"%-» = 1 and integrate the equation, we obtain

2o 1 Tr
d2As STy = o= 12.18
O Rt = e -
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where we used A% 7= = p; . From this relation and the value of o given, we can confirm that fu,7-»
is indeed equal to the tension of the exotic brane:

2R )+ (27 Ry M 7
/,L Tep = U( ™ 1) ( ™ 7—p) — P_q , (1219)
Pea (27ls)7 s g2 (27Ry,) -+ (27 Ry, )
where we used 2x%, = (27l,)"ls;¢?. Tt will be also important to investigate a reformulation of

the effective worldvolume theory of exotic branes by using the newly introduced background fields

(Gij, ¢, A=), More generally, it will be important to find a manifestly U-duality covariant formu-
lation for the effective worldvolume theory of exotic branes.

13 Wess-Zumino Actions of Exotic Branes

We considered the general solutions of the equations of motion in the simple model of closed and open
tensionless superstring and exotic p-branes. Using the OSp(1,2M) invariant character of the differential
one-form YAG=dY = and two-form dY*G=dY = one can construct more general OSp(1,2M) invariant

super p-brane actions with enhanced supersymmetry. At first, we note that the closed 2n-differential
form an = (GAECZYA VAN dYE)n

Qon = d A Qan_1) = Ga,z, dYM AAYZU A LA Gz, dY M AdY = (13.1)

nen

which is not equal to zero, because of the symplectic character of the supertwistor metric G=, can be
used to generate the Dirichlet boundary terms for the open super p-brane (p = 2n — 1) described by
the generalized action
S = Sop_1+ ﬁ(Qn—l)/ Qop,. (13.2)
M2n

Similarly to the open superstring case, the Wess-Zumino integral in ((13.2)) is transformed to the integral
along the (2n — 1)-dimensional boundary Ms, 1 of the super (2n — 1)-brane worldvolume

/ Qyy, = f Gaz, YN ANAYEUA L AGy, 2, dY M AdY =, (13.3)
May, Map—1

The sufficient conditions for the vanishing of the variations of the integral (13.3) with the fix initial
and final data are the conditions

OYM7,0)|gicor=0, (i=1,2,...2n—1) (13.4)

generalizing the Dirichlet boundary condition. Therefore, this open super p-brane is described by the
pure static solution .
YAr,0) =Y oY), (i=1,2,..,2n—1) (13.5)

generalizing the superstring static solution. On the other hand the integrals (13.3))

Son—2) = ﬁ(gn_z)/ Qop1,

Maon—1

Qon1 = Gp,z, YMAY = A LA Gz, dY M AdY=n (13.6)

nSn

can be considered as the OSp(1, 2M) invariant actions for the new models of super p-branes (p = 2n—2)
with enhanced supersymmetry. For n = 1 we get the known action for superparticles, but for n = 2,3
we find the new actions for the supermembrane

52 = 62 /]W Qg = BQ/deQO' €#VPYA8HYA8VYE(9PYE, (137)
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or a domain wall in the symplectic superspace, and for the super four-brane
S4 = 54/ Q5 = B4/d7’d40' 5’“’"’\¢YA6HYAGVYE@YEQ\YZ%YE. (138)
Ms

When the Wess-Zumino terms are considered as the boundary terms generating the Dirichlet bound-
ary conditions for the superstring and super p-branes the breaking of the Weyl symmetry is
localized at the boundaries. It shows that the spontaneous breaking of the OSp(1,2M) symmetry on
the boundaries is accompanied by the explicit breakdown of the Weyl gauge symmetry on the bound-
aries. Because the Dirichlet boundary conditions are associated with the Dp-branes attached on their
boundaries, a question on the action of Dp-branes in the symplectic superspaces considered here ap-
pears. It implies the correspondent generalization of the proposed Wess-Zumino actions. One of the
posssible generalizations is rather natural and is based on the observation that the Weyl invariance of
the considered Wess-Zumino actions may be restored by the minimal lengthening of the differentials
d — D = (d — A), where the worldvolume one-form A is the gauge field associated with the Weyl
symmetry. The covariant differentials DY* are homogeneously transformed under the Weyl symmetry
transformations

(DY®) = ((d = A)Y™) =e*DY™, A= A+d\ (13.9)
Then the generalized OSp(1,2M) invariant two and one-forms

(e?DY*G5=DY=) = e’ DY*Gx=DY=,
(e?Y*Gs=DY=) = Y >G5z DY = (13.10)

become the invariants of the Weyl symmetry also, where the compensating scalar field ¢, with the
transformation low

¢\ =6 —2), (13.11)
was introduced. Then the closed 2n-differential form 2y, = (GazdY ™ AdYE)" may be changed by the
Weyl invariant 2n-differential form Qy, = (e?GA=DY* A DY=)"

Qon = "Gz, DYM ADYEL A A Gy, =, DY A DY®", (13.12)

nsn

and Q2n—1 by Q2TL—1 5
Qon_1 = ™Y A DY), A ... ADY* ADY,,. (13.13)

As a result, the actions (|13.3)) is transformed to the new super (2n — 1)-brane action

Sen-1) = ﬁ(znn/

Qo = Bian_1) / e"?Gpz, DYM ANDYE' A . AGy, =, DYM ADYE (13.14)
M2n

invariant under the OSp(1,2M) and Weyl symmetries. Respectively, the action

San—2) = Ban—2) / Qo1 = Ban_2) / e"’Y™M A DYy, A ... ADY™ A DYy, (13.15)

Map—1

will describe a new OSp(1,2M) and Weyl invariant super (2n — 2)-brane.
These actions may be presented in the Dp-brane like form

(p+1)

S, =5, / drdPoe 2 ¢\/ |det[(8, — A,)YAGA=(8, — A)YE]|, (p = 2n — 1), (13.16)

where Bp is the Dp-brane tension. We generalized this model to the higher orders in the derivatives of the
Goldstone fields and constructed the new Wess-Zumino like actions supposed to describe tensile exotic
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p-branes. It was shown in deep detail, that the bosonic couplings described above were consistent with
all the linear couplings of closed superstring background fields with higher-dimensional supergravity
theory including exceptional degrees of freedom of multiple D-branes. These couplings were originally
computed in the current literature and then extended to Dp-branes with using T-duality symmetries.
We will review the illustration of the general formalism with presentation of the Wess-Zumino term for
multiple D-branes that is required to do such matching

Sz = EZ/Tr [LP/\ (DH + A(Es) (DY) A B) — A(Es) (Q)<U)/\B+%D(R>/\B/\B)
1 1
—A(Zs (Q) /\B+2D /\B/\B+6D(R)ABAB/\B)/\$AQ)(Z)

1 1
Pz /\B+6D(R)/\B/\B—|—24D()/\B/\B/\B)/\QH\Q)(Z)

/—\

DONG+DUIANGA KB — DI A KB _ DI A KR /\G/\KT))

+A(Zx) (Q)(T +BADY) — DV ANKB NG - BAG+ DY) A KT A KD

—(DW) 4 D /\B)+B/\L(Z)+D(5)/\B—B/\L(R)/\G+Q)(S)/\G/\L(W)
—AEs) (B— DD ADE AL A LV)) 4 (9300 - 13 A DE A DS A L(Z)>
+ (DM + DS AB) A LB 4 (Q)(W)+D(S)/\B/\LW)/\L NALPDAG
+(Q)(W)+D(S)ABAL”U/\G+Q)<W>+D(5)/\BAL<Z>AL(R /\G> ALY
_A(Es) (D(W) +DOAB—BALR 4 BALRAG+ DO ABA g) A L®)
+ (D) + DS AB) A LB + (D) + DOANBALINLVN)YALE A G

+ (’D(W) +DOABA LB NG+ DV ABA LD A G) AL A LD (13.17)

14 The Higher Dimensional Effective Actions of Supergravity
with Fundamental Newton-Cartan Membranes

In the current consideration and review, we aim to build a higher dimensional theory of exceptional
supergravity with included backgrounds, superstrings and fundamental supermembranes existing in
D-dimensional spacetime supermanifolds. In addition, there is a real hope of exploring the inter-
play between higher-dimensional supergravities, superstrings and membrane theory. These are strong
motivations to understand the fundamental nature including extremal interactions of supergravity the-
ories plus their associated theoretical framework and mathematics more deeply. In this Chapter, we
describe the construction of higher-dimensional effective actions of exceptional supergravity in back-
grounds with superstrings and membrane models in the variant of bulk and brane systems. The special
type low-energy effective interactions in D-spacetime dimensions are considered included in supergrav-
ity backgrounds with the participation of superstrings together in superfield representations for the
construction of global dual symmetries presented in the theoretical framework.
The higher-dimensional effective action of bulk and brane system is

Sr = /le‘\/ —GRLuyuck + /dDI\/ —GRLBRANE (14.1)

68



The local moduli space MVT for the special higher-dimensional supergravity with an exceptional
bulk and brane system is

Mr(Ag) = {MW\A(A[E]) ® Mrm(Ag) ® MHM(A[E})} ® Mprave(Ag) (14.2)

Analogous to the previous solutions we present the higher-dimensional effective action of an excep-
tional supergravity with a Newton-Cartan fundamental membrane

Spaune ~ Sp + AV (HA> Spne ~ / AP/ —GR Lsygrn + AV (HA) / AP/ —GRL e (14.3)

The bulk and brane system in the supergravity moduli space is combination of the bulk lagrangian
Lp, brane Lgr, hidden brane lagrangian L5z and the brane fields coupling action Lgre expressed
with the equation

Smp :/dDa:\/—QR£3+/de\/—QRﬁzsRJr/dDSUV —QR£HBR+/dDSUV —GRLpre (14.4)

The main goals of this article are to clarify, on general superstring-theoretical grounds, which duality
symmetry we should expect for the effective spacetime theory of the massless fields to any higher order
and to exhibit this symmetry in a manifest form. We shall consider a general set of external states
subject to the condition of independence of the D spatial coordinates, we shall work in a special
supergravity background left invariant by a large subset of the duality symmetries.

The background solution of the field equation for the metric depends essentially on the presence of
the leading quantum correction to the CJS action, so the presence of that term has to be taken into
account in studying the Kaluza-Klein modes of the metric. Then we have the tensor

_ =JL
A =T Tk =G (D1Xkr + D> — Dr¥rk) (14.5)

where the standard Christoffel connection is I';7 ;¢ = %QJL (D1Grk + DkGrr — D1rGik), and the modi-
fied Riemann tensor for the metric G;; is defined by

7:31JKL — RIJKL + DJAJKL — DJAIKL + AIKMAJML — AJKMAIMLa (14.6)
We then find

_ = _ =0T = _
ExR — ZxG R/ ;~ Ex <R +XR =21 Ry + 28k Xk Ry + 25 kX Rk

1
—2Y kX Ry — X120 R + §2HEJJR —D¥1jDrXry + 2DrXk Dy sk
—2D1X 1y DyYkk + DX DXy + 20X kX RisRiskr — DaDpPep

1
—2RacpPep + §HACEFHBDEFPCD — §gABHCEFGHDEFGPCD
1 _ — -
3 ExXivEgNHigkt Hunkr + EsXNN [BA]A5 +ExXKkK [BA]A,?), (14.7)

where designation ~» means up to the addition of total derivative terms, and the identity used in the
previous expression is

ExDrX kDX ~ ZExDrXigDid x — SExXix Xk iRy + ExXik X Rk
—EsDrX kDX +2ED Xk DYk —2E25DrXr DYk

+E5Di YDk + 2B kst Ry RIIKL
1 _
~3 ExXimE N HisktHunkr (14.8)
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The new definition of the three-form field strength is
Hunt = 0,Buar — 0,Buns + 3Aunp VN VF, + 4AZNB[HPVNV] + 4Q§4NAI[MVNV]
—%AIH]:IV,\ - %VMMHU)\M — %BMMVMU)\ + %AMNPVMuVNuVPA
— QAL VM VN = ANpBuw VYV — AT F L — Pun VY
L F Al AL AL L AAT (14.9)
The elegant extension allows that the deformed gauge transformations indeed lead to the required

non-abelian gauge transformations in the higher-dimensional construction of heterotic supergravity.
The commutator of two deformed gauge transformations of the vector VM is given by the equation

[A£57 AﬁE]VM = AEE (gjzv,DNVM + (DMgZN - DN&%)VN - ggPMKNVN)
L VM — N TV VK — (2 0 3)
= (L. L VM — DN (EETY kpV") — (DMéoy — Dh&NEET cpV”
—ESTY kN (EEDpVY + (DVéap — Dpe VY — E£TV poV?)
FLe VY — N TV VE — (2 ). (14.10)
We build this exclusive section by introducing the modified or deformed gauge transformations.
Each O(D, D) index will give rise to rotation with the structure constants ' y . The O(D, D) indices
make the transformation properties exhibit and in the general case manifest. For an O(D, D) vector
VM and an O(D, D) elements including in the transformation we get elegant expressions with the
solutions. The transformation of H’; in involves an operation similar to generalized Lie derivative
differs from the conventional Lie derivative by terms that involve explicitly the O(D, D) metric in

heterotic supergravity. For multiple indices the gauge transformation with generalized Lie derivative
is defined and constructed as

AH'y = ﬁg Gly = E5DH! , — DV Hpy + (DJfP - DP&)HIP +5DH,
—DKgI HKJ ‘|‘ DJSK H[K + DJgK HIK + DJfB HIB - Dng HIK + ﬁg H[J
) _ L 1
+(DJ§K - DKEJ) H'E + Dy H g+ Le 2+ AigDy AP + §~FIJAAA

1
2 (AADI A= AaDy AA) + & DA — DA + TV i (HPDPEN2K>

1
_ (EPDPEN _ EPDPEN) HK> — 5kt (EKELDMENHN _ IyDM (EKZL>
1
_EDMFNKLENZKHL> (14.11)

In the current literature exist various contributions to the modified gauge transformations of the
['-dependent terms. The resulting non-covariant terms can be accounted by assigning a fictitious non-
covariant variation of the structure constants to

ATMyi = —LDMyx = -DMepT yk — Dye T pic — D" T yp
1
1_ — <1E ~ _
+§:NDM (fPFNPKEK> - fNFMNK [:7 Ei| G - <£§FMNK> :,NZK
K
_eNpM [E 2} _[Eon (14.12)
r
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We construct the associated supergravity background-independent action that is T-duality invariant
and realizes the gauge superalgebra. The action is the sum of a standard action for supergravity,
antisymmetric tensor, and dilaton fields written with ordinary derivatives, a similar action for dual
superfields with dual derivatives, and a mixed term that is needed for gauge invariance. Superstring
field theory provides the constructions of complete gauge-invariant formulation of superstring dynamics
in higher spacetime dimensions around any consistent supergravity curved background, and provides
a platform for studying of the special symmetry called T-duality. The higher-dimensional bulk and
brane action for exceptional supergravity theory, can be organised and the solution is

1
St = /dN?J' d?Y /|G| <REXT(Q) + Liin +Lixr+ Lns+ Lare + Lint + /|G| ECS)
+Tp / "G5, DYM ADY= A LA Gy, =, DY A DY ="

— / dVz dPY /|G| <4HMNDMDNE — Dy DNHMY — AHMN D EDNE + 4Dy HMY DyE
1 1 1
g HMNDMHKLDNHKL - iHMNDMHKL DKHNL — QFMNKHNPHKQDPHQM)
1

A (0uBorr = 0,Byas + Bharp V™ V7, + 40T Bup V™) + 42 AT VY

+

AT F, - PMPVPW) (aMBVM — 0Bt + 3ManpVV WV, + 40T BV,
FAQ AV — A FT Y PgV) 4 1GMPGN (D + AT DAl )
+ EQMN <BWM — AT F L — PMPVP/UJ> (B“VN — ATy FIm — PNQVQW>

+ igMPgNQ (DuBui + AT DA ) ) (D Brg + A/ (pD" A q))

+ ZQMQQNRQPS (AMNP + QAI[MQA/p] - QPT[MA]%p]

— 10"V D,GuNG D Grg + TD'GVN D, G — 1D (0D, G )

— GunGPOGRSAM AN — 9GMN AL (A, + DHOD,d + i(D#QMN> (D“QMN)
_ %QMN <DMAIM> <DMAIN> _ }lgMPgNQ (DMBMN n AI[MDMAINO (DHBPQ
+ AJ[pD“.AJQO + ;1(3“510\ — %AI#]‘—IW\ — %VM;LHV)\M — %BuMVMuA

+ %AMNPVM,MVVW’A — Qb AL VM DN A%PBMMVNVVPA> (8“8”

_ %ALJ_—Z{A _ %VMNHVAM _ %BHMVMV/\ n %AMNPVMHVNVVP,\

_ Qg/[NAIuVMUVN)\ _ A%PBMMVNVVP,\) I %QMNDMAIMDMAIN

+ GMPGNO (i + Al RARy ) Qb + A5y ) + (€5DiH!

—DPE U ps + (DJgP - DP&)HIP DM, — Dl HE  + DyeR H
Dy HIK + DB M y — Dy HIK + LeHTy + (DJEK - DKEJ) HIE

+Tp / e"Ga, 5, DYM ADY = A LA Gy, =, DY A DY ="
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We now rewrite the higher-dimensional supergravity action in a form that is covariant under
O(D,D + K), where K is the dimension of the gauge algebra in the construction. This extremal
action is of the same structural form as that obtained by Scherk-Schwarz compactification of heterotic
supergravity truncated to the Cartan subalgebra. Moreover, it is closely related to that given in the
scientific literature, which considers group manifold reductions of heterotic supergravity including non-
abelian gauge fields and also displays the action with a formal O(D,D + K) symmetry. These are the
situations we have in mind, and we will simply speak of O(D, D + K) as the duality group. We finally
note that the action reduces to that found by Maharana-Schwarz, in which case the theory is properly
invariant under a global O(D, D + K) symmetry.

We apply our universal recipe of the preceding section to write the supergravity corresponding action
based on the moduli superspace construction. For the exceptional case of Membrane Newton-Cartan
fundamental system the appropriate higher-dimensional theory includes special bulk action Lz(X4 ), the

brane Z@R(E A) and hidden brane lagrangian Lszg (X4), the brane fields coupling action Lgg-(X4) and

hidden brane couplings term Lgu3,-(X4). The extremal solution of the higher-dimensional corresponding
action of exceptional supergravity for the Membrane Newton-Cartan fundamental system is

SMNC = A/ de\/QA RA EMNC(EA)+Z{/ dDZE\/—gAZ@(EA)—F/ de\/QAZQ;K(EA)
3a A ZA TA

+ /z de\/QAEmm(EA)Jr/E dPz/ —gAEfoC(EA)+/E dPxy/ QAE}[QBC(ZA)}

A 1
+ A / d’r /-G RA{TE + 5 X5 Dud DM+ Dy XM EL (X)) DN XVES (X)) Bac(Z)
DI

A

1 1
+ 5 UsDux DY 4+ Dy UMEL (U)Dy UV ES (U) Dac(B) + 5 25 Du¥ DMy,

+ Dy ZMEL(Z2)DNZNES (D) Pac(2) + - - } (14.13)

We construct a fully consistent and gauge invariant actions in higher-dimensional exceptional su-
pergravity with presence of backgrounds, superstrings and membrane interpretations in D- dimensional
spacetime supermanifolds realized in the theoretical framework. We discuss and surrendered the chal-
lenges involved in the advanced construction of the full higher-dimensional supergravities in modern
and constructive fashion. Our main results are both of purely fundamental and mathematical interest
and lead, from the physical point of view, to the construction of new realistic superstring theories in
supergravity backgrounds. We performed dimensional reduction of the higher-dimensional effective
actions and displayed the expected global symmetry on the reduced theory of exceptional supergrav-
ity. Nowadays, searching for superstrings in supergravity backgrounds directly related to fundamental
supermembranes has become a dogma for the theoretical physicists involved. The future of modern
theoretical and mathematical physics is dependent on the creation of higher-dimensional models in the
theoretical framework used in theories such as supergravity, superstrings and supersymmetric mem-
branes. Based on the methods developed in this advanced research, an alternative to the dimensional
reduction procedure has been presented in exceptional supergravities in D-dimensional spacetime su-
permanifolds with availability of curved backgrounds and a huge number of superfields in the presented
fundamental interactions. We have provided the general technical tools for the computation of higher-
dimensional heterotic supergravity theories with inclusion of supermanifolds, superstrings, backgrounds
plus fundamental bulk and brane systems. The main objectives of the current research in supergravity
theories are associated with the creation of a unified theoretical framework to explain and improving
the current state of knowledge regarding deep understanding of our elegantly designed world.
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15 Conclusion

Beyond the intrinsic interest in obtaining a higher-dimensional perspective on duality, ExFT is a very
powerful tool in understanding the geometry of superstring and M-theory backgrounds, both with a
view towards reductions — where it offers a way to efficiently characterise the properties of geometries
with flux, and leads to new methods to obtain consistent truncations to gauged supergravities in lower-
dimensions and towards expansions as it can be employed to obtain complicated higher-derivative
corrections in an efficient manner. Underlying these successes is the fact that the geometry of ExF'T
treats the metric and form-fields of supergravity on the same footing, rearranging all degrees of freedom
into multiplets of Ey4) in a form which is perfectly adapted to general dimensional reductions but
completely general so that it works regardless of background. Exceptional field theory is by now a
well-developed field with numerous interesting applications and outcrops. The selection of topics in
this review is of course based by the author own interests and ignorances and further by the limitations
of space, for all of which we ask for the understanding and patience of the reader. We hope to be able
to describe the general concepts and technical tools needed to understand and make of ExFT. From a
philosophical point of view, one might then wonder about the nature of geometry in superstring and
M-theory. Is the standard Riemannian geometry that physicists have lived in since Einstein the most
convenient language to capture the features of the backgrounds of superstring theory and M-theory? Is
there a better organisational principle that takes into account the menagerie of p-form gauge fields and
the branes to which they couple? In this review, we will try to answer these questions using exceptional
field theory. In exceptional field theory (ExFT), an Ey4) symmetry is manifest acting on an extended
or generalised geometry. Depending on how one chooses to identify the physical geometry with the
extended geometry of ExF'T, for each d, the Fyq) ExFT is equivalent to the full 11- or 10-dimensional
maximal supergravities. It therefore provides a higher-dimensional origin of U-duality, in which no
reduction is assumed, and on identifying the novel coordinates of the extended geometry as conjugate
to brane winding modes, ExFT offers a glimpse towards the geometry of M-theory beyond supergravity.

Comparison with the Gomis-Ooguri or SNC superstring The extremal behaviour we found
in eleven-dimensional supergravity can be seen to be extremely similar to that which happens on the
worldsheet for the Gomis-Ooguri or SNC string. This is exactly analogous to the result of the expansion
of the 11-dimensional supergravity action. Here the Wess-Zumino coupling to the B-field plays the role
of the Chern-Simons term, and the singular piece can be cancelled by imposing a sort of twisted self-
duality constraint. Normally one derives the finite part of the supergravity action by rewriting the
action in an equivalent form using auxiliary degrees of freedom, such that the limit can be performed
without singularities. After the limit, one finds these auxiliary degrees of freedom correspond to F,*,
and impose the chirality /anti-chirality conditions on the longitudinal degrees of freedom. This is also
what happens in the doubled sigma model approach, which starts with coordinates X and duals X ,
related by a self-duality constraint involving the generalised metric of double field theory. Taking the
SNC limit in this set-up then leads to the situation as above where the longitudinal X and X are no
longer related, but separately obey chiral/anti-chirality constraints. The doubled sigma model action
then reproduces the finite terms. This then is analogous to the exceptional field theory description of
the limit of 11-dimensional supergravity.

It could be conjectured that the appearance of (self)-duality constraints is a generic feature of non-
relativistic limits of theories with topological or Chern-Simons terms, as a requirement for cancelling
singular terms arising from the topological term against those arising from the kinetic term. Schemat-
ically given a Lagrangian £ ~ F' A xF + F A G with a non-relativistic expansion leading to a term
"F * (xF + @), then we would take xF'+ G = 0 as a constraint. It would be interesting to explore this
mechanism in other contexts.
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Subleading terms Our derivation of the MNC geometry made use of a field redefinition involving
the parameter ¢ which we then sought to send to oo and interpret as a non-relativistic limit. This
could be extended to a full non-relativistic expansion, including first of all further subleading terms in
the metric, with §,, = ¢*7 + ¢ 'Hy + ¢ * X, + ..., It is possible to check that doing so does not
affect the expansion of the action up to order ?, and it would be expected on general grounds 58| that
the first appearance of the first subleading terms simply re-imposes the equations of motion already
encountered (as we saw with C5 and the equations of motion of Cs). In addition, we could reformulate
the expansion by introducing additional one-form gauge fields (as for this case in [48]), accompanied
by a shift symmetry, such that the three-form C,,, does not transform under boosts. The resulting
more general expansion could then be attacked order-by-order without necessarily sending ¢ — oo or
truncating as we did. Here it would be interesting to compare with the approach of [53|, inputting the
eleven-dimensional three-form as matter. A complicating feature, relative to usual 1/¢ expansions of
general relativity leading to Newton-Cartan [51},52, /58| for example, is that the longitudinal vielbein
appears in both the metric and three-form and does so at different orders in c.

Supersymmetry and non-uniqueness of non-relativistic 11-dimensional supergravity We
limited ourselves to an analysis of the bosonic geometry in this paper. The supersymmetric extension
presumably exists and should be constructed. At the level of supersymmetric double and exceptional
field theory, the logic would again be that changing the parametrisation of the generalised vielbein is all
that is needed to arrive at the desired theory, and this seems to be possible without obstacles [57]. Note
that in this paper we started with a non-relativistic expansion tailored to the M2. There should be a
similar expansion based on the M5, in which we have six longitudinal and five transverse directions.
(This should reduce to the dual NSNS six-form expansion discussed in the conclusions of [27].) This
would then give a second non-relativistic version of 11-dimensional supergravity, so although this is the
unique maximal supergravity in eleven dimensions, this uniqueness would then no longer hold in the
non-relativistic setting.

Duality web and branes An obvious goal for which this paper should be useful is the study of
the spacetime actions for the non-relativistic duality web in 11- and 10-dimensions. This can proceed
both by applying standard dimensional reduction and dualisation to our 11-dimensional action, and
by applying similar methods to individual supergravities by taking covariant non-relativistic limits
associated to each p-brane present in the theory. Here, we performed a dimensional reduction to type
ITA, but we did not discuss the expected T-duality relationship to type IIB, for example. Similarly,
there is presumably a heterotic SNC which could be obtained by reducing non-relativistic M-theory on a
longitudinal interval, although it is not immediately obvious what the result of reducing on a transverse
interval should be. Note that the appearance of the original and dual field strength together in the
11-dimensional theory suggests that the appropriate formalism for describing generalisations of Newton-
Cartan geometries in type I should be the formalism where the RR p-forms are treated ‘democratically’
[59], accompanied by a self-duality constraint. Here the double and exceptional field theory formulation
may again prove a useful guide. Beyond the usual suspects, exceptional field theory also offers a way
to handle the vast number of mixed symmetry tensors that appear coupling to exotic branes [60,61]. It
may not be unreasonable to suggest using the Ej; ‘master’ ExXFT recently constructed in [55], as this
presumably provides scope to construct an infinite number of brane scaling limits. Here there is no need
to artificially split the coordinates and one can work with 11/10-dimensional quantities throughout,
albeit at the obvious price of dealing with a very infinite algebra. The ExFT description in this paper
demonstrates that the non-relativistic theory is also controlled by the same exceptional Lie algebraic
symmetries that appear in the relativistic case. A distinction can be made between these symmetries as
they are used in ExF'T and the actual U-duality symmetries present on toroidal reduction. As we saw in
section , U-duality transformations can ‘rotate’ between relativistic and non-relativistic theories.
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This is also the case for T-duality of non-relativistic strings [16]. A non-trivial U-duality, corresponding
to an SL(2) inversion transformation in the SL(3) x SL(2) case, acts on three directions in spacetime.
To make a systematic study of U-duality of non-relativistic theories, it would therefore be necessary
to consider U-duality transformations acting on 0,1, 2 or 3 longitudinal directions and to check which
of these do or do not take you back to a relativistic theory. The SL(3) x SL(2) ExFT description
of section only allowed for U-duality transformations acting on all three longitudinal directions,
while the SL(5) ExFT description presented in appendix [11| would allow for transformations acting on
two or three longitudinal directions. A precise group to consider would then be the Ege) case which
can accommodate all possible types of U-dualities acting on the MNC geometry, with some subgroup
corresponding to the strict U-duality symmetries of the non-relativistic theory. This analysis is left
for future work. Another interesting question is to understand the consequences of the non-relativistic
limit on the brane spectrum of M-theory and hence also of type ITA, after reducing. The ‘decoupling’
of the transverse components of F; and the longitudinal components F% presumably means something
at the level of the M2 and M5 branes coupling to the three- and six-form: the analysis of [62] should
be pertinent here. One could similarly enquire about whether the duality constraint in the type IIA
SNC theory can be seen at the level of the string spectrum resulting from the quantisation of the non-
relativistic superstring [63] Obtaining brane solutions of the non-relativistic theory, whether by directly
solving the equations of motion or using U-duality as in section is also an interesting question.
Interestingly, membrane solutions of 11-dimensional SUGRA with transverse self-dual field strength
were constructed in the research literature and perhaps can be adapted or used in the non-relativistic
setting. Even the ‘flat’ spacetime solution may have interesting properties including infinite-dimensional
isometries as for the superstring case. S-duality and T-duality transformations in the general case do
not commute. Combining them, we generate a larger group of dualities of the type II theories. This
is known as U-duality. It is a non-perturbative duality of the type II superstrings on a torus, and
hence also a duality of M-theory. The latter can be motivated by considering the strong coupling limit
of the type ITA superstring. As the ITA superstring coupling goes to infinity, an eleventh dimension
decompactifies, and we are led to conjecture the existence of an 11-dimensional M-theory, which when
compactified on a circle reduces to the ITA superstring in the zero radius limit. The 11-dimensional
radius R1; and Planck length [, are related to the 10-dimensional string coupling constant g; and string
length The action of U-duality on the backgrounds of type ITA superstring theory follow on applying
the reduction rules ??. Then we can further T-dualise to identify the corresponding transformations
in type IIB. In particular, the geometric SL(2) appearing when d = 2, for M-theory on a two-torus,
becomes the S-duality of type IIB. For M-theory on a three-torus, the type IIB S-duality is likewise
embedded in the SL(3) factor of the full U-duality group. Acting in more than three directions, there
are further shift symmetries possible. The U-duality group acting on a d-dimensional torus in M-
theory is then determined to be Ey4)(Z). This sequence of U-duality symmetries was first found in the
context of reductions of eleven-dimensional supergravity on a torus. They are the global symmetries
of maximal supergravity in n dimensions. As mentioned before, in terms of the supergravity action,
these global symmetry groups are real-valued. This is an important feature of duality: the reduced
supergravity will have a moduli space and there will be a continuous set of symmetries acting on the
moduli that take one vacuum into another inequivalent vacuum. However, an arithmetic subgroup
will leave the reduction space invariant and this will coincide with the duality group when taking into
account quantum charge preservation. Exceptional field theory is by now a well-developed field with
numerous interesting applications and outcrops. The selection of topics in this review is of course based
by the author own interests and ignorances and further by the limitations of space, for all of which
we ask for the understanding and patience of the reader. We hope to be able to describe the general
concepts and technical tools needed to understand and make of ExFT with supergravity and membrane
constructions. After developing the general theory, we will discuss some of the applications mentioned
above and refer to the literature for further details when necessary.
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