
Einstein Field Equations and Geodesic Equation
Paradox for a Gravitational Plane Wave Pulse

Colliding with a Mass

Karl De Paepe

Abstract

We consider a gravitational plane wave pulse colliding with a point mass. The path of the mass
can be determined using the Einstein field equations. We expect, for small mass, that this path
to be approximately a geodesic. We show this need not be the case.

1 Introduction

For a system of just a gravitational plane wave pulse and no mass let the metric be g̃µν(t−x) having
g̃µν(t − x) = ηµν for x > t. Require g̃µν(t − x) satisfy the Einstein field equations. For a system of
a point mass M at rest at the origin and no wave let the metric be ĝµν(x). Require ĝµν(x) satisfies
the Einstein field equations. Now consider a system of gravitational plane wave pulse colliding with
M . Let gµν(t,x) be the metric of the combined system of colliding wave and M . Require gµν(t,x)
satisfy the Einstein field equations. Define

h̃µν(t− x) = g̃µν(t− x)− ηµν (1)

ĥµν(x) = ĝµν(x)− ηµν (2)

hµν(t,x) = gµν(t,x)− ηµν (3)

Let h̃(t−x), ĥ(x), h(t,x) represent h̃µν(t−x), ĥµν(x), hµν(t,x) or first or second order partial deriva-

tives of h̃µν(t− x), ĥµν(x), hµν(t,x) respectively.
The exact Einstein equations

Rµν −
1

2
gµνR = −8πTµν (4)

can be written [1]

R(1)
µν −

1

2
ηµνR

(1)α
α = −8π(Tµν + tµν) (5)

where

tµν =
1

8π

[
Rµν −

1

2
gµνR

α
α −R(1)

µν +
1

2
ηµνR

(1)α
α

]
(6)

and

R(1)
µν =

1

2

[ ∂2hαλ
∂xµ∂xν

−
∂2hαµ
∂xα∂xν

− ∂2hαν
∂xα∂xµ

+
∂2hµν
∂xα∂xα

]
(7)

Indices on hµν , R
(1)

µν , and ∂/∂xα are raised and lowered with η’s. For example hν µ = ηναhαµ and
∂/∂xα = ηαβ∂/∂xβ. Computing tµν in a power series in h we have

tµν =
1

8π

[
− 1

2
hµνR

(1)α
α +

1

2
ηµνh

αβR
(1)

αβ +R(2)
µν −

1

2
ηµνη

αβR
(2)

αβ

]
+O(h3) (8)
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where

R(2)
µν = − 1

2
hαβ
[
∂2hαβ
∂xν∂xµ

− ∂2hµβ
∂xν∂xα

− ∂2hαν
∂xβ∂xµ

+
∂2hµν
∂xβ∂xα

]
+

1

4

[
2
∂hβσ
∂xβ

− ∂hσσ
∂xβ

][
∂hσµ
∂xν

+
∂hσν
∂xµ

− ∂hµν
∂xσ

]
− 1

4

[
∂hσν
∂xα

+
∂hσα
∂xν

− ∂hαν
∂xσ

][
∂hσµ
∂xα

+
∂hσα

∂xµ
−
∂hαµ
∂xσ

]
(9)

The first term of tµν is then quadratic in h.

2 Plane gravitational wave pulse metric

Define u = t− x and let the metric g̃µν(u) be [2]

ds2 = −dt2 + dx2 + [L(u)]2e2β(u)dy2 + [L(u)]2e−2β(u)dz2 (10)

having g̃µν(u) = ηµν for u < 0 and

d2L

du2
(u) +

[
dβ

du
(u)

]2
L(u) = 0 (11)

This metric will satisfy Rµν = 0. It is the metric of a gravitational plane wave pulse. Let L(0) = 1
and β 6= 0. We then have by (11) that L(u) will decrease and become zero at some point u0 > 0.
Consequently g̃22(u) > 0 for u < u0. Now choose a β(u) so that the resulting graviational plane wave

pulse has a bound B such that |h̃(u)| < B.

3 Proper Lorentz transformation

Consider a coordinate transformation from t, x, y, z to t′, x′, y′, z′ coordinates that is a composition
of a rotation by θ about the z axis followed by a boost by 2 cos θ/(1 + cos2 θ) in the x direction
followed by a rotation by θ + π about the z axis. For θ/π not an integer this is a proper Lorentz
transformation [3] having

t = t′(1 + 2 cot2 θ)− 2x′ cot2 θ + 2y′ cot θ (12)

x = 2t′ cot2 θ + x′(1− 2 cot2 θ) + 2y′ cot θ (13)

y = 2t′ cot θ − 2x′ cot θ + y′ (14)

z = z′ (15)

By (12) and (13) we have u = t − x = t′ − x′ = u′. Transforming (10) to t′, x′, y′, z′ coordinates we
get by (12)-(15) a metric g̃′µν(u

′)

ds2 =
{
− 1− 4[1− g22(u′)] cot2 θ

}
dt′2 + 8[1− g22(u′)] cot2 θdt′dx′

+
{

1− 4[1− g22(u′)] cot2 θ
}
dx′2 − 4[1− g22(u′)] cot θdt′dy′

+ 4[1− g22(u′)] cot θdx′dy′ + g22(u
′)dy′2 + g33(u

′)dz′2 (16)

The metric g̃′µν(u
′) satisfying R′µν(u

′) = 0 and g̃′µν(u
′) = ηµν for u′ < 0 is then also the metric of a

gravitational plane wave pulse. Since |h(u)| < B there is then a B′ such that |h′(u′)| < B′.
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4 Geodesic curve

The curve

t′(λ) = (1 + 2 cot2 θ)λ− 2 cot2 θ

∫ λ

0

dw

g22(w)
(17)

x′(λ) = 2 cot2 θλ− 2 cot2 θ

∫ λ

0

dw

g22(w)
(18)

y′(λ) = −2 cot θλ+ 2 cot θ

∫ λ

0

dw

g22(w)
(19)

z′(λ) = 0 (20)

satisfies the geodesic equation for the metric g̃′µν(u
′) and so is a geodesic curve. Now g22(u) = 1 for

u < 0 so we have t′(λ) = λ, x′(λ) = y′(λ) = z′(λ) = 0 for λ < 0. Choose θ so that cot θ 6= 0. We then
have by (17)-(20), since the integral goes to positive infinity as λ→ u0, that t′(λ)→ −∞ as λ→ u0.
Let λ1 be large negative hence t′(λ1) is large negative. From (17)-(20) there is a λ2 > 0 such that
t′(λ2) = t′(λ1). We then have points

p1 =
(
t′(λ1),x

′(λ1)
)

= (λ1, 0) p2 =
(
t′(λ2),x

′(λ2)
)

=
(
λ1,x

′(λ2)
)

(21)

are on the geodesic and λ1 is large negative. Also λ1 − u0 < x′(λ2) < λ1.

5 Approximate solution

We have for x′ > t′ that h̃′ = 0 hence h̃′ĥ′ = 0 for x′ > t′. Now for large |x′| we have ĥ′(x′) is

small hence for x′ < t′ and t′ large negative ĥ′ is small. From section (3) there is a B′ such that

|h̃′(u′)| < B′. Consequently h̃′ĥ′ is small for x′ < t′ and t′ large negative. We can conclude h̃′ĥ′ is
small for t′ < t′0 where t′0 is large negative. The cross terms of the Einstein field equations involving

factors h̃′ĥ′ will then be small for t′ < t′0. We then have h̃′µν+ĥ′µν for t′ < t′0 will approximately satisfy
(5) expressed in prime coordinates and with T ′µν = 0 for a point mass. Consequently for t′ < t′0

h′µν(t
′,x′) ≈ h̃′µν(t

′ − x′) + ĥ′µν(x
′) (22)

6 Contradiction

As the mass of M goes to zero that the path of M approaches the geodesic (17)-(20). Let mass of
M be small. There is then a point p3 = (λ1,x

′
3) on the path of M close to p2 hence x′3 is close to

x′(λ2). Now h̃′µν(p3) and ĥ′µν(p3) are finite and λ1 is large negative hence by (22) h′µν(p3) is finite.
Now p3 is a point of the path of M and since M is a point mass we have h′µν(p3) is not finite. From
the Einstein field equations we get h′µν(p3) is finite but from the geodesic equation we get h′µν(p3) is
not finite. This is a contradiction.
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