Einstein Field Equations and Geodesic Equation Paradox for a Gravitational Plane Wave Pulse Colliding with a Mass

Karl De Paepe

Abstract

We consider a gravitational plane wave pulse colliding with a point mass. The path of the mass can be determined using the Einstein field equations. We expect, for small mass, that this path to be approximately a geodesic. We show this need not be the case.

1 Introduction

For a system of just a gravitational plane wave pulse and no mass let the metric be $\widetilde{g}_{\mu \nu}(t-x)$ having $\widetilde{g}_{\mu \nu}(t-x)=\eta_{\mu \nu}$ for $x>t$. Require $\widetilde{g}_{\mu \nu}(t-x)$ satisfy the Einstein field equations. For a system of a point mass M at rest at the origin and no wave let the metric be $\widehat{g}_{\mu \nu}(\mathbf{x})$. Require $\widehat{g}_{\mu \nu}(\mathbf{x})$ satisfies the Einstein field equations. Now consider a system of gravitational plane wave pulse colliding with M. Let $g_{\mu \nu}(t, \mathbf{x})$ be the metric of the combined system of colliding wave and M. Require $g_{\mu \nu}(t, \mathbf{x})$ satisfy the Einstein field equations. Define

$$
\begin{align*}
\widetilde{h}_{\mu \nu}(t-x) & =\widetilde{g}_{\mu \nu}(t-x)-\eta_{\mu \nu} \tag{1}\\
\widehat{h}_{\mu \nu}(\mathbf{x}) & =\widehat{g}_{\mu \nu}(\mathbf{x})-\eta_{\mu \nu} \tag{2}\\
h_{\mu \nu}(t, \mathbf{x}) & =g_{\mu \nu}(t, \mathbf{x})-\eta_{\mu \nu} \tag{3}
\end{align*}
$$

Let $\widetilde{h}(t-x), \widehat{h}(\mathbf{x}), h(t, \mathbf{x})$ represent $\widetilde{h}_{\mu \nu}(t-x), \widehat{h}_{\mu \nu}(\mathbf{x}), h_{\mu \nu}(t, \mathbf{x})$ or first or second order partial derivatives of $\widetilde{h}_{\mu \nu}(t-x), \widehat{h}_{\mu \nu}(\mathbf{x}), h_{\mu \nu}(t, \mathbf{x})$ respectively.

The exact Einstein equations

$$
\begin{equation*}
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=-8 \pi T_{\mu \nu} \tag{4}
\end{equation*}
$$

can be written [1]

$$
\begin{equation*}
R^{(1)}{ }_{\mu \nu}-\frac{1}{2} \eta_{\mu \nu} R^{(1) \alpha}{ }_{\alpha}=-8 \pi\left(T_{\mu \nu}+t_{\mu \nu}\right) \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
t_{\mu \nu}=\frac{1}{8 \pi}\left[R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R_{\alpha}^{\alpha}-R_{\mu \nu}^{(1)}+\frac{1}{2} \eta_{\mu \nu} R_{\alpha}^{(1) \alpha}{ }_{\alpha}\right] \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{\mu \nu}^{(1)}=\frac{1}{2}\left[\frac{\partial^{2} h_{\lambda}^{\alpha}}{\partial x^{\mu} \partial x^{\nu}}-\frac{\partial^{2} h_{\mu}^{\alpha}}{\partial x^{\alpha} \partial x^{\nu}}-\frac{\partial^{2} h_{\nu}^{\alpha}}{\partial x^{\alpha} \partial x^{\mu}}+\frac{\partial^{2} h_{\mu \nu}}{\partial x^{\alpha} \partial x_{\alpha}}\right] \tag{7}
\end{equation*}
$$

Indices on $h_{\mu \nu}, R^{(1)}{ }_{\mu \nu}$, and $\partial / \partial x^{\alpha}$ are raised and lowered with η 's. For example $h^{\nu}{ }_{\mu}=\eta^{\nu \alpha} h_{\alpha \mu}$ and $\partial / \partial x_{\alpha}=\eta^{\alpha \beta} \partial / \partial x^{\beta}$. Computing $t_{\mu \nu}$ in a power series in h we have

$$
\begin{equation*}
t_{\mu \nu}=\frac{1}{8 \pi}\left[-\frac{1}{2} h_{\mu \nu} R^{(1) \alpha}{ }_{\alpha}+\frac{1}{2} \eta_{\mu \nu} h^{\alpha \beta} R_{\alpha \beta}^{(1)}+R^{(2)}{ }_{\mu \nu}-\frac{1}{2} \eta_{\mu \nu} \eta^{\alpha \beta} R^{(2)}{ }_{\alpha \beta}\right]+\mathcal{O}\left(h^{3}\right) \tag{8}
\end{equation*}
$$

where

$$
\begin{align*}
R^{(2)}{ }_{\mu \nu}= & -\frac{1}{2} h^{\alpha \beta}\left[\frac{\partial^{2} h_{\alpha \beta}}{\partial x^{\nu} \partial x^{\mu}}-\frac{\partial^{2} h_{\mu \beta}}{\partial x^{\nu} \partial x^{\alpha}}-\frac{\partial^{2} h_{\alpha \nu}}{\partial x^{\beta} \partial x^{\mu}}+\frac{\partial^{2} h_{\mu \nu}}{\partial x^{\beta} \partial x^{\alpha}}\right] \\
& +\frac{1}{4}\left[2 \frac{\partial h^{\beta}{ }_{\sigma}}{\partial x^{\beta}}-\frac{\partial h_{\sigma}^{\sigma}}{\partial x^{\beta}}\right]\left[\frac{\partial h^{\sigma}{ }_{\mu}}{\partial x^{\nu}}+\frac{\partial h^{\sigma}{ }_{\nu}}{\partial x^{\mu}}-\frac{\partial h_{\mu \nu}}{\partial x_{\sigma}}\right] \\
& -\frac{1}{4}\left[\frac{\partial h_{\sigma \nu}}{\partial x^{\alpha}}+\frac{\partial h_{\sigma \alpha}}{\partial x^{\nu}}-\frac{\partial h_{\alpha \nu}}{\partial x^{\sigma}}\right]\left[\frac{\partial h_{\mu}^{\sigma}}{\partial x_{\alpha}}+\frac{\partial h^{\sigma \alpha}}{\partial x^{\mu}}-\frac{\partial h^{\alpha}{ }_{\mu}}{\partial x_{\sigma}}\right] \tag{9}
\end{align*}
$$

The first term of $t_{\mu \nu}$ is then quadratic in h.

2 Plane gravitational wave pulse metric

Define $u=t-x$ and let the metric $\widetilde{g}_{\mu \nu}(u)$ be [2]

$$
\begin{equation*}
d s^{2}=-d t^{2}+d x^{2}+[L(u)]^{2} e^{2 \beta(u)} d y^{2}+[L(u)]^{2} e^{-2 \beta(u)} d z^{2} \tag{10}
\end{equation*}
$$

having $\widetilde{g}_{\mu \nu}(u)=\eta_{\mu \nu}$ for $u<0$ and

$$
\begin{equation*}
\frac{d^{2} L}{d u^{2}}(u)+\left[\frac{d \beta}{d u}(u)\right]^{2} L(u)=0 \tag{11}
\end{equation*}
$$

This metric will satisfy $R_{\mu \nu}=0$. It is the metric of a gravitational plane wave pulse. Let $L(0)=1$ and $\beta \neq 0$. We then have by (11) that $L(u)$ will decrease and become zero at some point $u_{0}>0$. Consequently $\widetilde{g}_{22}(u)>0$ for $u<u_{0}$. Now choose a $\beta(u)$ so that the resulting graviational plane wave pulse has a bound B such that $|\widetilde{h}(u)|<B$.

3 Proper Lorentz transformation

Consider a coordinate transformation from t, x, y, z to $t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}$ coordinates that is a composition of a rotation by θ about the z axis followed by a boost by $2 \cos \theta /\left(1+\cos ^{2} \theta\right)$ in the x direction followed by a rotation by $\theta+\pi$ about the z axis. For θ / π not an integer this is a proper Lorentz transformation [3] having

$$
\begin{align*}
t & =t^{\prime}\left(1+2 \cot ^{2} \theta\right)-2 x^{\prime} \cot ^{2} \theta+2 y^{\prime} \cot \theta \tag{12}\\
x & =2 t^{\prime} \cot ^{2} \theta+x^{\prime}\left(1-2 \cot ^{2} \theta\right)+2 y^{\prime} \cot \theta \tag{13}\\
y & =2 t^{\prime} \cot \theta-2 x^{\prime} \cot \theta+y^{\prime} \tag{14}\\
z & =z^{\prime} \tag{15}
\end{align*}
$$

By (12) and (13) we have $u=t-x=t^{\prime}-x^{\prime}=u^{\prime}$. Transforming (10) to $t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}$ coordinates we get by (12)-(15) a metric $\widetilde{g}_{\mu \nu}^{\prime}\left(u^{\prime}\right)$

$$
\begin{align*}
d s^{2} & =\left\{-1-4\left[1-g_{22}\left(u^{\prime}\right)\right] \cot ^{2} \theta\right\} d t^{\prime 2}+8\left[1-g_{22}\left(u^{\prime}\right)\right] \cot ^{2} \theta d t^{\prime} d x^{\prime} \\
& +\left\{1-4\left[1-g_{22}\left(u^{\prime}\right)\right] \cot ^{2} \theta\right\} d x^{\prime 2}-4\left[1-g_{22}\left(u^{\prime}\right)\right] \cot \theta d t^{\prime} d y^{\prime} \\
& +4\left[1-g_{22}\left(u^{\prime}\right)\right] \cot \theta d x^{\prime} d y^{\prime}+g_{22}\left(u^{\prime}\right) d y^{\prime 2}+g_{33}\left(u^{\prime}\right) d z^{\prime 2} \tag{16}
\end{align*}
$$

The metric $\widetilde{g}_{\mu \nu}^{\prime}\left(u^{\prime}\right)$ satisfying $R_{\mu \nu}^{\prime}\left(u^{\prime}\right)=0$ and $\widetilde{g}_{\mu \nu}^{\prime}\left(u^{\prime}\right)=\eta_{\mu \nu}$ for $u^{\prime}<0$ is then also the metric of a gravitational plane wave pulse. Since $|h(u)|<B$ there is then a B^{\prime} such that $\left|h^{\prime}\left(u^{\prime}\right)\right|<B^{\prime}$.

4 Geodesic curve

The curve

$$
\begin{align*}
t^{\prime}(\lambda) & =\left(1+2 \cot ^{2} \theta\right) \lambda-2 \cot ^{2} \theta \int_{0}^{\lambda} \frac{d w}{g_{22}(w)} \tag{17}\\
x^{\prime}(\lambda) & =2 \cot ^{2} \theta \lambda-2 \cot ^{2} \theta \int_{0}^{\lambda} \frac{d w}{g_{22}(w)} \tag{18}\\
y^{\prime}(\lambda) & =-2 \cot \theta \lambda+2 \cot \theta \int_{0}^{\lambda} \frac{d w}{g_{22}(w)} \tag{19}\\
z^{\prime}(\lambda) & =0 \tag{20}
\end{align*}
$$

satisfies the geodesic equation for the metric $\widetilde{g}_{\mu \nu}^{\prime}\left(u^{\prime}\right)$ and so is a geodesic curve. Now $g_{22}(u)=1$ for $u<0$ so we have $t^{\prime}(\lambda)=\lambda, x^{\prime}(\lambda)=y^{\prime}(\lambda)=z^{\prime}(\lambda)=0$ for $\lambda<0$. Choose θ so that $\cot \theta \neq 0$. We then have by (17)-(20), since the integral goes to positive infinity as $\lambda \rightarrow u_{0}$, that $t^{\prime}(\lambda) \rightarrow-\infty$ as $\lambda \rightarrow u_{0}$. Let λ_{1} be large negative hence $t^{\prime}\left(\lambda_{1}\right)$ is large negative. From (17)-(20) there is a $\lambda_{2}>0$ such that $t^{\prime}\left(\lambda_{2}\right)=t^{\prime}\left(\lambda_{1}\right)$. We then have points

$$
\begin{equation*}
p_{1}=\left(t^{\prime}\left(\lambda_{1}\right), \mathbf{x}^{\prime}\left(\lambda_{1}\right)\right)=\left(\lambda_{1}, 0\right) \quad p_{2}=\left(t^{\prime}\left(\lambda_{2}\right), \mathbf{x}^{\prime}\left(\lambda_{2}\right)\right)=\left(\lambda_{1}, \mathbf{x}^{\prime}\left(\lambda_{2}\right)\right) \tag{21}
\end{equation*}
$$

are on the geodesic and λ_{1} is large negative. Also $\lambda_{1}-u_{0}<x^{\prime}\left(\lambda_{2}\right)<\lambda_{1}$.

5 Approximate solution

We have for $x^{\prime}>t^{\prime}$ that $\widetilde{h}^{\prime}=0$ hence $\widetilde{h}^{\prime} \widehat{h}^{\prime}=0$ for $x^{\prime}>t^{\prime}$. Now for large $\left|\mathbf{x}^{\prime}\right|$ we have $\widehat{h}^{\prime}\left(\mathbf{x}^{\prime}\right)$ is small hence for $x^{\prime}<t^{\prime}$ and t^{\prime} large negative \widehat{h}^{\prime} is small. From section (3) there is a B^{\prime} such that $\left|\widetilde{h}^{\prime}\left(u^{\prime}\right)\right|<B^{\prime}$. Consequently $\widetilde{h}^{\prime} \widehat{h}^{\prime}$ is small for $x^{\prime}<t^{\prime}$ and t^{\prime} large negative. We can conclude $\widetilde{h}^{\prime} \widehat{h}^{\prime}$ is small for $t^{\prime}<t_{0}^{\prime}$ where t_{0}^{\prime} is large negative. The cross terms of the Einstein field equations involving factors $\widetilde{h}^{\prime} \widehat{h}^{\prime}$ will then be small for $t^{\prime}<t_{0}^{\prime}$. We then have $\widetilde{h}_{\mu \nu}^{\prime}+\widehat{h}_{\mu \nu}^{\prime}$ for $t^{\prime}<t_{0}^{\prime}$ will approximately satisfy (5) expressed in prime coordinates and with $T_{\mu \nu}^{\prime}=0$ for a point mass. Consequently for $t^{\prime}<t_{0}^{\prime}$

$$
\begin{equation*}
h_{\mu \nu}^{\prime}\left(t^{\prime}, \mathbf{x}^{\prime}\right) \approx \widetilde{h}_{\mu \nu}^{\prime}\left(t^{\prime}-x^{\prime}\right)+\widehat{h}_{\mu \nu}^{\prime}\left(\mathbf{x}^{\prime}\right) \tag{22}
\end{equation*}
$$

6 Contradiction

As the mass of M goes to zero that the path of M approaches the geodesic (17)-(20). Let mass of M be small. There is then a point $p_{3}=\left(\lambda_{1}, \mathbf{x}_{3}^{\prime}\right)$ on the path of M close to p_{2} hence \mathbf{x}_{3}^{\prime} is close to $\mathbf{x}^{\prime}\left(\lambda_{2}\right)$. Now $\widetilde{h}_{\mu \nu}^{\prime}\left(p_{3}\right)$ and $\widehat{h}_{\mu \nu}^{\prime}\left(p_{3}\right)$ are finite and λ_{1} is large negative hence by $(22) h_{\mu \nu}^{\prime}\left(p_{3}\right)$ is finite. Now p_{3} is a point of the path of M and since M is a point mass we have $h_{\mu \nu}^{\prime}\left(p_{3}\right)$ is not finite. From the Einstein field equations we get $h_{\mu \nu}^{\prime}\left(p_{3}\right)$ is finite but from the geodesic equation we get $h_{\mu \nu}^{\prime}\left(p_{3}\right)$ is not finite. This is a contradiction.

References

[1] S. Weinberg, Gravitation and Cosmology
[2] C. Misner, K. Thorne, J. Wheeler, Gravitation p. 957
[3] K. De Paepe, Physics Essays, June 2009

Email: k.depaepe@alumni.utoronto.ca

