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Abstract

We consider a gravitational plane wave pulse colliding with a point mass. The path of the mass
can be determined using the Einstein field equations. We expect, for small mass, that this path
to be approximately a geodesic. We show this need not be the case.

1 Introduction

For a system of just a gravitational plane wave pulse and no mass let the metric be g, (t — =) having
Guv(t — x) =, for x > t. Require g,,(t — =) satisfy the Einstein field equations. For a system of
a point mass M at rest at the origin and no wave let the metric be g,,(x). Require g, (x) satisfies
the Einstein field equations. Now consider a system of gravitational plane wave pulse colliding with
M. Let g,,(t,x) be the metric of the combined system of colliding wave and M. Require g,,(t,x)
satisfy the Einstein field equations. Define

h;wg —7) = Gut—2) = Nuw (1)
hw(X) = Guo(X) = Ny (2)
hﬂul/(ta X) - gul/<t’ X) — Nw (3)

Let h(t — z), h(x), h(t, x) represent %W(t —x), EW (x), h,(t,x) or first or second order partial deriva-
tives of h,, (t — ), hy(x), b, (t, X) respectively.

The exact Einstein equations
1

R, — §gw,R = —8nT,, (4)
can be written [1]
1
RO, = 5mu RV, = —87(To +1,0) (5)
where
to = (R — 29 Ro — RO L R 6
= 8_7T uy 59#1} a uv + §7hw o ( )
and 2 27a 2 2
R(l)zl[ahA B 0°hy, B 0°h? 8h,w] (7)
w2 L0zrozr Ox*0xv  Ox*Ox*  Ox*0x,

Indices on Ay, rY w, and 0/0z are raised and lowered with n’s. For example h” u = 1"hq, and
0/0x, = n*?9/0x". Computing t,, in a power series in h we have
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The first term of ¢, is then quadratic in h.

2 Plane gravitational wave pulse metric
Define u =t — x and let the metric g,,(u) be [2]

ds? = —dt* + dz? + [L(v)]?e¥Wdy? + [L(u)]?e 2P 2 (10)
having g, (u) = 1, for u < 0 and

0+ [ 1 =0 (1)

This metric will satisfy R,, = 0. It is the metric of a gravitational plane wave pulse. Let L(0) =1
and 5 # 0. We then have by (11) that L(u) will decrease and become zero at some point uy > 0.
Consequently goo(u) > 0 for u < ug. Now choose a 5(u) so that the resulting graviational plane wave
pulse has a bound B such that |h(u)| < B.

3 Proper Lorentz transformation

Consider a coordinate transformation from ¢, z,y,z to t’,2’, vy, 2’ coordinates that is a composition
of a rotation by 6 about the z axis followed by a boost by 2cosf/(1 + cos?6) in the x direction
followed by a rotation by 6 + 7w about the z axis. For /7 not an integer this is a proper Lorentz
transformation [3] having

t = t'(14+2cot?f) — 22 cot® § + 2y cot 0 (12)
r = 2t'cot?f + (1 — 2cot? ) + 2y cot 6 (13)
y = 2t'cot® — 22" cot O + o (14)
z = 2 (15)

By (12) and (13) we have u =t —x =t/ — 2/ = «/. Transforming (10) to ', 2’, v/, 2’ coordinates we
get by (12)-(15) a metric g, (u')

ds* = { — 1 —4[1 — goo(u)] cot? 9}dt’2 + 8[1 — gao(u')] cot? Odt'da’
- {1 —4[1 — gyy(u')] cot? 9}dw’2 — 4[1 — goo(u')] cot Odt'dy’
4+ 4[1 — goo(u)] cot Oda'dy’ 4 gao(u)dy* + gss(u)dz" (16)

The metric g, (u') satisfying R, (u') = 0 and g,,,(u') = n,, for v’ < 0 is then also the metric of a
gravitational plane wave pulse. Since |h(u)| < B there is then a B’ such that |h'(uv')| < B'.



4 Geodesic curve

The curve
t'(A) = (1+2cot*f)\ — 2cot? 9/ — (17)
g2a(w

'(\) = 2cot? N — 2c0t29/ (18)
922

y'(\) = —2cot O\ + 2cot 6/ (19)
g2a(w

Z(\) = 0 (20)

satisfies the geodesic equation for the metric ¢, (u’) and so is a geodesic curve. Now goo(u) = 1 for
u < 0 so we have t/(A) = A\, 2/(\) = y'(A) = 2/(A) = 0 for A < 0. Choose 6 so that cot § # 0. We then
have by (17)-(20), since the integral goes to positive infinity as A — ug, that t'(A) — —oo as A — wy.
Let A\ be large negative hence t'()\;) is large negative. From (17)-(20) there is a Ay > 0 such that
t'(A2) = t'(A1). We then have points

= (00X ) = 000) pe = (FO2). ¥ (0)) = (A, X () (21)

are on the geodesic and )\ is large negative. Also A\; — ug < 2'(A2) < Aj.

5 Approximate solution

We have for # > ¢ that &/ = 0 hence W'h' = 0 for # > ¢'. Now for large |x/| we have h/(x') is
small hence for 2/ < ¢’ and ¢’ large negative 7’ is small. From section (3) there is a B’ such that
W/ (v/)| < B'. Consequently IR is small for 2/ < ¢’ and t' large negative. We can conclude /A’ is
small for ¢’ < t, where t{ is large negative. The cross terms of the Einstein field equations involving
factors h'h’ will then be small for # < to- We then have ﬁ;w +/f;;w for t' < t{, will approximately satisfy
(5) expressed in prime coordinates and with T}, = 0 for a point mass. Consequently for ¢ < ¢

b, x') = h, [t —')+h,,(x) (22)

6 Contradiction

As the mass of M goes to zero that the path of M approaches the geodesic (17)-(20). Let mass of
M be small. There is then a point ps = (A,x%) on the path of M close to p hence xj is close to
x'(A2). Now %;w(pg) and /]';;w(pg) are finite and ), is large negative hence by (22) k), (ps) is finite.
Now p3 is a point of the path of M and since M is a point mass we have A/, (p3) is not finite. From
the Einstein field equations we get A/, (p3) is finite but from the geodesic equation we get hj,, (p3) is
not finite. This is a contradiction.
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